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Filling-In by Joint Interpolation of Vector Fields
and Gray Levels
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Joan Verdera

~ Abstract—A variational approach for filling-in regions of an active area of research; see, for example, [8], [23], [27],
missing data in digital images is introduced in this paper. The ap- and [28], and the papers discussed in this paper. The goal of
proach is based on joint interpolation of the image gray-levels and ;g work is to introduce a novel algorithm for automatically

gradient/isophotes directions, smoothly extending in an automatic filling-i inthe i In thi follow th
fashion the isophote lines into the holes of missing data. This in- 971N §aps in the image. in this paper, we follow the sugges-

terpolation is computed by solving the variational problem via its  tions in the conclusions section in [6] and introduce an energy
gradient descent flow, which leads to a set of coupled second order functional based on an interpretation of Gestaltist's good contin-
partial differential equations, one for the gray-levels and one for yation principle. Suppose that we are given an imageR —

the gradient orientations. The process underlying this approach [a, ], whereR is a square ofR? anda < b, and<2 is an open

can be considered as an interpretation of the Gestaltist’s principle . . . .

of good continuation. No Iimitgtions are imposed on the t%polopgy bounded subset ok with Lipschitz Con.tln_uous boundary. We
of the holes, and all regions of missing data can be simultaneously Shall call2 theholeor gap. We want to fill-in the hole2 based
processed, even if they are surrounded by completely different on the geometric and photometric information outside the hole.
structures. Applications of this technique include the restoration For that we use what we call a band arodhd.e., we consider

of old photographs and removal of superimposed text like dates, 5, 5pen regio of R such that? C € (2 is the closure of the
subtitles, or publicity. Examples of these applications are given. - == L

We conclude the paper with a number of theoretical results on set). The band we refer to W'l_l be the SBt:, Q\Q' To f|II.-|n

the proposed variational approach and its corresponding gradient the holeg2 we use the information af, contained inB, mainly
descent flow. gray level and the vector field of isophotes (level sets) directions

Index Terms—Filling-in, Gestalt principles, image gradients, ©f o in B.t We attempt to continue the level setswoih B in-
image gray-levels, interpolation, partial differential equations, Side2 taking into account the principle of good continuation.
variational approach. We propose an energy functional which takes into account these
principles interpreted in a suitable way. The energy functional
we propose has to be minimized with respect to two variables:
a vector field? which represents the directions of the level lines

ILLING-IN missing data in digital images has a number opf », and the gray levek. # andw are constrained in the band

fundamental applications. They range from removing ol py their known values there. The use of the vector field of
jects from a scene all the way to retouching damaged paintingifectionss is one of the main points of the algorithm presented
and photographs. The basic idea is to fill-in the gap of missifg this paper, which permits the level sets to smoothly continue
data in a form that it is nondetectable by an ordinary observg{side the hole. We are then continuing both the geometric and
In art, this process is calledpainting[6], [7], [16], [25], [39].  photometric properties of the image inside the hole.

Since the early days of art and photography, filling-in and in- | et us finally say that the only user interaction required by the
painting has been done by professional artists. Imitating th@igorithm here introduced is to mark the regions to be filled-in.
performance with semi-automatic digital techniques is currentlyithough a number of techniques exist for the semi-automatic

