2. Linear Minimum Mean Squared Error Estimation

2.1. Linear minimum mean squared error estimators

- Situation considered:
- A random sequence $X(1), \ldots, X(M)$ whose realizations can be observed.
- A random variable Y which has to be estimated.
- We seek an estimate of Y with a linear estimator of the form:

$$
\hat{Y}=h_{0}+\sum_{m=1}^{M} h_{m} X(m)
$$

- A measure of the goodness of \hat{Y} is the mean squared error (MSE)

$$
\mathbf{E}\left[(\hat{Y}-Y)^{2}\right]
$$

- Covariance and variance of random variables:

Let U and V denote two random variables with expectation
$\mu_{U} \equiv \mathbf{E}[U]$ and $\mu_{V} \equiv \mathbf{E}[V]$.

- The covariance of U and V is defined to be:

$$
\begin{aligned}
\Sigma_{U V} & \equiv \mathbf{E}\left[\left(U-\mu_{U}\right)\left(V-\mu_{V}\right)\right] \\
& =\mathbf{E}[U V]-\mu_{U} \mu_{V}
\end{aligned}
$$

- The variance of U is defined to be:

$$
\begin{aligned}
\sigma_{U}^{2} & \equiv \mathbf{E}\left[\left(U-\mu_{U}\right)^{2}\right]=\Sigma_{U U} \\
& =\mathbf{E}\left[U^{2}\right]-\left(\mu_{U}\right)^{2}
\end{aligned}
$$

Let $\boldsymbol{U} \equiv[U(1), \ldots, U(M)]^{T}$ and $\boldsymbol{V} \equiv\left[V(1), \ldots, V\left(M^{\prime}\right)\right]^{T}$ denote two random vectors.
The covariance matrix of \boldsymbol{U} and \boldsymbol{V} is defined as

$$
\Sigma_{\boldsymbol{U} \boldsymbol{V}} \equiv\left[\begin{array}{ccc}
\Sigma_{U(1) V(1)} & \ldots & \Sigma_{U(1) V\left(M^{\prime}\right)} \\
\ldots & \ldots & \ldots \\
\Sigma_{U(M) V(1)} & \ldots & \Sigma_{U(M) V\left(M^{\prime}\right)}
\end{array}\right]
$$

A direct way to obtain $\Sigma_{\boldsymbol{U} \boldsymbol{V}}$:

$$
\begin{aligned}
\Sigma_{\boldsymbol{U} \boldsymbol{V}} & =\mathbf{E}\left[\left(\boldsymbol{U}-\mu_{\boldsymbol{U}}\right)\left(\boldsymbol{V}-\mu_{\boldsymbol{V}}\right)^{T}\right] \\
& =\mathbf{E}\left[\boldsymbol{U} \boldsymbol{V}^{T}\right]-\mu_{\boldsymbol{U}}\left(\mu_{\boldsymbol{V}}\right)^{T}
\end{aligned}
$$

where

$$
\begin{aligned}
\mu_{\boldsymbol{U}} & \equiv \mathbf{E}[\boldsymbol{U}]=[\mathbf{E}[U(1)], \ldots, \mathbf{E}[U(M)]]^{T} \\
\mu_{\boldsymbol{V}} & \equiv \mathbf{E}[\boldsymbol{V}]
\end{aligned}
$$

Examples: $\boldsymbol{U}=\boldsymbol{X} \equiv[X(1), \ldots, X(M)]^{T}$ and $\boldsymbol{V}=Y$.
In the sequel we shall frequently make use of the following covariance matrix and vector:
(i) $\Sigma_{\boldsymbol{X} \boldsymbol{X}}=\mathbf{E}\left[\left(\boldsymbol{X}-\mu_{\boldsymbol{X}}\right)\left(\boldsymbol{X}-\mu_{\boldsymbol{X}}\right)^{T}\right]$

$$
=\left[\begin{array}{ccc}
\sigma_{X(1)}^{2} & \ldots & \Sigma_{X(1) X(M)} \\
\ldots & \cdots & \ldots \\
\Sigma_{X(M) X(1)} & \cdots & \sigma_{X(M)}^{2}
\end{array}\right]
$$

(ii) $\Sigma_{\boldsymbol{X} Y}=\mathbf{E}\left[\left(\boldsymbol{X}-\mu_{\boldsymbol{X}}\right)\left(Y-\mu_{Y}\right)\right]$

$$
=\left[\begin{array}{llll}
\Sigma_{X(1) Y} & \ldots & \Sigma_{X(M) Y}
\end{array}\right]^{T}
$$

- Linear minimum mean squared error estimator (LMMSEE)

A LMMSEE of Y is a linear estimator, i.e. an estimator of the form

$$
\hat{Y}=h_{0}+\sum_{m=1}^{M} h_{m} X(m)
$$

which minimizes the $\operatorname{MSE} \mathbf{E}\left[(\hat{Y}-Y)^{2}\right]$.

