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Filling-In by Joint Interpolation of Vector Fields
and Gray Levels
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Abstract—A variational approach for filling-in regions of
missing data in digital images is introduced in this paper. The ap-
proach is based on joint interpolation of the image gray-levels and
gradient/isophotes directions, smoothly extending in an automatic
fashion the isophote lines into the holes of missing data. This in-
terpolation is computed by solving the variational problem via its
gradient descent flow, which leads to a set of coupled second order
partial differential equations, one for the gray-levels and one for
the gradient orientations. The process underlying this approach
can be considered as an interpretation of the Gestaltist’s principle
of good continuation. No limitations are imposed on the topology
of the holes, and all regions of missing data can be simultaneously
processed, even if they are surrounded by completely different
structures. Applications of this technique include the restoration
of old photographs and removal of superimposed text like dates,
subtitles, or publicity. Examples of these applications are given.
We conclude the paper with a number of theoretical results on
the proposed variational approach and its corresponding gradient
descent flow.

Index Terms—Filling-in, Gestalt principles, image gradients,
image gray-levels, interpolation, partial differential equations,
variational approach.

I. INTRODUCTION

F ILLING-IN missing data in digital images has a number of
fundamental applications. They range from removing ob-

jects from a scene all the way to retouching damaged paintings
and photographs. The basic idea is to fill-in the gap of missing
data in a form that it is nondetectable by an ordinary observer.
In art, this process is calledinpainting[6], [7], [16], [25], [39].

Since the early days of art and photography, filling-in and in-
painting has been done by professional artists. Imitating their
performance with semi-automatic digital techniques is currently
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an active area of research; see, for example, [8], [23], [27],
and [28], and the papers discussed in this paper. The goal of
this work is to introduce a novel algorithm for automatically
filling-in gaps in the image. In this paper, we follow the sugges-
tions in the conclusions section in [6] and introduce an energy
functional based on an interpretation of Gestaltist’s good contin-
uation principle. Suppose that we are given an image

, where is a square of and , and is an open
bounded subset of with Lipschitz continuous boundary. We
shall call theholeor gap. We want to fill-in the hole based
on the geometric and photometric information outside the hole.
For that we use what we call a band around, i.e., we consider
an open region of such that ( is the closure of the
set). The band we refer to will be the set . To fill-in
the hole we use the information of contained in , mainly
gray level and the vector field of isophotes (level sets) directions
of in .1 We attempt to continue the level sets ofin in-
side taking into account the principle of good continuation.
We propose an energy functional which takes into account these
principles interpreted in a suitable way. The energy functional
we propose has to be minimized with respect to two variables:
a vector field which represents the directions of the level lines
of , and the gray level . and are constrained in the band

by their known values there. The use of the vector field of
directions is one of the main points of the algorithm presented
in this paper, which permits the level sets to smoothly continue
inside the hole. We are then continuing both the geometric and
photometric properties of the image inside the hole.

Let us finally say that the only user interaction required by the
algorithm here introduced is to mark the regions to be filled-in.
Although a number of techniques exist for the semi-automatic
detection of image defects (mainly in films), addressing this is
not part of the scope of this paper. Since the algorithm here
presented can be used not just to restore damaged photographs
but also to remove undesired objects and writings on the image,
the regions must be marked by the user, since they depend on
his/her subjective selection.

A. Closely Related Approaches

Before proceeding with the detailed description of our algo-
rithm, let us comment on related work. Note that image de-
noising is different to filling-in, since the regions of missing
data are usually large. That is, regions occupied by top to bottom
scratches along several film frames, long cracks in photographs,

1The width of the band is such that it conveys the boundary information,
mainly the gray level and isophotes direction, and numerically it depends on
the minimal stencil needed by the implementation.
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superimposed large fonts, and so on, are of significant larger size
than the type of noise assumed in common image enhancement
algorithms. In addition, in common image enhancement appli-
cations, the pixels contain both information about the real data
and the noise (e.g., image plus noise for additive noise), while in
our application there is no significant information in the region
to be inpainted.