detection of image defects (mainly in films), addressing this is
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superimposed large fonts, and so on, are of significant larger si¥le proposed an algorithm, inspired by partial differential equa-
than the type of noise assumed in common image enhancentamnts, that propagates the image Laplacian in this direction. The
algorithms. In addition, in common image enhancement appdilgorithm attempts to imitate basic approaches used by pro-
cations, the pixels contain both information about the real ddtssional restorators. The algorithm also introduces the impor-
and the noise (e.g., image plus noise for additive noise), whiletamce of propagating both the gradient direction (geometry) and
our application there is no significant information in the regiogray-values (photometry) of the image in a band surrounding
to be inpainted. the hole to be filled-in. It is part of the goal of the current paper
A very active area related to the work here presented is tteeadopt some of the ideas of [6] and [7], while deviating from
restoration of damaged films. The basic idea here is to use the particular model in order to be able to define a formal vari-
formation from past and future frames to restore the current orgional approach to the filling-in problem.
e.g., [23], [28]. Of course, this general approach cannot be used’he work in [6] and [7] inspired a very elegant approach to the
when dealing with still images. filling-in problem recently reported in [9] (this work was per-
Another area related to the work here described is textumrmed independently to the one reported in this papdife
synthesis. The basic idea here is to select a texture and synthéhors present a clear and intuitive axiomatic approach to the
size it inside the region to be filled-in (the hole). Although outproblem. The main algorithm they propose after an interesting
standing texture synthesis results have been reported in thediscussion of the inpainting problem is to minimize the total
erature, e.g., [14], [19], [22], and [36], these algorithms requirariation (TV), [35], of the image inside the hole (they also use,
the user to select the texture to be copied into the hole. For ias proposed in [6], [7] and further studied in this paper, a band
ages in which the region to be replaced covers several differsatrounding the region). They address in addition the interpola-
structures, the user would need to go through the tremenddios and filling-in in the presence of noise, a very important ad-
work of segmenting them and searching corresponding repladéional contribution. As in the work of Masnou and Morel, their
ments throughout the picture. Although part of this search canibgéerpolation is limited to creating straight isophotes, not neces-
performed automatically, the overall process is extremely tinsarily smoothly continued from the hole boundary, and mainly
consuming and requires the nontrivial selection of many criticesl developed (as the authors clearly state) for small holes. Al-
parameters, e.g., [14]. though straight connections give visually pleasant results for
Last, a number of fundamental works on the topic of disocclsmall holes, itis important to develop a theory that permits inter-
sion and line continuation have been reported in the literatupmlation of level lines across large gaps, where connecting with
and these are the closest to our approach. A pioneering corgtraight lines will be unpleasant even for simple images. As we
bution in this area is described in [33]. The authors presente@vél argue later in this paper, in order to obtain such a smooth
technique for removing occlusions with the goal of image segiterpolation and continuation of isophotes, it is necessary to
mentation. Since the region to be filled-in can be considered@s into high-order partial differential equations (PDES) or sys-
occluding objects, removing occlusions is analogous to imagams of PDEs, as done in [6], [7] and here. Note that considering
inpainting. The basic idea suggested by the authors is to ctime angle of arrival of the level lines at the gap, and pursuing a
nect T-junctions at the occluding boundaries of objects widmooth interpolation of it as done here, it is also supported by
elastica minimizing curves (see later in this paper for the exaeisearch in perception, from the Gestalt to more recent work,
definition of elastica curves). The technique was primarily de-g., [34].
veloped for simple images obtained from a segmentation, withTo conclude this section, the interested reader is referred to
only a few objects with constant gray-levels. Thus, they endéte works of Nitzberg—Mumford—Shiota, Masnou—Morel, and
up by connecting T-junctions at the same gray level. (Other r€han—Shen (as well as our previous work) to study other inter-
searchers, e.g., Jacobsal. have followed this interesting re- esting and very related techniques for filling-in.
search area, mainly developing techniques for smooth curve_et us conclude with the plan of the paper. In Section I,
continuation.) Masnou and Morel [31], [32] recently extendede introduce the problem, the functional spaces and the energy
these ideas, presenting a very elegant and inspiring formal vdunctional for image inpainting. To clarify the meaning of the
ational formulation for disocclusion and a particular practicdlinctional, we also discuss the particular case where we inter-
algorithm implementing some of the ideas in this formulatiorpolate the gray level, knowing the vector field of directions. Sec-
The algorithm fills-in by joining with geodesic curves the pointsion Il is devoted to numerical experiments. Section IV contains
of the isophotes arriving at the boundary of the region to l®me conclusions. Finally, Appendices | and Il are devoted, re-
inpainted. The holes in their algorithm are limited to havingpectively, to the proof of existence of minimizers for the energy
simple topology. In addition, the angle with which the level lineRinctional introduced in this paper and to details on the numer-
arrive at the boundary of the holes are not (well) preserved, aiedl implementation of the proposed equations.
the algorithm uses straight lines to join equal gray value pixels.
The present work was motivated, in part, by their work. In some Il. JOINT INTERPOLATION OF VECTOR FIELDS
sense, as shown by the work of Masnou and Morel [31], [32] and AND GRAY VALUES
this paper, operators as the one proposed in [33] can be used tI(_) ;
first interpolate level-sets, and then reconstruct from them t% et u
interpolated gray-level image. o
Recently, we have addressed the concept of smooth contin-
uation of information in the level-lines direction in [6], [7]. 2We thank the authors for providing us with a preliminary report of their work.

o : B — IR be an image defined on a domaihof
which we may suppose to be a square. Qef2 be two
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open bounded domains IR? with Lipschitz boundary and sup- derivatives in the sense of distributions are measures with finite
pose thaf2 C 2 cC R. To simplify our presentation we shalltotal variation in@ is called a function of bounded variation.
assume thaf? does not touch the boundary of the image ddFhe class of such functions will be denoted BY (Q). Thus
main R. Let B := Q\Q. B will be called the band arourd. « € BV(Q)ifand only if there are Radon measuyes. . . , un
Suppose that a function, is given in B which, for the mo- defined in@ with finite total mass in2 and
ment being, we shall assume to be smooth in the clogéyref
B (later we shall assume thap is of bounded variation, i.e., / wDyp do = _/ o dyii @
up € BV(B)). Let 6y be the vector field of directions of the Q
gradient ofug on B, i.e.,f is a vector field with values idR>
satisfyingfy(z) - Vuo(z) = |Vuo(z)| and|fo(z)| < 1 (ideally forall ¢ € C5°(Q),i = 1,..., N. Thus, the gradient af is a
1 or 0, see below). This is the information we shall usgbn  vector valued measure with finite total variation