A linear estimator is entirely determined by the $(M+1)$-dimensional vector $\boldsymbol{h} \equiv\left[h_{0}, \ldots, h_{M}\right]^{T}$.

- Orthogonality principle:

Orthogonality principle:

A necessary condition for $\boldsymbol{h} \equiv\left[h_{0}, \ldots, h_{M}\right]^{T}$ to be the coefficient vector of the LMMSEE is that its entries fulfils the $(M+1)$ identities:

$$
\begin{gather*}
\mathbf{E}[Y-\hat{Y}]=\mathbf{E}\left[Y-\left(h_{0}+\sum_{m=1}^{M} h_{m} X(m)\right)\right]=0 \tag{2.1a}\\
\mathbf{E}[(Y-\hat{Y}) X(j)]=\mathbf{E}\left[\left\{Y-\left(h_{0}+\sum_{m=1}^{M} h_{m} X(m)\right)\right\} X(j)\right]=0, \tag{2.1b}
\end{gather*}
$$

Proof:
Because the coefficient vector of the LMMSEE minimizes $\mathbf{E}\left[(\hat{Y}-Y)^{2}\right]$, its components must satisfy the set of equations:

$$
\frac{\partial}{\partial h_{j}} \mathbf{E}\left[(\hat{Y}-Y)^{2}\right]=0 \quad j=0, \ldots, M
$$

Notice that the two expressions in (2.1) can be rewritten as:

$$
\begin{align*}
\mathbf{E}[Y-\hat{Y}] & =0 \\
\mathbf{E}[(Y-\hat{Y}) X(j)] & =0 \quad j=1, \ldots, M
\end{align*}
$$

Important consequences of the orthogonality principle:

Geometrical interpretation:

Let U and V denote two random variables with finite second moment, i.e.
$\mathbf{E}\left[U^{2}\right]<\infty$ and $\mathbf{E}\left[V^{2}\right]<\infty$.
Then, the expectation $\mathbf{E}[U V]$ can be viewed as the scalar or inner product of U and V.

Within this interpretation:

- U and V are uncorrelated, i.e. $\mathbf{E}[U V]=0$ if and only if, they are orthogonal,
$-\sqrt{\mathbf{E}\left[U^{2}\right]}$ is the norm (length) of U.
Interpretation of both equations in (2.3)
- (2.3a): the estimation error $Y-\hat{Y}$ and the estimate \hat{Y} are orthogonal.
- (2.3b): results from Pythagoras' Theorem.
- Computation of the coefficient vector of the LMMSEE:

The coefficients of the LMMSEE satisfy the relationships

$$
\begin{aligned}
\mu_{Y} & =h_{0}+\sum_{m=1}^{M} h_{m} \mu_{X(m)}=h_{0}+\left(\boldsymbol{h}^{-}\right)^{T} \mu_{\boldsymbol{X}} \\
\Sigma_{\boldsymbol{X} Y} & =\Sigma_{\boldsymbol{X} \boldsymbol{X}} \boldsymbol{h}^{-}
\end{aligned}
$$

where $\boldsymbol{h}^{-} \equiv\left[h_{1}, \ldots, h_{M}\right]^{T}$ and $\boldsymbol{X} \equiv\left[X_{1}, \ldots, X_{M}\right]^{T}$.
Proof:
Both identities follow by appropriately reformulating relations (2.1a) and (2.1b) and using a matrix notation for the latter one.