A very active area related to the work here presented is the
restoration of damaged films. The basic idea here is to use in-
formation from past and future frames to restore the current one,
e.g., [23], [28]. Of course, this general approach cannot be used
when dealing with still images.

Another area related to the work here described is texture
synthesis. The basic idea here is to select a texture and synthe-
size it inside the region to be filled-in (the hole). Although out-
standing texture synthesis results have been reported in the lit-
erature, e.g., [14], [19], [22], and [36], these algorithms require
the user to select the texture to be copied into the hole. For im-
ages in which the region to be replaced covers several different
structures, the user would need to go through the tremendous
work of segmenting them and searching corresponding replace-
ments throughout the picture. Although part of this search can be
performed automatically, the overall process is extremely time
consuming and requires the nontrivial selection of many critical
parameters, e.g., [14].

Last, a number of fundamental works on the topic of disocclu-
sion and line continuation have been reported in the literature,
and these are the closest to our approach. A pioneering contri-
bution in this area is described in [33]. The authors presented a
technique for removing occlusions with the goal of image seg-
mentation. Since the region to be filled-in can be considered as
occluding objects, removing occlusions is analogous to image
inpainting. The basic idea suggested by the authors is to con-
nect T-junctions at the occluding boundaries of objects with
elastica minimizing curves (see later in this paper for the exact
definition of elastica curves). The technique was primarily de-
veloped for simple images obtained from a segmentation, with
only a few objects with constant gray-levels. Thus, they ended
up by connecting T-junctions at the same gray level. (Other re-
searchers, e.g., Jacobset al. have followed this interesting re-
search area, mainly developing techniques for smooth curve
continuation.) Masnou and Morel [31], [32] recently extended
these ideas, presenting a very elegant and inspiring formal vari-
ational formulation for disocclusion and a particular practical
algorithm implementing some of the ideas in this formulation.
The algorithm fills-in by joining with geodesic curves the points
of the isophotes arriving at the boundary of the region to be
inpainted. The holes in their algorithm are limited to having
simple topology. In addition, the angle with which the level lines
arrive at the boundary of the holes are not (well) preserved, and
the algorithm uses straight lines to join equal gray value pixels.
The present work was motivated, in part, by their work. In some
sense, as shown by the work of Masnou and Morel [31], [32] and
this paper, operators as the one proposed in [33] can be used to
first interpolate level-sets, and then reconstruct from them the
interpolated gray-level image.

Recently, we have addressed the concept of smooth contin-
uation of information in the level-lines direction in [6], [7].

We proposed an algorithm, inspired by partial differential equa-
tions, that propagates the image Laplacian in this direction. The
algorithm attempts to imitate basic approaches used by pro-
fessional restorators. The algorithm also introduces the impor-
tance of propagating both the gradient direction (geometry) and
gray-values (photometry) of the image in a band surrounding
the hole to be filled-in. It is part of the goal of the current paper
to adopt some of the ideas of [6] and [7], while deviating from
the particular model in order to be able to define a formal vari-
ational approach to the filling-in problem.

The work in [6] and [7] inspired a very elegant approach to the
filling-in problem recently reported in [9] (this work was per-
formed independently to the one reported in this paper).2 The
authors present a clear and intuitive axiomatic approach to the
problem. The main algorithm they propose after an interesting
discussion of the inpainting problem is to minimize the total
variation (TV), [35], of the image inside the hole (they also use,
as proposed in [6], [7] and further studied in this paper, a band
surrounding the region). They address in addition the interpola-
tion and filling-in in the presence of noise, a very important ad-
ditional contribution. As in the work of Masnou and Morel, their
interpolation is limited to creating straight isophotes, not neces-
sarily smoothly continued from the hole boundary, and mainly
is developed (as the authors clearly state) for small holes. Al-
though straight connections give visually pleasant results for
small holes, it is important to develop a theory that permits inter-
polation of level lines across large gaps, where connecting with
straight lines will be unpleasant even for simple images. As we
will argue later in this paper, in order to obtain such a smooth
interpolation and continuation of isophotes, it is necessary to
go into high-order partial differential equations (PDEs) or sys-
tems of PDEs, as done in [6], [7] and here. Note that considering
the angle of arrival of the level lines at the gap, and pursuing a
smooth interpolation of it as done here, it is also supported by
research in perception, from the Gestalt to more recent work,
e.g., [34].