We pose the image inpainting problem in the following form:
Can we extend (in a reasonable way) the pair of functions |Vl = Sup{/ udivdr : ¢ € C5°(Q, R™),
(1, Bp) from the band2\Q to a pair of functiongu, ) defined Q
insideQ2? Of course, we will have to precise what we mean by
a reasonable way. We shall discuss and analyze a variational
formulation of this filling-in problem and discuss possible
energy functionals, and their corresponding gradient desc@iie spac@V (@) is endowed with the norm
flows, which give a solution to it. The data are given on the band
B and we should constraint the solutién, #) to be near the llullsy = llullriq) + IVl 4)
data onB. The vector field? should satisfy¢| < 1 on 2 and
should be related ta by trying to impose that - Vu = |Vu|, We say that a measurable g6t C ( hasfinite perimeterin
i.e., we should impose th# is related to the vector field of @ if its indicator functionyr € BV(Q). If w € BV(Q) al-
directions of the gradient af. The conditiond(z)| < 1 should most all its level set$u > A\] = {z € Q : w(z) > A} are
be interpreted as a relaxation of this. Indeed, it may happsets of finite perimeter. For sets of finite perimeferone can
that 6(z) = 0 (flat regions) and then we cannot normalizelefine the essential bounda®¥ E, which is rectifable with fi-
the vector field to a unit vector. We should have in mind thatite H¥~! measure, and compute the normal to the level set at
the ideal case would be that= Vu/|Vu|,u being a smooth HV—! almost all points of*E. Thus at almost all points of
function with Vu(xz) # 0 for all z € Q. Finally, we should almost all level sets ofi € BV(Q) we may define a normal
impose that the vector fielé, in the band tries to continue vectoré(x). This vector field of normalg can be also defined
smoothly tof inside(2. We shall impose this by observing that(hence extended to af}) as the Radon-Nikodym derivative of
in casef represents the directions of the normals to the leville measur&/w with respect tqVu, i.e., it formally satisfies
lines ofu, i.e., of the curves(z1,z2) = A, A € IR, thenaterm 6 -Vu = |[Vu| and, also)d| < 1 a.e. For further information
like div(€) represents its curvature. Motivated by the principleoncerning functions of bounded variation we refer to [1], [17],
of smooth continuation, our energy functional should contaamd [40].
terms integratingliv(#). Indeed, collecting all the observations Let us now introduce the function spaces foiLet @ be an

lp(z)] < Lforz e Q} . 3)

above, we propose to minimize a functional of the form open bounded subset #2 with a Lipschitz boundary. We de-
fine
M|n|m|ze/§2 |div(6)P(a + b|Vk * u|) dz Wh(div, Q) = {8 € LP(Q)? : div(6) € LP(Q)},
1<
+a/(|Vu|—9-Vu)dx ) =P <00
Q and
where M(div, @) = {6 € LYQ)*: div(9).
a,b, anda positive constants; is a Radon measure @}
k smoothing kernel;
6.4 submitted to constraints. The Trace Theorem [2], [10] guarantees that the normal compo-

We need to give a sense to the integrals appearing in the abg}%‘w nlaq. is well defined for vector fieldg in W #(div, @),

expression and to make precise the admissible class of functiwé?lj(\gi(;hg)czré' pTrg Ssér:tzl Itfgeosgggé?g?f vac)e shall assume that

where the functional has to be minimized. For that, we need tONext, we shall give a sense to the integrals of bounded vector

introduce some function spaces. This is done in the followir}%IdS with divergence it integrated with respect to the gra-

s_ectlon. Once this h_as been formally addressed, we will furthc%nt of a BV function. For that, we shall need some results from
discuss the underlying concepts of the above functional.

[2] (see also [11] and [26]). L&D be an open bounded subset of
IR™ with Lipschitz continuous boundary. Let> 1 andqg > 1

A. Function Spaces be such that1/p) + (1/q) = 1. Following [2], let
Let us first recall the definition of BV functions and total vari-
ation. LetQ) be an open set. A functiane L*(Q) whose partial X(@Q)p={z€ L™(Q,R") : div(z) € L*(Q)}. (5)
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(@) (b)

(©)

/ (Z, Vw) = / z-Vwdz (7) Fig. 1. (a) Original image, (b) filling-in via total variation-based techniques,
Q Q and (c) filling-in via our proposed algorithm.

If z € X(Q), andw € BV(Q) N L4(Q) we define the func-
tional (z, Vw) : C5°(Q) — IR by the formula

(2 vw)) = - |

we div(z) dz — / wz - Vedr. (6)
Q

Q

Then,(z, Vw) is a Radon measure i)

forallw € WL1(Q) n LP(Q) and

\ / <z,w>\s [Ievollel [ 9ol @

for any Borel setB C Q.
In [2], a weak trace oW of the normal component of €
X(Q), is defined. Concretely, it is proved that there exists a

linear operatory : X(Q), — L°°(9Q) such that Fig. 2. Region to be filled-in and corresponding surrounding band from where
the information is considered.

V() lso < [I2]loo
v(z)(x) = 2(z) - n(z) Fig. 1(b) and not the one in Fig. 1(c), because the interpolating
forallz € 8Q if » € CL(Q, RN) lines in Fig. 1(b) are shorter than the ones in Fig. 1(c). To over-
come this situation we introduce the band around the hole. The
wheren(x) denotes the outer unit normalatc Q. We shall introduction of the band permits us to effectively incorporate in
denotey(z)(x) by [z,n](x). Moreover, the followingGreen’s the functional the information given by the vector figlcut-
formula relating the functioriz, n] and the measurgz, Vw), side{2. In Fig. 1(b), we display the result of the interpolation

for z € X(Q), andw € BV(Q) N L4(Q), is established with 8 = 0 on{2. In Fig. 1(c), we show the result of the interpo-
lation using the functional we shall completely describe below,

/ wdiv(z) ds +/ (. Vi) = / [2,nJwdH N1, (9) Which takes into account the bar#land computes the vector
Q Q oQ field 8 in & = QU B.