Thus, provided $\left(\Sigma_{X X}\right)^{-1}$ exists the coefficients of the LMMSEE are given by:

$$
\begin{aligned}
& \boldsymbol{h}^{-}=\left(\Sigma_{\boldsymbol{X} \boldsymbol{X}}\right)^{-1} \Sigma_{\boldsymbol{X} Y} \\
& h_{0}=\mu_{Y}-\left(\boldsymbol{h}^{-}\right)^{T} \mu_{\boldsymbol{X}}=\mu_{Y}-\Sigma_{\boldsymbol{X} Y}^{T}\left(\Sigma_{\boldsymbol{X} \boldsymbol{X}}\right)^{-1} \mu_{\boldsymbol{X}}
\end{aligned}
$$

- Example: Linear prediction of a WSS process

Let $Y(n)$ denote a WSS process with

- zero mean, i.e $\mathbf{E}[Y(n)]=0$,

$$
\text { - autocorrelation function } \mathbf{E}[Y(n) Y(n+k)]=R_{Y Y}(k)
$$

We seek the LMMSEE for the present value of $Y(n)$ based on the M past observations $Y(n-1), \ldots, Y(n-M)$ of the process. Hence,

$$
\begin{aligned}
& -Y=Y(n) \\
& -X(m)=Y(n-m), m=1, \ldots, M, \text { i.e. } \\
& \boldsymbol{X}=[Y(n-1), \ldots, Y(n-M)]^{T}
\end{aligned}
$$

Because $\mu_{Y}=0$ and $\mu_{\boldsymbol{X}}=0$, it follows from (2.4b) that

$$
h_{0}=0
$$

Computation of $\Sigma_{\boldsymbol{X} Y}$ and $\Sigma_{\boldsymbol{X} \boldsymbol{X}}$:

$$
\begin{aligned}
-\Sigma_{\boldsymbol{X} Y} & =[\mathbf{E}[Y(n-1) Y(n)], \ldots, \mathbf{E}[Y(n-M) Y(n)]]^{T} \\
& =\left[R_{Y Y}(1), \ldots, R_{Y Y}(M)\right]^{T}
\end{aligned}
$$

$-\Sigma_{X X}=$

$$
=\left[\begin{array}{cccc}
\mathbf{E}\left[Y(n-1)^{2}\right] & \mathbf{E}[Y(n-1) Y(n-2)] & \ldots & \mathbf{E}[Y(n-1) Y(n-M)] \\
\mathbf{E}[Y(n-2) Y(n-1)] & \mathbf{E}\left[Y(n-2)^{2}\right] & \ldots & \mathbf{E}[Y(n-2) Y(n-M)] \\
\ldots & \ldots & \ldots & \ldots \\
\mathbf{E}[Y(n-M) Y(n-1)] & \mathbf{E}[Y(n-M) Y(n-2)] & \ldots & \mathbf{E}\left[Y(n-M)^{2}\right]
\end{array}\right]
$$

$$
=\left[\begin{array}{ccccc}
R_{Y Y}(0) & R_{Y Y}(1) & R_{Y Y}(2) & \ldots & R_{Y Y}(M-1) \\
R_{Y Y}(1) & R_{Y Y}(0) & R_{Y Y}(1) & \ldots & R_{Y Y}(M-2) \\
R_{Y Y}(2) & R_{Y Y}(1) & R_{Y Y}(0) & \ldots & R_{Y Y}(M-3) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
R_{Y Y}(M-1) & R_{Y Y}(M-2) & R_{Y Y}(M-3) & \ldots & R_{Y Y}(0)
\end{array}\right]
$$

- Residual error using a LMMSEE:

The MSE resulting when using a LMMSEE is

$$
\mathbf{E}\left[(\hat{Y}-Y)^{2}\right]={\sigma_{Y}}^{2}-\left(\boldsymbol{h}^{-}\right)^{T} \Sigma_{\boldsymbol{X} Y}
$$

Proof:

$$
\begin{aligned}
\mathbf{E}\left[(Y-\hat{Y})^{2}\right] & =\mathbf{E}[(Y-\hat{Y}) Y] \\
& =\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[\hat{Y} Y]
\end{aligned}
$$

2.2. Minimum mean squared error estimators

- Conditional expectation:

Let U and V denote two random variables.
The conditional expectation of V given $U=u$ is observed is defined to be $\mathbf{E}[V \mid u] \equiv \int v p(v \mid u) d v$.
Notice that $\mathbf{E}[V \mid U]$ is a random variable. In the sequel we shall make use of the following important property of conditional expectations:
Proof:
$\mathbf{E}[\mathbf{E}[V \mid U]]=\mathbf{E}[V]$

- Minimum mean squared error estimator (MMSEE):