To conclude this section, the interested reader is referred to
the works of Nitzberg–Mumford–Shiota, Masnou–Morel, and
Chan–Shen (as well as our previous work) to study other inter-
esting and very related techniques for filling-in.

Let us conclude with the plan of the paper. In Section II,
we introduce the problem, the functional spaces and the energy
functional for image inpainting. To clarify the meaning of the
functional, we also discuss the particular case where we inter-
polate the gray level, knowing the vector field of directions. Sec-
tion III is devoted to numerical experiments. Section IV contains
some conclusions. Finally, Appendices I and II are devoted, re-
spectively, to the proof of existence of minimizers for the energy
functional introduced in this paper and to details on the numer-
ical implementation of the proposed equations.

II. JOINT INTERPOLATION OF VECTOR FIELDS

AND GRAY VALUES

Let be an image defined on a domainof
, which we may suppose to be a square. Let be two

2We thank the authors for providing us with a preliminary report of their work.
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open bounded domains in with Lipschitz boundary and sup-
pose that . To simplify our presentation we shall
assume that does not touch the boundary of the image do-
main . Let . will be called the band around.
Suppose that a function is given in which, for the mo-
ment being, we shall assume to be smooth in the closure,, of

(later we shall assume that is of bounded variation, i.e.,
). Let be the vector field of directions of the

gradient of on , i.e., is a vector field with values in
satisfying and (ideally
1 or 0, see below). This is the information we shall use on.

We pose the image inpainting problem in the following form:
Can we extend (in a reasonable way) the pair of functions

from the band to a pair of functions defined
inside ? Of course, we will have to precise what we mean by
a reasonable way. We shall discuss and analyze a variational
formulation of this filling-in problem and discuss possible
energy functionals, and their corresponding gradient descent
flows, which give a solution to it. The data are given on the band

and we should constraint the solution to be near the
data on . The vector field should satisfy on and
should be related to by trying to impose that ,
i.e., we should impose that is related to the vector field of
directions of the gradient of. The condition should
be interpreted as a relaxation of this. Indeed, it may happen
that (flat regions) and then we cannot normalize
the vector field to a unit vector. We should have in mind that
the ideal case would be that being a smooth
function with for all . Finally, we should
impose that the vector field in the band tries to continue
smoothly to inside . We shall impose this by observing that,
in case represents the directions of the normals to the level
lines of , i.e., of the curves , then a term
like represents its curvature. Motivated by the principle
of smooth continuation, our energy functional should contain
terms integrating . Indeed, collecting all the observations
above, we propose to minimize a functional of the form

Minimize

(1)

where
, and positive constants;

smoothing kernel;
submitted to constraints.

We need to give a sense to the integrals appearing in the above
expression and to make precise the admissible class of functions
where the functional has to be minimized. For that, we need to
introduce some function spaces. This is done in the following
section. Once this has been formally addressed, we will further
discuss the underlying concepts of the above functional.

A. Function Spaces

Let us first recall the definition of BV functions and total vari-
ation. Let be an open set. A function whose partial

derivatives in the sense of distributions are measures with finite
total variation in is called a function of bounded variation.
The class of such functions will be denoted by . Thus

if and only if there are Radon measures
defined in with finite total mass in and

(2)

for all . Thus, the gradient of is a
vector valued measure with finite total variation

for (3)

The space is endowed with the norm

(4)

We say that a measurable set hasfinite perimeterin
if its indicator function . If al-

most all its level sets are
sets of finite perimeter. For sets of finite perimeterone can
define the essential boundary , which is rectifable with fi-
nite measure, and compute the normal to the level set at

almost all points of . Thus at almost all points of
almost all level sets of we may define a normal
vector . This vector field of normals can be also defined
(hence extended to all ) as the Radon-Nikodym derivative of
the measure with respect to , i.e., it formally satisfies

and, also, a.e. For further information
concerning functions of bounded variation we refer to [1], [17],
and [40].