Thus, letB be a band arounf with a Lipschitz boundary
containing the boundary 6t (see Fig. 2). As we made explicit
above,B = Q\Q. Given the band3 and the function, of
bounded variation irB, we define the space

B. Energy Derivation and Interpretation BV(Q,B,uO) —{ue BV(Q) :w = ugin B}

One of the key concepts above was the band around the hole.
The band is of local character but in principle it could be ex-et 6, : B — IR? be a vector field of directions of the gradient
tended to all the known part of the image. Obviously, what hapf uo, i.e.,|6o| < 1 andfy - Vug = |Vue| as measures il
pens at distant parts can be independent or not from what héiperefore, a.e.). In practice we shall constraint the vector field
pens at the hole, but, in our construction below, we suppose tkabe the vector field of directions af, only indirectly, through
only a narrow band around the hole influences what happenstie functional. We could also introduce this as a constraint or
side the hole. Could we fill-in without the band? To discuss thiith a penalty termy , (6 — 6)* (see also [9], [35] for penalties
suppose that we are given the image of Fig. 1(a) which is a gr@fthis form in the gray values).
band on a black background partially occluded by a sqare  Combining the previous elements, the band, the relations be-
We suppose that the sides of the square kblre orthogonal tween# andw, and the smoothness term énwe propose to
to the level lines of the original image. In these conditions, thgterpolate the paif, «) in £2 by minimizing the functional
normal component of the vector fiefid outside? is null ato€.

If no confusion arises, we shall denatéVw instead of z, V)
for z € X(Q),,w € BV(Q) N LYQ). These results will be
used in the Proof of Theorem 2 given in Appendix .

Thus if the boundary data is jués - n|an, we would have that I\/linimize/~ |div(0)|F(a + b|VE x u|) dz

6o - n|a = 0. In particular, the vector fiel@ = 0 satisfies this Q

condition. If we are not able to propagdtenside2 this may + a/(|vu| —6-Vu)dzx

become an unpleasant situation, since this would mean that we Q

do no propagate the valueswft the boundary. If we write the 6 ¢ Whr(div, Q)

functional (1) withé = 0, it turns out to be the Total Variation u € BV(Q, B, uo)

[35]. The decision of extending the gray band or filling the hole 6 nle, = 6o -l

with the black level would be taken as a function of the perimeter a% — Y0 " Hon

of the discontinuities of the function in the hole. Then the result ] <1

of interpolating Fig. 1(a) using total variation would be that of [u| < |luol| Lo (B) (10)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on January 19, 2010 at 10:00 from IEEE Xplore. Restrictions apply.



1204

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 8, AUGUST 2001

wherea, « > 0,b > 0, k denotes a regularizing kernel of class
C* such thatk(z) > 0 a.e. andn(z) denotes the outer unit
normal atz € 9. The previous functional is coercive and ad-
mits a minimum in the class of functions described above if
p > 1. The casey = 1 is under study. The functional can be
interpreted as a formulation of the principle of good continua-
tion and amodal completion as formulated in the Gestalt theory
of vision. The following remarks contain heuristic arguments
which may help to understand our choice. In next subsection
we shall explain in more detail the role of the term coupléhg
andu.

Remarks:

1)

2)

The constank is >0. If « is the characteristic function of
the region enclosed by a cur¢éthen a term like

[ 1a@)pIva a
Q

isrelated tof,.. |« [? ds, wherer is the Euclidean curvature
(of the level-sets). I = 2, this term appears in Euler’s
elastica

/ (a+prHds, «,B>0. (12)
c

Euler’s elastica (12) was proposed in [33] as a technique
for removing occlusions with the goal of image segmenta-
tion, since this criterion yields smooth, short, and not too

curvy curves. In terms of characteristic functions, Euler’s
elastica can be written as

/|Vu| <a+/3 div <|§—Z)D2.

In [5], it was shown that this functional is not lower
semicontinuous. The functional proposed by Masnou
and Morel [31], [32] can be interpreted as a relaxation of
it, since it integrates functionals like the elastica (plus the
angle that the curve makes with the corresponding level
line arriving at the boundary) along the level lines of the
function «. Our functional can be also considered as a
relaxed formulation of the energy of the elastica. For that,
we introduced’ as a independent variable, and we tried
to couple it tou by imposing tha# - Vu = |Vul. This
restriction could be directly incorporated to the model as
a constraint. We choose to incorporate this constraint as
a penalization term

/|Vu|—9-Vu
)

(see the next subsection for a detailed discussion of this
term). Finally, let us say that for mathematical reasons we
have convolved th&/« term of (11) to be able to prove
the existence of a minimum for (10). From a theoretical
point of view, this may invalidate our previous comments.
But, from a practical point of view, it gives a weight to the
curve of discontinuities of the image.

