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Fast Boundary Detection: A Generalization and a New Algorithm

WERNER FREI, MEMBER, IEEE, AND CHUNG-CHING CHEN, STUDENT MEMBER, IEEE

. Abstract—We study class of fast algorithms that extract object
boundaries from digitized images. A set of orthogonal functions
related to distinctive image features is presented, which allows
efficient extraction of such boundary elements. The properties of
these functions are used to define new criteria for edge detection

and a sequential algorithm is presented. Results indicate consid- .

erable impravements over existing techniques, with a very mod-
erate increase of computational cost. -

Index Terms—Boundary detection, edge detection, feature ex-
traction, image processing, orthogonal basis, sequential algo-
rithm,

I. INTRODUCTION

\ UTOMATIC scene analysis depends greatly on
image segmentation into regions corresponding to
individual objects. Assuming that these regions have some
homogeneous characteristic, for example, luminance, color,
texture, etc., one segmentation technique is to detect sharp
transitions called edges, which tend to outline the desired
boundaries. The opposite alternative is to “grow” regions
by connecting small adjacent areas of similar character-
istics. Of interest here is the detection of edges that sepa-
rate regions of different constant luminances, and lines
which can be: regarded as a degenerate pair of edges. This
operation requires the examination of several picture el-
ements within contiguous or overlapping subareas of the
image, followed by a decision as to whether an edge or a line
segment is present or not within each subarea. The seg-
ments can be characterized by variables such as amplitude,
orientation, position within the subarea etc., and possibly
a measure of confidence. .

"Upon examination of the whole picture, the object
boundaries are constructed by.connecting the edge and line
elements detected previously. This operation can be di-
rected by simple syntactic rules, for example connect
neighbor edge elements that line up approximately, and
delete isolated or parallel elements.

Some of the difficulties of edge detection are caused by
noise, but much more so by the fact that visually distinct
edges sometimes cannot be discriminated within a small
image subarea or, conversely, that what appears to be an
edge within the subarea could belong to a homogeneously
textured domain of the picture. Increasing the size of the
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subarea could apparently solve the problem, but is limited
by computational cost and the complexity of large segment
description.

It is generally recognized that boundary detection is
therefore best done by the combination of a relatively
simple edge and/or line segment detector, followed by al-
gorithms that thin and link the segments obtained into
continuous boundaries. Several fast numerical techniques
for luminance edge extraction have been published, for

~ example, Robert’s “gradient” [1], Kirsch’s [2], Sobel’s [3],

Prewitt’s [4], Robinson’s [5], and the so-called “smoothed
gradient” [6] operators. Comparison of the above algo-
rithms reveals similarities that suggest underlying general
principles. From these we develop a set of orthogonal
functions which are closely related to distinctive image
features. The properties of these functions suggest ways
to minimize the amount of computations as well as an
improved decision criterion. A sequential algorithm is then
presented and compared with several known techniques.
Considerable improvements are obtained in terms of
boundary “thickness,” sensitivity to faint edges, insensi-
tivity to smooth luminance gradients as well as variations
of scene illumination.

This work is an extension of a previous study [7] at the
Image Processing Institute of the University of Southern
California.

1L DEFINITIONS

The problem of boundary element detection can be
formulated as follows: given a set of n2 luminance samples
from an image subarea, determine whether the subarea
contains a boundary element between two regions of dif-
ferent homogeneous luminances (edge). It may also be of
interest to determine whether the area contains a line or
a pair of degenerate edges enclosing an object too thin to
be resolved. To this end, we define the following models
of “ideal” boundary elements.

Consider an image subarea A of size n X n sampling
intervals [Fig. 1(a)]. In the continuous image domain, we
define an “ideal edge element” as a straight boundary,
passing through the center of A, and which separates two
regions of different, constant luminances b; and b..
Adopting the convention b; > b, the direction ¢, of the
edge element is uniquely determined with respect to any
arbitrary, fixed direction [Fig. 1(b)]. The ideal edge ele-
ment is characterized by its “magnitude” = |b; — by| and
orientation ¢, 0 = ¢, <2 .

- Next we define an “ideal line element” (in the continu-
ous image domain) as a straight strip of width approxi-
mately equal to one sampling interval, passing through the
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Fig. 1(a) Definition of image subarea with components of subarea vector shown for the 3 X 3 pixel case; (b) deflnltlon of ideal
edge element; (c) definition of ideal line element.

center of A, and of different luminance b; than its sur-
rounding b, [Fig. 1(c)]. The ideal line element is charac-
terized by its “magnitude” = |b1 — by|, its orientation ¢y,
0 = ¢ < 7 and polarity sgn (b; — by).