Let us now introduce the function spaces for. Let be an
open bounded subset of with a Lipschitz boundary. We de-
fine

and

is a Radon measure in

The Trace Theorem [2], [10] guarantees that the normal compo-
nent , is well defined for vector fields in ,
or in . To simplify our notation we shall assume that

represents the space .
Next, we shall give a sense to the integrals of bounded vector

fields with divergence in integrated with respect to the gra-
dient of a BV function. For that, we shall need some results from
[2] (see also [11] and [26]). Let be an open bounded subset of

with Lipschitz continuous boundary. Let and
be such that . Following [2], let

(5)
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If and we define the func-
tional by the formula

(6)

Then, is a Radon measure in

(7)

for all and

(8)

for any Borel set .
In [2], a weak trace on of the normal component of

is defined. Concretely, it is proved that there exists a
linear operator such that

for all if

where denotes the outer unit normal at . We shall
denote by . Moreover, the followingGreen’s
formula, relating the function and the measure ,
for and , is established

(9)

If no confusion arises, we shall denote instead of
for . These results will be
used in the Proof of Theorem 2 given in Appendix I.

B. Energy Derivation and Interpretation

One of the key concepts above was the band around the hole.
The band is of local character but in principle it could be ex-
tended to all the known part of the image. Obviously, what hap-
pens at distant parts can be independent or not from what hap-
pens at the hole, but, in our construction below, we suppose that
only a narrow band around the hole influences what happens in-
side the hole. Could we fill-in without the band? To discuss this
suppose that we are given the image of Fig. 1(a) which is a gray
band on a black background partially occluded by a square.
We suppose that the sides of the square holeare orthogonal
to the level lines of the original image. In these conditions, the
normal component of the vector field outside is null at .
Thus if the boundary data is just , we would have that

. In particular, the vector field satisfies this
condition. If we are not able to propagateinside this may
become an unpleasant situation, since this would mean that we
do no propagate the values ofat the boundary. If we write the
functional (1) with , it turns out to be the Total Variation
[35]. The decision of extending the gray band or filling the hole
with the black level would be taken as a function of the perimeter
of the discontinuities of the function in the hole. Then the result
of interpolating Fig. 1(a) using total variation would be that of

(a) (b) (c)

Fig. 1. (a) Original image, (b) filling-in via total variation-based techniques,
and (c) filling-in via our proposed algorithm.

Fig. 2. Region to be filled-in and corresponding surrounding band from where
the information is considered.

Fig. 1(b) and not the one in Fig. 1(c), because the interpolating
lines in Fig. 1(b) are shorter than the ones in Fig. 1(c). To over-
come this situation we introduce the band around the hole. The
introduction of the band permits us to effectively incorporate in
the functional the information given by the vector fieldout-
side . In Fig. 1(b), we display the result of the interpolation
with on . In Fig. 1(c), we show the result of the interpo-
lation using the functional we shall completely describe below,
which takes into account the bandand computes the vector
field in .

Thus, let be a band around with a Lipschitz boundary
containing the boundary of (see Fig. 2). As we made explicit
above, . Given the band and the function of
bounded variation in , we define the space

in

Let be a vector field of directions of the gradient
of , i.e., and as measures in
(therefore, a.e.). In practice we shall constraint the vector field
to be the vector field of directions of only indirectly, through
the functional. We could also introduce this as a constraint or
with a penalty term (see also [9], [35] for penalties
of this form in the gray values).

Combining the previous elements, the band, the relations be-
tween and , and the smoothness term on, we propose to
interpolate the pair in by minimizing the functional

Minimize

(10)
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where denotes a regularizing kernel of class
such that a.e. and denotes the outer unit

normal at . The previous functional is coercive and ad-
mits a minimum in the class of functions described above if

. The case is under study. The functional can be
interpreted as a formulation of the principle of good continua-
tion and amodal completion as formulated in the Gestalt theory
of vision. The following remarks contain heuristic arguments
which may help to understand our choice. In next subsection
we shall explain in more detail the role of the term coupling
and .