The constant: has to be>0. Otherwise we do not get
an L? bound ondiv(#). Now, let us comment on the two

(13)

(14)

3)

5)

terms containingliv(#). Heuristically, if we do not com-
pute 8 in a proper way, in a continuous image like in
Fig. 1, 6 could be zero except on a set of curves. Then
6 = 0 a.e. onB (or on{2) and a term like
/ div(6)[? do (15)
Q
would produce a null value sindév(6) = 0. On the other
hand, a term like (11) would integrate a power of the cur-
vature on the level line corresponding to the discontinuity
of the image and it would guarantee that the functional
is not null. This argument is only heuristic and not com-
pletely justified. Indeed, we believe that in such example
as in Fig. 1, a term like (15) would induce a regularizing
effect onf and the support of would not be a curve any
more. In that case, the integral (15) would not be null.
Related to the question discussed in the last comment is
the possibility to compute a regularized vector field of di-
rections forimages which are constant except at jump dis-
continuities. A direct computation of the vector field out-
side the hole in an image like Fig. 1(a) gives a null vector
field at all points except the points on the level line sepa-
rating the black from the white region. This may not be a
good starting point to extend reasonably the vector field
8 inside{2. To initialize the algorithm of steepest descent,
a regularization of outsidef2 may be constructed as the
vector field of directions of the imag€y(¢, =) obtained
by regularizinguo(z),z € B, with

ou ) Vu .
a—dlv<m> |nQ—(0,00)XB
g—:;:() inS=(0,00) x 9B

u(0,2) = wo(z) forz € B. (16)

As it is shown in [3], this equation permits a regular-
ization of the vector field of directions of the gradient
of u, i.e., there is a vector field, |z| < 1, such that

uy = div(z) and [ z - Vu = [, |Vu|. Moreover, for
eacht > 0,div(z(¢)) € L?(B) if ug € LP(B) for all

p > 1. In this way, we initialize the steepest descent al-
gorithm described in Section Il with a regularized vector
field 8. This again raises a question, namely, if this ad-hoc
regularization is really needed or a regularization takes
place with the algorithm itself, if we use an implicit nu-
merical scheme to solve (10).

The boundu| < ||luo||L~(5) can be replaced by a con-
stant depending offuo|| .~ (p). The constraint thai =

up in B could be relaxed by adding a penalty term like
S (u — up)?. Similarly, we could add a penalty term to
constrain® to be neaf, insideB. In this case, we should
regularizédy in B using the equation described in Remark
3. This type of approach is addressed in the work of Chan
and Shen mentioned previously [9].

In practice, functional (10) is used to interpolate shapes,
i.e., to interpolate level sets. The image is decomposed
into upper level set$uy > A], which are interpolated
using (10) to produce the level sets .« of a functionz,
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6)

which is reconstructed inside by using the reconstruc-
tion formula |

w(x) = sup{:z € X u}.

to the level sets of a function, they should satisfy that
Xx+1u © Xu. In practice, we force our solution to
satisfy this property.

In principle, our functional (10) could be used directly (@) (b)
to interpolate functions. But, discontinuities of the imageig. 3. (a) Original image and (b) result of filling-in with our algorithm and
have a contribution to the energy which is proportiondhe level-sets ordering selected in this paper.
to the jump. This gives different weights to discontinu-
ities of different sizes and, as a consequence, they drem image gradients). We shall see that (witeis known),
not treated in the same manner. This is not reasonablavifien minimizing (17), we are constructing the functian
we want to interpolate the shapes of the image, indepemhose values on the boundary are given and whose direction of
dently of their contrast. When taking level sets, we tre#lte gradient is given bg. We shall discuss this from a general
all shapes equally, and the parameters of the functiorgint of view. Thus, suppose th@tis an open bounded domain
should only weight geometric quantities (like length, totalith a Lipschitz boundary ang € L>(9%). Letw : Q — IR?
curvature) and decide which interpolation is taken ashe a vector field whose smoothness will be detailed below. We
function of them. This approach is less diffusive than dask the following question: can we interpolate the boundary
rectly interpolating the gray levels. Theorem 2 in Apdatay along the integral curves of? In the case discussed in
pendix | proves the existence of minimizers for our modéast sectiony = 6+, and we propagate the boundary data
and can be applied to both cases, binary and gray lewdng the integral curves éf-. Heuristically,§ is orthogonal to
images. It guarantees that there are minima of our funike level lines of.. Coming back to our general discussion, we
tional. We do not yet know the qualitative properties ofvant to construct a function : © — IR such thatu|sq = ¢
those minima. Even if at the intuitive level the main quarand « being constant along the integral curvesiofi.e., the
tities that appear in our functional are length and a meaelutions of the system of ordinary differential equations
sure of total curvature (like in the elastica), we do not have dxX

To guarantee that the reconstructed level sets corresp¢ I :

a rigorous proof that this is so. The functional was in- e v(X). (18)
troduced on a heuristic basis, but relaxations may occur

as they occur in (16), wherdiv(Vu/|Vu|) may repre- This amounts to say that

sentperimeter/area when computed on a flat region [3], V=0 (19)