The MMSEE of Y based on the observation of $X(1), \ldots, X(M)$ is of the form:

$\overparen{\overparen{Y}}(X(1), \ldots, X(M))$	$=\mathbf{E}[Y \mid X(1), \ldots, X(M)]$
Hence if $X(1)=x(1), \ldots, X(M)$	$=x(M)$ is observed, then
$\overparen{Y}(x(1), \ldots, x(M))$	$=\mathbf{E}[Y \mid x(1), \ldots, x(M)]$
	$=\int y p(y \mid x(1), \ldots, x(M)) d y$

Proof:
Let \hat{Y} denote an arbitrary estimator. Then,

$$
\begin{aligned}
\mathbf{E}\left[(\hat{Y}-Y)^{2}\right] & =\mathbf{E}\left[((\hat{Y}-\overparen{Y})-(Y-\overparen{Y}))^{2}\right] \\
& =\mathbf{E}\left[(\hat{Y}-\overparen{Y})^{2}\right]-\underbrace{2 \mathbf{E}[(\hat{Y}-\overparen{Y})(Y-\overparen{Y})]}_{=0}+\mathbf{E}\left[(Y-\overparen{Y})^{2}\right] \\
& =\mathbf{E}\left[(\hat{Y}-\overparen{Y})^{2}\right]+\mathbf{E}\left[(Y-\overparen{Y})^{2}\right]
\end{aligned}
$$

Thus,

$$
\mathbf{E}\left[(\hat{Y}-Y)^{2}\right] \geq \mathbf{E}\left[(Y-\overparen{Y})^{2}\right]
$$

with equality if, and only if, $\hat{Y}=\overparen{Y}$. We still have to prove that $\mathbf{E}[(\hat{Y}-\overparen{Y})(Y-\overparen{Y})]=0$.

Example: Multivariate Gaussian variables:

$[Y, X(1), \ldots, X(M)]^{T} \sim \mathcal{N}(\mu, \Sigma)$ with
$-\mu \equiv\left[\mu_{Y}, \mu_{X(1)}, \ldots, \mu_{X(M)}\right]^{T}$
$-\Sigma \equiv\left[\begin{array}{cc}\sigma_{Y}^{2} & \left(\Sigma_{\boldsymbol{X} Y}\right)^{T} \\ \Sigma_{\boldsymbol{X} Y} & \Sigma_{\boldsymbol{X} \boldsymbol{X}}\end{array}\right]$
From Equation (6.22) in [Shanmugan] it follows that

$$
\overparen{Y}=\mathbf{E}[Y \mid \boldsymbol{X}]=\mu_{Y}+\left(\Sigma_{\boldsymbol{X} Y}\right)^{T}\left(\Sigma_{\boldsymbol{X} \boldsymbol{X}}\right)^{-1}\left(\boldsymbol{X}-\mu_{\boldsymbol{X}}\right)
$$

Bivariate case: $M=1, X(1)=X$
$-\Sigma_{X X}=\sigma_{X}^{2}$,
$-\Sigma_{X Y}=\rho \sigma_{X} \sigma_{Y}$, where $\rho \equiv \frac{\Sigma_{X Y}}{\sigma_{X} \sigma_{Y}}$ is the correlation coefficient of Y and X.

In this case,

$$
\begin{aligned}
\widehat{Y}=\mathbf{E}[Y \mid X] & =\mu_{Y}+\frac{\rho \sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right) \\
& =\underbrace{\left(\mu_{Y}-\frac{\rho \sigma_{Y}}{\sigma_{X}} \mu_{X}\right)}_{h_{0}}+\underbrace{\left(\frac{\rho \sigma_{Y}}{\sigma_{X}}\right)}_{h_{1}} X
\end{aligned}
$$

We can observe that \overparen{Y} is linear, i.e. is the LMMSEE $\hat{Y}=\overparen{Y}$ in the bivariate case. This is also true in the general multivariate Gaussian case. In fact,

$$
\begin{aligned}
& \hat{Y}=\overparen{Y} \text { if, and only if, }[Y, X(1), \ldots, X(M)]^{T} \text { is a Gaussian } \\
& \text { random vector. }
\end{aligned}
$$

2.3. Time-discrete Wiener filters

- Problem:

Estimation of a WSS random sequence $Y(n)$ based on the observation of another sequence $X(n)$. Without loss of generality we assume that
$\mathbf{E}[Y(n)]=\mathbf{E}[X(n)]=0$.
The goodness of the estimator $\hat{Y}(n)$ is described by the MSE

$$
\mathbf{E}\left[(\hat{Y}(n)-Y(n))^{2}\right] .
$$

We distinguish between two cases:

- Prediction:

$\hat{Y}(n)$ depends on one or several past observations of $X(n)$ only, i.e

$$
\hat{Y}(n)=\hat{Y}\left(X\left(n_{1}\right), X\left(n_{2}\right), \ldots\right) \text { with } n_{1}, n_{2}, \ldots<n
$$

- Filtering:

$\hat{Y}(n)$ depends on the present observation and/or one or many future observation(s) of $X(n)$, i.e.

$$
\hat{Y}(n)=\hat{Y}\left(X\left(n_{1}\right), X\left(n_{2}\right), \ldots\right) \text { where at least one } n_{i} \geq n
$$

If all $n_{i} \leq n$, the filter is causal otherwise it is noncausal.

Typical application: WSS signal embedded in additive white noise

$$
X(n)=Y(n)+W(n) .
$$

where,

- $W(n)$ is a white noise sequence,
- $Y(n)$ is a WSS process
- $Y(n)$ and $W(n)$ are uncorrelated.

However, the theoretical treatment is more general as shown below.

2.3.1. Noncausal Wiener filters

- Linear Minimum Mean Squared Error Filter

We seek a linear filter

$$
\hat{Y}(n)=\sum_{m=-\infty}^{\infty} h(m) X(n-m)=h(n)^{*} X(n)
$$

which minimizes the $\operatorname{MSE} \mathbf{E}\left[(\hat{Y}(n)-Y(n))^{2}\right]$.
Such a filter exists. It is called a Wiener filter in honour of his inventor.

- Orthogonality principle (time domain):

The coefficients of a Wiener filter satisfy the conditions:

$$
\begin{aligned}
& \mathbf{E}[(Y(n)-\hat{Y}(n)) X(n-k)]= \\
& =\mathbf{E}\left[\left(Y(n)-\sum_{m=-\infty}^{\infty} h(m) X(n-m)\right) X(n-k)\right]=0, \quad k=\ldots,-1,0,1, \ldots
\end{aligned}
$$

It follows from these identities (see also (2.3)) that

$$
\begin{array}{r}
\mathbf{E}[(Y(n)-\hat{Y}(n)) \hat{Y}(n)]=0 \\
\mathbf{E}\left[(Y(n)-\hat{Y}(n))^{2}\right]=\mathbf{E}\left[Y(n)^{2}\right]-\mathbf{E}\left[\hat{Y}(n)^{2}\right] \\
=\mathbf{E}[(Y(n)-\hat{Y}(n)) Y(n)]
\end{array}
$$

With the definitions

$$
R_{X X}(k) \equiv \mathbf{E}[X(n) X(n+k)], R_{X Y}(k) \equiv \mathbf{E}[X(n) Y(n+k)]
$$

we can recast the orthogonality conditions as follows:

$$
\begin{array}{lr}
R_{X Y}(k)=\sum_{m=-\infty}^{\infty} h(m) R_{X X}(k-m) & k=\ldots,-1,0,1, \ldots \\
R_{X Y}(k)=h(k)^{*} R_{X X}(k) & \text { Wiener-Hopf equation }
\end{array}
$$

- Orthogonality principle (frequency domain):

$$
S_{X Y}(f)=H(f) S_{X X}(f)
$$

where

$$
S_{X Y}(f) \equiv \mathcal{F}\left\{R_{X Y}(k)\right\}
$$

- Transfer function of the Wiener filter:

$$
H(f)=\frac{S_{X Y}(f)}{S_{X X}(f)}
$$

- MSE of the Wiener filter (time-domain formulation):

$$
\mathbf{E}\left[(Y(n)-\hat{Y}(n))^{2}\right]=\sigma_{Y}^{2}-\sum_{m=-\infty}^{\infty} h(m) R_{X Y}(m)
$$

Proof:

$$
\mathbf{E}\left[(Y(n)-\hat{Y}(n))^{2}\right]=\mathbf{E}\left[Y(n)^{2}\right]-\mathbf{E}[\hat{Y}(n) Y(n)]
$$