Remarks:

1) The constant is . If is the characteristic function of
the region enclosed by a curvethen a term like

(11)

is related to , where is the Euclidean curvature
(of the level-sets). If , this term appears in Euler’s
elastica

(12)

Euler’s elastica (12) was proposed in [33] as a technique
for removing occlusions with the goal of image segmenta-
tion, since this criterion yields smooth, short, and not too
curvy curves. In terms of characteristic functions, Euler’s
elastica can be written as

(13)

In [5], it was shown that this functional is not lower
semicontinuous. The functional proposed by Masnou
and Morel [31], [32] can be interpreted as a relaxation of
it, since it integrates functionals like the elastica (plus the
angle that the curve makes with the corresponding level
line arriving at the boundary) along the level lines of the
function . Our functional can be also considered as a
relaxed formulation of the energy of the elastica. For that,
we introduced as a independent variable, and we tried
to couple it to by imposing that . This
restriction could be directly incorporated to the model as
a constraint. We choose to incorporate this constraint as
a penalization term

(14)

(see the next subsection for a detailed discussion of this
term). Finally, let us say that for mathematical reasons we
have convolved the term of (11) to be able to prove
the existence of a minimum for (10). From a theoretical
point of view, this may invalidate our previous comments.
But, from a practical point of view, it gives a weight to the
curve of discontinuities of the image.

2) The constant has to be . Otherwise we do not get
an bound on . Now, let us comment on the two

terms containing . Heuristically, if we do not com-
pute in a proper way, in a continuous image like in
Fig. 1, could be zero except on a set of curves. Then

a.e. on (or on ) and a term like

(15)

would produce a null value since . On the other
hand, a term like (11) would integrate a power of the cur-
vature on the level line corresponding to the discontinuity
of the image and it would guarantee that the functional
is not null. This argument is only heuristic and not com-
pletely justified. Indeed, we believe that in such example
as in Fig. 1, a term like (15) would induce a regularizing
effect on and the support of would not be a curve any
more. In that case, the integral (15) would not be null.

3) Related to the question discussed in the last comment is
the possibility to compute a regularized vector field of di-
rections for images which are constant except at jump dis-
continuities. A direct computation of the vector field out-
side the hole in an image like Fig. 1(a) gives a null vector
field at all points except the points on the level line sepa-
rating the black from the white region. This may not be a
good starting point to extend reasonably the vector field

inside . To initialize the algorithm of steepest descent,
a regularization of outside may be constructed as the
vector field of directions of the image obtained
by regularizing , with

in

in

for (16)

As it is shown in [3], this equation permits a regular-
ization of the vector field of directions of the gradient
of , i.e., there is a vector field , such that

and . Moreover, for
each if for all

. In this way, we initialize the steepest descent al-
gorithm described in Section III with a regularized vector
field . This again raises a question, namely, if this ad-hoc
regularization is really needed or a regularization takes
place with the algorithm itself, if we use an implicit nu-
merical scheme to solve (10).

4) The bound can be replaced by a con-
stant depending on . The constraint that

in could be relaxed by adding a penalty term like
. Similarly, we could add a penalty term to

constraint to be near inside . In this case, we should
regularize in using the equation described in Remark
3. This type of approach is addressed in the work of Chan
and Shen mentioned previously [9].

5) In practice, functional (10) is used to interpolate shapes,
i.e., to interpolate level sets. The image is decomposed
into upper level sets , which are interpolated
using (10) to produce the level sets of a function ,
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which is reconstructed inside by using the reconstruc-
tion formula

To guarantee that the reconstructed level sets correspond
to the level sets of a function, they should satisfy that

. In practice, we force our solution to
satisfy this property.