[37]. This requires further study and we shall pursue it

elsewhere. a first-order transport equation whose characteristic curves are
The choice made in Remark 5 of decomposing the imagg: solution of the system (18). Let us discuss the difficulties
uo into upper level sets, interpolating them and recotposed by this formulation. First of all, existence and uniqueness
structing the function, introduces a lack of symmetry. of solutions of (18) is guaranteed wheris a Lipschitz vector
Indeed, we are giving more weight to upper level sets thgig|d, a very strong regularity assumption, which excludes any
to lower level sets. This can be seen in Fig. 3. Fig. 3(&Ingularity for». More general existence results have been ob-
displays the image to be interpolated. It is clear that sejgined in [13] via the study of transport equations, indeed, via
eral reasonable solutions are possible and no one of thesfmulations analog to (19). Typically, they are assuming that
is preferable to the others. The choice we made givRSin some Sobolev space likeW,.: (IRY), with some other in-
Fig. 3(b) as solution, favoring that the object whose levgbgrability assumptions, antlv(r) € L(IRY). These results
is 210 goes above the object whose level is 0. But, in thaive been further extended in [12], [30]. In particular, Lions in
case, the “true” information is lacking and we selectefo] proves a.e. existence of solutions of (18) for vector fields
one of the possible reasonable solution. which are piecewise ifi’ 1! in a precise sense defined by the
author. As observed in these papers, it is not known if the pre-
vious result is true for BV vector fields. On the other hand,

C. Interpolating Gray Values along the Integral Curves of a even for a vector field if¥*:1, for which we have existence
Vector Field a.e. of solutions of (18), the problem of constructimgatis-

Our purpose in this section is to further discuss the term  ¥ing (19) and such thai|aq = ¢ is not obvious. Indeed, con-

sider a smooth vector field defined on a simple domain, like

D := {z € IR? : |z| < 1} and suppose that the integral curves
/Q [Vu[ =6 -Vu (A7) of 1 are curves that foliat® and such that at any point 6fD

we start a curve that ends in another poindéf. Then the only

in functional (10) (see also [24] for a related,, and possibility to extend: to {2 so thatu|s = ¢ in a classical sense
Poisson-equation based, approach of gray value reconstruct®that, takes the same values at the beginning and endpoints
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(b)

(©

Fig. 4. (a) Original image, (b) original image with missing region, and (c) filled-in image when the gradients inside the white square are known.

of the integral curves of. A possibility to overcome this dif- to the level curves of.. Then, formally,6 - Vi = |Vul. Thus,
ficulty, would be to use the vanishing viscosity method, i.e., ib seems reasonable to minimize the functional

solve the elliptic equation
F(u)=/|Vu|—/9-Vu
Q Q

v Vi, + eAu, =0 (20)

(exactly the one introduced above) defined in the set of functions
and lete — 0. Then, we hope the sequengeto converge to of bounded variatiorBV(£2) whose trace at the boundary is
some bounded functiom which solves the problem in a distri- given byy. Let us formally integrate by parts in the second term
butional sense. We do not have further information on the regf £'(«) to obtain
ularity of u. On the other hand we do not know in which sense
the boundary conditions hold. F(u) :/ [Vl +/ div(8) - u — 6 - fiu.

Let us consider the problem from the algorithmic point of §2 §2 a0
view, i.e., we want to design an effective algorithm to solve iSincew, # are known at the boundary, minimizirlg amounts
Since the problem may be ill-posed, because of incompatibility minimize
of boundary data joining two integral curves of the vector field
v, we propose a variational formulation of the problem. &.et E(u) = / [V +/ div(f) - u.
v+, Assume thatf| < 1. If a solution exists, thed should @ @
pointin the normal direction to the level lines@afWe implicitly ~ Let us make precise the class of admissible functions whése
assume thaf should be constructed as the vector field normahinimized. We assume thdtv(6) € L' (2) andy € L>°(9R).

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on January 19, 2010 at 10:00 from IEEE Xplore. Restrictions apply.



BALLESTERet al.: FILLING-IN BY JOINT INTERPOLATION OF VECTOR FIELDS AND GRAY LEVELS 1207

It seems reasonable to impose that the solutiona bounded
function with anL* bound given byj|¢||. (or a constant re-
lated to||¢ || and the size of?). Then the second integral in the
definition of E(w) is well defined. The first integral requires the
use of the space of bounded variation functions. Thus our admi
sible class isd = {u € BV(Q) : |u(z)| < |||l a-ufon =
¢}. We propose

Minimi \Y div() -
|n|m|ze/Q| u|+/Q iv() - u @ ®)

u e A. (21) Fig. 5. Simple example of our algorithm.

As is well-known [15], [21], the solution of this problem has to
be understood in a weak sense as the solution of the problem

Minimize/ |vu|+/ div(9)-u+/ lu— | dH*

Q Q o

u € BV(Q)

o] < 1l (22)

Then we have the following result.

Theorem 1:Let6 € L ()2, with div(d) € L1(2),¢ €
L>(9€). Then there is a functiom. € BV(Q) such that
[u(z)| < ||¢lleo a.e. minimizing (22).

Proof: The result is contained in [21], Theorem 1.4

This clarifies the role of the term (17) in (10).

(b)

Fig. 6. Demonstration of the freedom in topology of our algorithm.

i.e.,xx(z) =1if z € X, otherwisexx(z) = 0. To simplify
our notation, let us writg = b|div(€)|P, h = a + b|Vk = u].