Finally, an “ideal point” is defined as a point of bright-
ness b; different than a constant brightness b, of the sur-
round. The ideal point is characterized by its “magnitude”
= |b, — by| and polarity sgn (b; — by).

For the discrete case, we define the following notation.
Consider the set of n2 luminance samples b; ; of the image
subarea as an element of an n2-dimensional vector space
8. The elements of B can be represented by a matrix B or
a column vector b, for example (n = 3)

biy bia big
B= by by by or b=
bs1 bsz b3l b )

Finally we deflne an inner (or dot) product (-,-) on B

as

(B,C) = Z Z bijcij or (b,e) =

i=1j=

2
): bic;.
=1

III. REVIEW OF PREVIOUS WORK

Previous fast edge detection algorithms (references
cited) fall essentially into two categories.

1) Evaluate the maximum average gradient AG (or
“smoothed gradient”) present in each image subarea. The
average is estimated in a direction perpendicular to the
(unknown) edge element orientation and the maximum
is approximately obtained by

G ~ [(B,W1)? + (B,W)?]'/2 (1)
where B is the vector of luminance sémples and W, Wy are
weighting functions shown in Fig. 2(a)-(c) [1], [3], [6].

When the average gradient exceeds an arbitrary threshold,
the image subarea is considered to contain an edge ele-
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Fig. 2. Weighting functions for edge detection ([1], [6], [3], respectively, see text).
R R s[s(s BERE 1 1
1 f-2] 1 -3l 0f-3 ojofo [ o
-1]-1]=1 -3[-3{-3 ~1]-1] -1 -1]-2[-1
111 s|5(-3 1[1]o 2[1]0
1 |-2]-1 5|0(-3 1]of-1 1]of=
1]-1]=1 -3(-3]-3 o[-1]~ of-1]-2
1]1]-1 5 |-3]-3 1{0]-1 1 -1
1]-2] 1 5]0}-3 1{o[- 2{0]|-2
v oaa 5]-3]-3 1]of- 1]0[=
1] =11 -3[-3]-3 of-11-1 o|-1]-2
1]-2]- s|of-3 1of- o]
N 5]5]-3 1/1]o 2]1]o
-1f-1]= -3]-3[-3 -1f-1f=1 -1-2[-1
1]-2|1 -3/ 0 (-3 olojo ojoo
11 BEE 1] 1 1
BIEIE -3(-3|-3 -1f-1fo -2|-1]0
-1]-2] 1 -3i0]s -1fof1 -1fo]1
{1 -3[s|s IERE of1]2
-1 -3[-3] 5 REE —1fof1
—-1]-2|1 -3{ols -1 1 -2 2
RIEE -3[-3] s RICIE -1]of1
NERE -3[s]s o1 ] of1]2
-1=2|1 -3{ols -1{of1 -110 |1
BISIE -3]-3[-3 -1|-1fo -2]-1fo
Fig.3. “Templates” or “masks” for edge detection ([4], [2], [5], respectively).
ment. Orientation is then obtained approximately as luminance vector B with a set of discrete edge templates
re tan [(B,W1)/(B,Wa)] or masks T; of different orientations as shown in Fig.
= arc tan i .
p=arcta PRS2 3(a)—(d) (see [2], [4], [5]), and retain the largest value
In order to simplify computations, the sum of squares
phly p ’ q max {(B,T;)}.

of (1) is sometimes replaced by a sum of absolute values.

It is pointed out that the above measures are not isotropic, When this value exceeds an arbitrary threshold, the
e.g., certain edge orientations are favored over other ones subarea B is considered to contain an edge element. The
[5]. A pair of isotropic weighting functions is shown in Fig. direction is approximately equal (+/4) to the orientation

2(d). ‘

of the template giving the largest inner product.

2) The second approéch is to form inner products of the This second concept can be immediately extended to
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Fig. 4.

line and point detection with the template vectors shown
in Fig. 4(a) and (b).

IV. IMPROVED DECISION STRATEGY

All algorithms discussed in the previous section can be
interpreted as thresholding the magnitudes of the pro-
jections of the subarea vector B onto particular subspaces
of B. In the average gradient approach, we have one sub-
space of dimension two (spanned by W; and W), whereas
in the template matching case, four (eight in [2] and [4])
subspaces of dimension one occur (the eight vectors of [5]
are pairwise linearly dependent), spanned by the vectors
T; of Fig. 3.

We now propose an improved decision rule and ways to
implement it economically. With the definitions of Section
II, the problem of boundary element detection can be
formulated as follows: determine how well a vector B of
samples from an image subarea “fits” an ideal boundary
element, not knowing its orientation a priori.