In principle, our functional (10) could be used directly
to interpolate functions. But, discontinuities of the image
have a contribution to the energy which is proportional
to the jump. This gives different weights to discontinu-
ities of different sizes and, as a consequence, they are
not treated in the same manner. This is not reasonable if
we want to interpolate the shapes of the image, indepen-
dently of their contrast. When taking level sets, we treat
all shapes equally, and the parameters of the functional
should only weight geometric quantities (like length, total
curvature) and decide which interpolation is taken as a
function of them. This approach is less diffusive than di-
rectly interpolating the gray levels. Theorem 2 in Ap-
pendix I proves the existence of minimizers for our model
and can be applied to both cases, binary and gray level
images. It guarantees that there are minima of our func-
tional. We do not yet know the qualitative properties of
those minima. Even if at the intuitive level the main quan-
tities that appear in our functional are length and a mea-
sure of total curvature (like in the elastica), we do not have
a rigorous proof that this is so. The functional was in-
troduced on a heuristic basis, but relaxations may occur
as they occur in (16), where may repre-
sent when computed on a flat region [3],
[37]. This requires further study and we shall pursue it
elsewhere.

6) The choice made in Remark 5 of decomposing the image
into upper level sets, interpolating them and recon-

structing the function , introduces a lack of symmetry.
Indeed, we are giving more weight to upper level sets than
to lower level sets. This can be seen in Fig. 3. Fig. 3(a)
displays the image to be interpolated. It is clear that sev-
eral reasonable solutions are possible and no one of them
is preferable to the others. The choice we made gives
Fig. 3(b) as solution, favoring that the object whose level
is 210 goes above the object whose level is 0. But, in that
case, the “true” information is lacking and we selected
one of the possible reasonable solution.

C. Interpolating Gray Values along the Integral Curves of a
Vector Field

Our purpose in this section is to further discuss the term

(17)

in functional (10) (see also [24] for a related, and
Poisson-equation based, approach of gray value reconstruction

(a) (b)

Fig. 3. (a) Original image and (b) result of filling-in with our algorithm and
the level-sets ordering selected in this paper.

from image gradients). We shall see that (whenis known),
when minimizing (17), we are constructing the function
whose values on the boundary are given and whose direction of
the gradient is given by. We shall discuss this from a general
point of view. Thus, suppose thatis an open bounded domain
with a Lipschitz boundary and . Let
be a vector field whose smoothness will be detailed below. We
ask the following question: can we interpolate the boundary
data along the integral curves of? In the case discussed in
last section, , and we propagate the boundary data
along the integral curves of . Heuristically, is orthogonal to
the level lines of . Coming back to our general discussion, we
want to construct a function such that
and being constant along the integral curves of, i.e., the
solutions of the system of ordinary differential equations

(18)

This amounts to say that

(19)

a first-order transport equation whose characteristic curves are
the solution of the system (18). Let us discuss the difficulties
posed by this formulation. First of all, existence and uniqueness
of solutions of (18) is guaranteed whenis a Lipschitz vector
field, a very strong regularity assumption, which excludes any
singularity for . More general existence results have been ob-
tained in [13] via the study of transport equations, indeed, via
formulations analog to (19). Typically, they are assuming that
is in some Sobolev space like , with some other in-
tegrability assumptions, and . These results
have been further extended in [12], [30]. In particular, Lions in
[30] proves a.e. existence of solutions of (18) for vector fields
which are piecewise in in a precise sense defined by the
author. As observed in these papers, it is not known if the pre-
vious result is true for BV vector fields. On the other hand,
even for a vector field in , for which we have existence
a.e. of solutions of (18), the problem of constructingsatis-
fying (19) and such that is not obvious. Indeed, con-
sider a smooth vector field defined on a simple domain, like

and suppose that the integral curves
of are curves that foliate and such that at any point of
we start a curve that ends in another point of. Then the only
possibility to extend to so that in a classical sense
is that takes the same values at the beginning and endpoints
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(a) (b)

(c)

Fig. 4. (a) Original image, (b) original image with missing region, and (c) filled-in image when the gradients inside the white square are known.

of the integral curves of . A possibility to overcome this dif-
ficulty, would be to use the vanishing viscosity method, i.e., to
solve the elliptic equation

(20)

and let . Then, we hope the sequenceto converge to
some bounded function which solves the problem in a distri-
butional sense. We do not have further information on the reg-
ularity of . On the other hand we do not know in which sense
the boundary conditions hold.