Then
I1l. NUMERICAL EXPERIMENTS VoE(0,1) = —pV[h|div(0)[P~2 div(6)]
To minimize (21) we use the steepest descent method. For — a(Vuxa + Vugxp) =0 (26)
that, we formally compute the Euler—Lagrange equationfor gn
namely, Vk \%
Y Vo E(0,u) = —div <k x <gi>> — adiv <—“)
. { Vu _ |VE > ul [V
—div <W) +div(f) =0 (23) + adiv(d) = 0. (27)
supplemented with Dirichlet boundary conditions#oin prac- Inour experiments, we takea Gaussian kernel with small vari-
tice, we use the evolution equation ance, say one or two pixels. In practice, one can also dismiss
the kernelk. These equations have to be complemented with
uy = div < Vu ) — div(#) the corresponding boundary conditions fiaandw specified by
|Vl the admissible class, i.e., we specify the normal component of

with Dirichlet boundary data and initial condition constructed aesm_aQ ‘?‘:‘gh;zr.'gq.lzr sgrl:g.(tj.irnyscgredg'g_r;;%r'.?] tae ?’jl'gfsns
an ad-hoc interpolation that will be corrected by the equatiofl._. to IN 5. initial conaiti interpolations,
oF nstance, we can takeinsidef? as the average value af,

| exi | hich hi . . Do ?
General existence results which can be adapted to this caseIn "6 inside 2 being the direction of the gradient of One

be found in [4]. Note that the vector fiel#lis assumed to be Iso tak desi tion inidaf th | f
known in this case. This limits the usefulness of this model. BGE' 2:=0 &€ a geodesic propagation in € values o
in B, with & being again the direction of the gradient.of

\t/(\;?np])'resent some experiments below to illustrate the role of tlﬁ%e exa_ct numerical implementation of these flows is given in
To minimize the functional (10) we use the steepest descéﬁpend'x . . . . . .
method. If we denote the energy term Byé, u), the steepest nthe experlmgnts below, this algorlthm isusedto mterpolate
descent equations are ’ !evel_sets, following _the approach in [31] and [32]. _The image
in B is decomposed into level sets and we get a family of binary
0, = —VeE(,u) inQ (24) imagesuon = X[u,>x,A = 0,1,2,...,255. These functions
are interpolated insid€ and we obtain a family of level sets

and ) X,u. Then the function: is reconstructed using the reconstruc-
w ==V, E(,u) inQ (25)  tion formula
supplemented with the corresponding boundary data and initial u(x) = sup{\ € {0,1,...,255} : z € X)u}.

conditions. The constraints @f, ») can be incorporated either
by penalization or by brute force after each time step. Giveks observed in Remark 5 of Section 11-B, we force our solution
X C IR? we denote byyx the characteristic function aX, to satisfy the monotonicity property of the level sets, i.e., that
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Fig. 7. Example of the proposed filling-in algorithm.

- .. T P .
||“_‘ -
- m '
ELEa -u'-u-_: f.a_.u- o
o i i e
o ey

5

Fig. 8. Detail of the example in Fig. 7. Note the smooth continuation of the
edges.

@ - gt
b " i
" " Fig. 10. Example of automatic text removal.
(b) ©

First, in Fig. 4 we display some experiment to illustrate func-
tional (21). Fig. 4(a) displays the full image without the hole.
Fig. 9. Level-set corresponding to the region in Fig. 8. (a) Original and tifeig. 4(b) displays the image with the hole. The vector fielths
results with (bjp = 1 and (C)p = 2. been computed on Fig. 4(a) and we see in Fig. 4(c) the result of
interpolating the gray level knowing the vector field inside
Xx+1u C X, u. Thisis imposed in the initialization of the levelWe see that the shape of the eye is recovered but not the gray
setXu and is maintained at each iteration of the algorithm bigvel. This is not a surprise since the gray level inside the eye
taking the supremum of the current solution with the characannot be recovered from the gray level on the boundafy. of
teristic function of.X ,u. With this approach, we diminish the The algorithm is able to capture the shapes inside the eye by in-
diffusive effects of the above algorithm and we better captutegrating the vector field.
the shapes and discontinuities on the interpolated image. In the following experiments, we show the results of the joint
The constraints o# and||u||., can be introduced after eachinterpolation of gray level and the vector field of directions using
iteration of the above equations. We also comment that the cdanctional (10). The experiments have been done with 1
strainté - Vo = |Vu|, which was introduced as a penalizatiomnd/orp = 2. The results are quite similar. Unless explicitly
term, could also be introduced by brute force after each tinstated, we display the results obtained with= 1. Fig. 5(a)
step iteration of the algorithm. Let us describe the experimentisplays an image made of four circles covered by a square. In
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L A

Fig. 11. Example of automatic graffiti removal.