Suppose the existence of an “edge” subspace in 5 (as
spanned for example by one of the template or mask sets
of Fig. 3). Find a set of e orthogonal “edge” basis vectors
[Ty, ---,T.] spanning that edge subspace, and expand the
set with n2 — e “nonedge” basis vectors to span 8. Now
consider the angle (in n2-space) between B and its pro-
jection onto the edge subspace

e n2 1/2
9 = arccos [ 3 (B,Tl-)z/ 5 (B,T,-)?] .
i=1 i=1

The larger 0(0 < 6 < «), the poorer the fit between B and
an element of the edge subspace.

The decision strategy proposed is to classify image su-
bareas as containing an edge element if 6 is small. This can
be done easily by thresholding the value of

e
Zl (B,T;)%/(B,B) (2)
=
which is an even function of 6, and is maximum for =
0.

Fig. 5 depicts the effect of this new decision criterion,
as compaired to the traditional threshold techniques. Two
subarea vectors B; and B, are shown, projected onto the
“edge” and “nonedge” subspaces, respectively. Clearly, B;
poorly fits an ideal edge element, because its projection
onto the “nonedge” subspace is large. B is rejected by our

“Templates” or “masks” for (a) line detection; (b) point detection.

criterion, whereas it is classified as an edge element by a
conventional threshold decision. Conversely, By is a good
fit to the ideal edge element. It is classified as such by the
f-criterion, but rejected by the conventional decision rule.
The same strategy can be employed to detect line elements
and points as well, assuming that we have an orthogonal
basis for “line” or “point” subspaces in B.

It is pointed out that the measurement of (2) is invariant
to scene illumination. It effectively extracts the reflection
properties of object boundaries, providing that the illu-
mination is constant over the subarea (sharp shadows are
detected as edges!). This is easy to verify by substituting
the luminances b;; in (2) with r;; - I. The variables r;; are
scene reflectance values and I the illumination which
cancels out in that equation.

V. ORTHOGONAL FEATURE BASIS

We now seek an appropriate basis for 8. Because the
templates of Figs. 3(c) and 4(a) represent samples of ideal
edge and line elements positioned in eight equidistant
orientations, we assume “edge” and “line” subspaces of B
spanned by these vectors. Of all possible orthogonal bases
for these subspaces, we choose the one shown in Fig. 6,
because of the following properties: 1) the first pair of basis
vectors W, and W, represents the isotropic smoothed
gradient weighting function. This pair, taken together with
the second pair spans the above “edge” subspace. 2) The
second pair of basis vectors W3 and W has a distinctive
higher order aspect (three zero crossings instead of one)
and will be shown to contribute little to the magnitude of
the edge subspace component. 3) The “line” vectors were
decomposed into a pair of vectors W5, W with directional
preference and a pair W, Wg without directional prefer-
ence. Note that the point basis vector of Fig. 4(b) is equal
to the sum of the latter pair, which, incidentally, span all
possible discrete realizations of the discrete Laplacian [7].
Finally, the vector Wy was added to complete the basis.
Observe that linear combinations of each pair of vectors
produce similar distinctive patterns, which we call “aver-
age gradient,” “ripple,” “line,” and “Laplacian,” respec-
tively.

Figs. 7 and 8 illustrate the above discussions. An original
image of size 256 X 256 pixels was projected onto each one
of the nine orthogonal basis vectors of Fig. 6. Since the
projections are bipolar, a constant value was added for
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Fig. 5. Graphical comparison of (a) conventional and (b) new boundary classification rule (see text).
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Fig. 6. Orthogonal set of “feature” basis vectors.

display, and the images were scaled for better visibility.
Fig. 8 shows the magnitudes of the projections onto the
four-dimensional edge and line subspaces. The comple-
mentary nature of these subspaces is clearly visible and can
be attributed to the fact that the edge basis vectors are odd
with respect to one axis of symmetry whereas the line basis
vectors are even [see Figs. 3(c) and 4(a)]. This observation
appears to add significance to the new decision strategy
.proposed.

In order to reduce computations, it would be desirable
to reduce the dimension of the feature subspaces. Fig. 9
shows the magnitudes of the projections onto the “average
gradient,” “ripple,” “line,” and “point,” respectively. While
the last pair of projections appear similar (any line is
composed of points!), the “average gradient” and “ripple”
projections are quite different. It is easy to see that the
“ripple” subspace contributes little to the “edge” subspace
[compare Figs. 8(a) and 9(a)] and may be ignored to save
computations.