Let us consider the problem from the algorithmic point of
view, i.e., we want to design an effective algorithm to solve it.
Since the problem may be ill-posed, because of incompatibility
of boundary data joining two integral curves of the vector field

, we propose a variational formulation of the problem. Let
. Assume that . If a solution exists, then should

point in the normal direction to the level lines of. We implicitly
assume that should be constructed as the vector field normal

to the level curves of . Then, formally, . Thus,
it seems reasonable to minimize the functional

(exactly the one introduced above) defined in the set of functions
of bounded variation whose trace at the boundary is
given by . Let us formally integrate by parts in the second term
of to obtain

Since are known at the boundary, minimizing amounts
to minimize

Let us make precise the class of admissible functions whereis
minimized. We assume that and .
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It seems reasonable to impose that the solutionis a bounded
function with an bound given by (or a constant re-
lated to and the size of ). Then the second integral in the
definition of is well defined. The first integral requires the
use of the space of bounded variation functions. Thus our admis-
sible class is a.e.

. We propose

Minimize

(21)

As is well-known [15], [21], the solution of this problem has to
be understood in a weak sense as the solution of the problem

Minimize

(22)

Then we have the following result.
Theorem 1: Let , with

. Then there is a function such that
a.e. minimizing (22).

Proof: The result is contained in [21], Theorem 1.4.
This clarifies the role of the term (17) in (10).

III. N UMERICAL EXPERIMENTS

To minimize (21) we use the steepest descent method. For
that, we formally compute the Euler–Lagrange equation for,
namely,

(23)

supplemented with Dirichlet boundary conditions for. In prac-
tice, we use the evolution equation

with Dirichlet boundary data and initial condition constructed as
an ad-hoc interpolation that will be corrected by the equation.
General existence results which can be adapted to this case can
be found in [4]. Note that the vector field is assumed to be
known in this case. This limits the usefulness of this model. But
we present some experiments below to illustrate the role of this
term.

To minimize the functional (10) we use the steepest descent
method. If we denote the energy term by , the steepest
descent equations are

in (24)

and

in (25)

supplemented with the corresponding boundary data and initial
conditions. The constraints on can be incorporated either
by penalization or by brute force after each time step. Given

we denote by the characteristic function of ,

(a) (b)

Fig. 5. Simple example of our algorithm.

(a) (b)

Fig. 6. Demonstration of the freedom in topology of our algorithm.

i.e., if , otherwise, . To simplify
our notation, let us write , .
Then

(26)

and

(27)

In our experiments, we takea Gaussian kernel with small vari-
ance, say one or two pixels. In practice, one can also dismiss
the kernel . These equations have to be complemented with
the corresponding boundary conditions forand specified by
the admissible class, i.e., we specify the normal component of

in and the Dirichlet boundary condition forin , since
in . The initial conditions are ad-hoc interpolations,

for instance, we can takeinside as the average value of
in inside being the direction of the gradient of. One
can also take a geodesic propagation insideof the values of

in , with being again the direction of the gradient of.
The exact numerical implementation of these flows is given in
Appendix II.

In the experiments below, this algorithm is used to interpolate
level sets, following the approach in [31] and [32]. The image
in is decomposed into level sets and we get a family of binary
images . These functions
are interpolated inside and we obtain a family of level sets

. Then the function is reconstructed using the reconstruc-
tion formula

As observed in Remark 5 of Section II-B, we force our solution
to satisfy the monotonicity property of the level sets, i.e., that
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Fig. 7. Example of the proposed filling-in algorithm.

Fig. 8. Detail of the example in Fig. 7. Note the smooth continuation of the
edges.

(a)

(b) (c)

Fig. 9. Level-set corresponding to the region in Fig. 8. (a) Original and the
results with (b)p = 1 and (c)p = 2.

. This is imposed in the initialization of the level
set and is maintained at each iteration of the algorithm by
taking the supremum of the current solution with the charac-
teristic function of . With this approach, we diminish the
diffusive effects of the above algorithm and we better capture
the shapes and discontinuities on the interpolated image.

The constraints on and can be introduced after each
iteration of the above equations. We also comment that the con-
straint , which was introduced as a penalization
term, could also be introduced by brute force after each time
step iteration of the algorithm. Let us describe the experiments.