Fig. 5(b) we display the result of the interpolation. In Fig. 6(a)js bounded. Sincl¥,,| < 1, we have thaf,, is weakly relatively
we display an example where the hole is not simply connectempact in all spaces?(Q2)? for all 1 < ¢ < oo and we may
The interpolation is displayed in Fig. 6(b). Fig. 7(a) is the imagassume that,, — & weakly inL(I(fZ)2 foralll < g < ocandin
of Lena with two holes, a lower one in the hat and an upper ori&’*?(div, Q). Now, integrating by parts the tergfgZ O - Vg,
Fig. 7(b) displays the result of the interpolation. Fig. 8 displayswee obtain
zoom of the region around the lower hole. In Fig. 9(a) we display
a level set ofuy corresponding to the region around the lower / b - Vu, = —/ div (0, ), + / [0, n]un
hole. Fig. 9(b) and (c) display the corresponding interpolation ¢ § %2
with p = 1 andp = 2, respectively. Fig. 10(a) displays animage = —/ div(0, )u,, + / [fo, ]uo.
with text to be removed. Fig. 10(b) displays the corresponding 2 of2
reconstruction result. Fig. 11(a) displays a portion of an imag#e integration by parts is possible by results of Anzellotti [2]
with text. Fig. 11(b) displays the corresponding reconstructigjiven above. From the above identity, we obtain
result, obtained withh = 2.

/ 0, - Vu,

Q

In this paper, we have proposed a formal variational approasinceu,, = ug in 82, wherep’ is the exponent conjugated to
for filling-in regions of missing data in still images. The basig. Since we minimize the energy(4, ) for functions with an
idea is to smoothly extend inside the hole both the vector field™ bound, we obtain that
obtained from the image gradient and the corresponding gray
values. We have presented a number of examples and showed / 0, - Vu,
theoretical results regarding the proposed formulation. Q

A number of research directions are suggested by the wgkuniformly bounded im. The consequence of this observation
here presented. First of all, we need to complement this alggthat
rithm by a technique capable of filling-in textured regions. Sec-
ondly, the extension of the framework to the filling-in of other / [V,
type of missing imagery data is of great interest for a number of Q2

applications. Last, we would like to study these ideas for intgg also bounded. Then, modulo a subseql{ence, we may assume
polation in video data. These topics will be the subject of suhat,, converges to some functianin L'(Q). Note thatu €

2

< div(Ouplhun s+ [ Juol
IV. CONCLUDING REMARKS o0

sequent reports. BV(Q, B,up). Since we have ah> bound o, , we also have
thatw,, converges ta: in LQ(Q) forall1 < ¢ < o~. Then
APPENDIX | Vk % u,, — Vk *u uniformly in Q. In particular, we obtain
EXISTENCE OFMINIMIZERS
Recall thatQ? = € U B is an open bounded set /@ [div(0)[P(a + b|VE + ul) dx
whose boundary is Lipschitz. For simplicity, let us de-
fine the classB of admissible pairs(f,«) where 6 ¢ < 1111}Lillf/é|diV(9n)|p(a+b|Vk*un|)d$

WLr(div,Q),u € BV(Q, B, uo),[0] < 1,|ul < [Juollr.=(n)
andé - 7’L|a§ =6 - 7’L|aQ.

Theorem 2:1f p > 1, there is a minimun(é, ) € B for the / [Vu| < 1iI§Linf/~ [Vt
problem (10). @ @

Proof: Let us denote byt(¢,u) the energy defined in Finally, sincediv(6,,) weakly converges tdiv(6) in L?(Q) and
(10). Let(6,,,u,,) be a minimizing sequence fd#(6,v). Since w, — « in L7 (), passing to the limit in

/ [V, — 0, - Vu, >0 / 6, -Vu, = —/ div(8,,)un, +/ [6o,n]ug
Q Q2 Q2 a1

and E(8,,,u,,) is bounded, we obtain that we get thatf, 6,, - Vu,, converges to

/Q|div(9n)|p _/Qdiv(e)w/m[go,n]uo:/QQ.W_
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Thus, collecting all these facts, we obtain that [5]

E(0,u) < liminf E(6,,,u,). 6]

The pair(6#,«) is a minimum of £’ in the class of admissible

functions for this functional. O [7]

(8]
[9]

(10]
To solve (24) and (25), we use a implicit discretization in

APPENDIX I
NUMERICAL IMPLEMENTATION

time. To be precise, we write (1]
[12]
VoE (8,6 ,u,v) = —pV[h(e + |[div(8)[P72) div(6)]
13
— a(Vuxg + Vuoxs) =0 (28) [13]
and [14]
Vkxu
VLE0,0 uv) = —div [ kx| g
(0,0 ,u,v) v N [15]
[16]
— adiv . + adiv(8)

Vet |Vol? [17]
=0. (29) g
Then, discretize in time according to (19]
6t — g = AtVLE(@O" 07 0" u), 30)
and [21]

Wttt = AtVuE(Q""’l, gt yntt u).  (31)
[22]

Finally, we make the change of variablggt! gt —
67, "t = 4t — 4" to form 23]

&L = AtV E(E"T 6™, 07w uh), (32)
VL = ARV B0, 07 L g ), (33) 2
[25]
Now, sinced™ - n| 55 = 671 56 andu™|go = w1 g0, then  [26]

the normal component @f*** and the value ot™*! are zero
on the boundary, and we may use a conjugate gradient metheg
to solve (32) and (33). The constraifit < 1 is incorporated
by brute force after each time step. We can alsaxset 0 and
incorporate the constraint thff«| = 6 - Vu by brute force
after each time step.

(28]
[29]

[30]
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