Next the effects of the new feature measure proposed
are depicted in Fig. 10(a)-(d), which were obtained as
follows:

k+1 — —
3 (BT)*/(B-BB-B)

withk = 1, 3,5, 7 and B =(B,T9). (B was subtracted from
B in the denominator to improve the visibility of the image
structures obtained.) \

Fig. 10 strikingly reveals the advantages and disad-
vantages of the new measure. On one hand, very fine
structural detail has been made visible, but unfortunately,
smooth luminance gradients are now likely to be erro-
neously classified as broad clusters of “edge” points. This
undesirable effect follows from the impossibility to de-
termine whether a luminance gradient extends beyond the
boundaries of the subarea examined. One solution would
be to increase the size of the subareas, but this is undesir-
able from a computational point of view. On the other
hand, it is recalled that the desired boundaries are “line”
features in the edge measurement “picture” obtained from
(2), and visualized in Fig. 10(a). These line elements can
be detected by projecting the edge measurement “picture”
onto the “line” subspace of B, and then applying the de-
cision rule of Fig. 5 to that subspace. In images containing
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Fig. 7. Projections of image onto orthogonal basis vector?. )(z(i) Original image. (b) (B,W). (¢) (B,W)). (d) (BW>). (e) (B,Ws).
f) (B,Wy).
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Fig. 7 (Continued). (g) (B.W5). (h) (B,Wg). (1) (B.W3). (3) (B.W3).

- . o
Fig. 8. Magnitude of projections onto edge and line subspaces. (a) Z{_, (B, W;)?)!/2. (b) 2%_; (B,W;)?)/2.
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Fig. 9. Ma% nitude of projections onto “average gradient, rlpg)le ” “line,” and “Laplacian” subspaces, respectively. (a) ((B,W1)?
+ (B,W,)?)!/2 (averaged gradient). (b) (B,Ws)? + (B,W))!2 (ripple). (c) ((B,Ws)? + (B,We)2)"/? (line). (d) ((B,Wy)? +
(B, Wg)z)”2 (Laplacian).
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(b)

(d)

Fig. 10. Normalized magnitude of projections onto “average gradient,” “ripple,” “line,” and “Laplacian” subspaces, respectively.
(@i=10bi=3(i=5(di="T.

little noise however, it was found that it suffices to apply
“point” detection [using the vector of Fig. 4(b)] to the edge
measurement “picture,” to eliminate the unwanted clus-
tering effect of Fig. 10. The results are shown in the next
section. '

VI. COMPARISONS

In this section we compare the new algorithm proposed
with the Kirsch and Sobel operators [2], [3]. In order to
visualize the improvements obtained, the three algorithms
were run on the same original image and thresholds ad-
justed to obtain approximately the same number of edge
points. Fig. 11 shows this comparison which clearly reveals
the following improvements:

1) much more subtle edges are detected,

2) “strong” edges are detected as thinner lines (mini-
mizing the need for “thinning” operations),

3) edges in dark areas of the image are more likely to be
detected.

On the negative side, we note a slightly increased sensi-
tivity to noise. Table I shows a comparison of the number
of computations required.

The comparison shows significant improvements of
performance at a moderate increase of computational cost.
A similar algorithm can be used for line detection in images
that contain such features. As Fig. 8 shows, lines tend to
be detected on both sides of edges and vice versa. This
property could be exploited to further refine the algorithm
but was not explored in detail here.
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Fig. 11. Comparison of Kirsch, Sobel, and proposed edge detection algorithms. Isolated points were deleted as indicated.
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TABLE I
Number of Computations per Edge Point
Proposed
sequential
Sobel Kirsch Algorithm
Multiply or Divide 4 9 13
Add or Subtract 11 21 27
Compare 1 9 1
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A General Model for Memory Interference in Multiprocessors
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Abstract—This paper presents a mathematical model for de-
termining the extent of memory interference in multiprocessor
systems. The model takes into account the numbers of processors
and memory modules in the system and their relative service times,
as well as the patterns of memory accesses made by the processors.
The results predicted by the model are compared with simulation
results and with results from other exact or approximate models,
where these exist.

Index Terms—Analytic models, memory interference, multip-
rocessors, performance evaluation, simulation.
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I. INTRODUCTION

N a multiprocessor system main memory may
consist of several memory modules, each of which can

be accessed by all the processors in the system. A memory
conflict occurs whenever two or more processors attempt
to access the same memory module simultaneously. When
a conflict occurs, all but one of the conflicting processors
will be delayed. The overall effect of these conflicts, re-
ferred to as memory interference, is a decrease in the ex-
ecution rate of the processors.

Factors that influence the extent of memory interference
in a multiprocessor include the following.

1) The numbers of processors and memory modules.