- MSE of the Wiener filter (frequency-domain formulation): We can rewrite the above identity as:
$\mathbf{E}\left[(Y(n)-\hat{Y}(n))^{2}\right]=R_{Y Y}(0)-\sum_{m=-\infty}^{\infty} h(m) R_{Y X}(-m)$
$\mathbf{E}\left[(Y(n)-\hat{Y}(n))^{2}\right]$ is the value $p(0)$ of the sequence

$$
\begin{aligned}
p(k) & =R_{Y Y}(k)-\sum_{m=-\infty}^{\infty} h(m) R_{Y X}(k-m) \\
& =R_{Y Y}(k)-h(k) * R_{Y X}(k) \\
P(f) & =S_{Y Y}(f)-H(f) S_{Y X}(f)=S_{Y Y}(f)-\frac{\left|S_{X Y}(f)\right|^{2}}{S_{X X}(f)}
\end{aligned}
$$

Hence,

$$
\mathbf{E}\left[(Y(n)-\hat{Y}(n))^{2}\right]=p(0)=\int_{-1 / 2}^{1 / 2} P(f) d f
$$

$$
\mathbf{E}\left[(Y(n)-\hat{Y}(n))^{2}\right]=\int_{-1 / 2}^{1 / 2}\left[S_{Y Y}(f)-\frac{\left|S_{X Y}(f)\right|^{2}}{S_{X X}(f)}\right] d f
$$

2.3.2. Causal Wiener filters

A. $X(n)$ is a white noise.

We first assume that $X(n)$ is a white noise with unit variance, i.e.
$\mathbf{E}[X(n) X(n+k)]=\delta(k)$.

- Derivation of the causal Wiener filter from the noncausal Wiener filter: Let us consider the noncausal Wiener filter

$$
\hat{Y}(n)=\sum_{m=-\infty}^{\infty} h(m) X(n-m)
$$

whose transfer function is given by

$$
H(f)=\frac{S_{X Y}(f)}{S_{X X}(f)}=S_{X Y}(f)
$$

Then, the causal Wiener filter $\hat{Y}_{c}(n)$ results by cancelling the noncausal part of the non-causal Wiener filter:

$$
\hat{Y}_{c}(n)=\sum_{m=0}^{\infty} h(m) X(n-m)
$$

Sketch of the proof:

$\hat{Y}(n)$ can be written as

$$
\hat{Y}(n)=\underbrace{\sum_{m=-\infty}^{-1} h(m) X(n-m)}_{\equiv U}+\underbrace{\sum_{m=0}^{\infty} h(m) X(n-m)}_{V \equiv \hat{Y}_{c}(n)}
$$

Because $X(n)$ is a white noise, the causal part $V=\hat{Y}_{c}(n)$ and the noncausal part $U=\hat{Y}(n)-\hat{Y}_{c}(n)$ of $\hat{Y}(n)$ are orthogonal. It follows from this property

that $\hat{Y}_{c}(n)$ and $Y(n)$ are orthogonal, i.e. that $\hat{Y}_{c}(n)$ minimizes the MSE within the class of linear causal estimators.
B. $X(n)$ is an arbitrary WSS process whose spectrum satisfies the PaleyWiener condition.
Usually, the above truncation procedure to obtain $\hat{Y}_{c}(n)$ does not apply
because U and V are correlated and therefore not orthogonal in the general case.

- Causal whitening filter:

However, we can show (see the Spectral Decomposition Theorem below) that provided $S_{X X}(f)$ satisfies the Paley-Wiener condition (see below) then $X(n)$ can be converted into an equivalent white noise sequence $Z(n)$ with unit variance by filtering it with an appropriate causal filter $g(n)$,

This operation is called whitening and the filter $g(n)$ is called a whitening filter.
equivalent \equiv there exists another causal filter $\tilde{g}(n)$ so that $X(n)=\tilde{g}(n) * Z(n)$:

Notice that if

$$
\begin{aligned}
& G(f) \equiv \mathcal{F}\{g(n)\} \\
& \tilde{G}(f) \equiv \mathcal{F}\{\tilde{g}(n)\}
\end{aligned}
$$

then

$$
\begin{array}{ll}
|G(f)|^{2}=S_{X X}(f)^{-1} & \begin{array}{l}
\text { We shall see that a } \\
\text { whitening filter exists } \\
\text { such that }
\end{array} \\
|\tilde{G}(f)|^{2}=S_{X X}(f) & \tilde{G}(f)=G(f)^{-1}
\end{array}
$$