Fig. 10. Example of automatic text removal.

First, in Fig. 4 we display some experiment to illustrate func-
tional (21). Fig. 4(a) displays the full image without the hole.
Fig. 4(b) displays the image with the hole. The vector fieldhas
been computed on Fig. 4(a) and we see in Fig. 4(c) the result of
interpolating the gray level knowing the vector field inside.
We see that the shape of the eye is recovered but not the gray
level. This is not a surprise since the gray level inside the eye
cannot be recovered from the gray level on the boundary of.
The algorithm is able to capture the shapes inside the eye by in-
tegrating the vector field.

In the following experiments, we show the results of the joint
interpolation of gray level and the vector field of directions using
functional (10). The experiments have been done with
and/or . The results are quite similar. Unless explicitly
stated, we display the results obtained with . Fig. 5(a)
displays an image made of four circles covered by a square. In
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Fig. 11. Example of automatic graffiti removal.

Fig. 5(b) we display the result of the interpolation. In Fig. 6(a),
we display an example where the hole is not simply connected.
The interpolation is displayed in Fig. 6(b). Fig. 7(a) is the image
of Lena with two holes, a lower one in the hat and an upper one.
Fig. 7(b) displays the result of the interpolation. Fig. 8 displays a
zoom of the region around the lower hole. In Fig. 9(a) we display
a level set of corresponding to the region around the lower
hole. Fig. 9(b) and (c) display the corresponding interpolation
with and , respectively. Fig. 10(a) displays an image
with text to be removed. Fig. 10(b) displays the corresponding
reconstruction result. Fig. 11(a) displays a portion of an image
with text. Fig. 11(b) displays the corresponding reconstruction
result, obtained with .

IV. CONCLUDING REMARKS

In this paper, we have proposed a formal variational approach
for filling-in regions of missing data in still images. The basic
idea is to smoothly extend inside the hole both the vector field
obtained from the image gradient and the corresponding gray
values. We have presented a number of examples and showed
theoretical results regarding the proposed formulation.

A number of research directions are suggested by the work
here presented. First of all, we need to complement this algo-
rithm by a technique capable of filling-in textured regions. Sec-
ondly, the extension of the framework to the filling-in of other
type of missing imagery data is of great interest for a number of
applications. Last, we would like to study these ideas for inter-
polation in video data. These topics will be the subject of sub-
sequent reports.

APPENDIX I
EXISTENCE OFMINIMIZERS

Recall that is an open bounded set
whose boundary is Lipschitz. For simplicity, let us de-
fine the class of admissible pairs where

and .
Theorem 2: If , there is a minimum for the

problem (10).
Proof: Let us denote by the energy defined in

(10). Let be a minimizing sequence for . Since

and is bounded, we obtain that

is bounded. Since , we have that is weakly relatively
compact in all spaces for all and we may
assume that weakly in for all and in

. Now, integrating by parts the term ,
we obtain

The integration by parts is possible by results of Anzellotti [2]
given above. From the above identity, we obtain

since in , where is the exponent conjugated to
. Since we minimize the energy for functions with an

bound, we obtain that

is uniformly bounded in . The consequence of this observation
is that

is also bounded. Then, modulo a subsequence, we may assume
that converges to some functionin . Note that

. Since we have an bound on , we also have
that converges to in for all . Then

uniformly in . In particular, we obtain

and

Finally, since weakly converges to in and
in , passing to the limit in

we get that converges to
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Thus, collecting all these facts, we obtain that

The pair is a minimum of in the class of admissible
functions for this functional.

APPENDIX II
NUMERICAL IMPLEMENTATION

To solve (24) and (25), we use a implicit discretization in
time. To be precise, we write

(28)

and

(29)

Then, discretize in time according to

(30)

and

(31)

Finally, we make the change of variables
to form

(32)

(33)

Now, since and , then
the normal component of and the value of are zero
on the boundary, and we may use a conjugate gradient method
to solve (32) and (33). The constraint is incorporated
by brute force after each time step. We can also set and
incorporate the constraint that by brute force
after each time step.
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