- Causal Wiener filter

Making use of the result in Part A, the block diagram of the causal Wiener filter is

$S_{Z Y}(f)$ is obtained from $S_{X Y}(f)$ according to

$$
S_{Z Y}(f)=G(f)^{*} S_{X Y}(f)
$$

Proof:

Hence, the block diagram of the causal Wiener filter is:

$X(n) \longrightarrow$| Whitening Filter | | |
| :---: | :---: | :---: |
| $g(n)$ | $Z(n)$ | Causal part of
 $\mathcal{F}^{-1}\left\{G(f)^{*} S_{X Y}(f)\right\}$ |

- Spectral Decomposition Theorem:

Let $S_{X X}(f)$ satisfies the so-called Paley-Wiener condition:

$$
\int_{-1 / 2}^{1 / 2} \log \left(S_{X X}(f)\right) d f>-\infty
$$

Then $S_{X X}(f)$ can be written as

$$
S_{X X}(f)=G(f)^{+} G(f)^{-}
$$

with $G(f)^{+}$and $G(f)^{-}$satisfying

$$
\left|G(f)^{+}\right|^{2}=\left|G(f)^{-}\right|^{2}=S_{X X}(f)
$$

Moreover, the sequences

$$
\begin{aligned}
g(n)^{+} & \equiv \mathcal{F}^{-1}\left\{G(f)^{+}\right\} \\
g(n)^{-} & \equiv \mathcal{F}^{-1}\left\{G(f)^{-}\right\} \\
g^{-1}(n)^{+} & \equiv \mathcal{F}^{-1}\left\{1 / G(f)^{+}\right\} \\
g^{-1}(n)^{-} & \equiv \mathcal{F}^{-1}\left\{1 / G(f)^{-}\right\}
\end{aligned}
$$

satisfy

$$
\begin{array}{|ccc|}
\hline g(n)^{+}=g^{-1}(n)^{+}=0 & n<0 & \text { Causal sequences } \\
g(n)^{-}=g^{-1}(n)^{-}=0 & n>0 & \text { Anticausal sequences } \\
\hline
\end{array}
$$

- Whitening filter (cont'd):

The sought whitening filter used to obtained $Z(n)$ is

$$
g(n)=g^{-1}(n)^{+}
$$

and

$$
\tilde{g}(n)=g(n)^{+}
$$

It can be easily verified that both sequences satisfy the identities in (2.6).

2.3.3. Finite Wiener filters

- Finite linear filter

$$
\hat{Y}(n)=\sum_{m=-M_{1}}^{M_{2}} h(m) X(n-m)
$$

- Wiener-Hopf equation:

By applying the orthogonality principle we obtain the Wiener-Hopf system of equations:

$$
\Sigma_{X Y}=\Sigma_{X X} h
$$

where

$$
\boldsymbol{h} \equiv\left[h\left(-M_{1}\right), \ldots, h\left(M_{2}\right)\right]^{T}
$$

and

$$
\Sigma_{\boldsymbol{X} Y} \equiv\left[R_{X Y}\left(-M_{1}\right), \ldots, R_{X Y}\left(M_{2}\right)\right]^{T}
$$

$\Sigma_{X X} \equiv$

$$
\equiv\left[\begin{array}{ccclc}
R_{X X}(0) & R_{X X}(1) & R_{X X}(2) & \ldots & R_{X X}\left(M_{1}+M_{2}\right) \\
R_{X X}(1) & R_{X X}(0) & R_{X X}(1) & \ldots R_{X X}\left(M_{1}+M_{2}-1\right) \\
R_{X X}(2) & R_{X X}(1) & R_{X X}(0) & \ldots & R_{X X}\left(M_{1}+M_{2}-2\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
R_{X X}\left(M_{1}+M_{2}\right) & R_{X X}\left(M_{1}+M_{2}-1\right) & R_{X X}\left(M_{1}+M_{2}-2\right) & \ldots & R_{X X}(0)
\end{array}\right]
$$

Coefficient vector of the finite Wiener filter.

$$
\boldsymbol{h}=\left(\Sigma_{\boldsymbol{X} \boldsymbol{X}}\right)^{-1} \Sigma_{\boldsymbol{X} Y}
$$

provided $\Sigma_{X X}$ is invertible.

