2. Linear Minimum Mean Squared Error Estimation

2.1. Linear minimum mean squared error estimators

- Situation considered:
 - A random sequence X(1), ..., X(M) whose realizations can be observed.
 - A random variable Y which has to be estimated.
 - We seek an estimate of Y with a **linear estimator** of the form:

$$\hat{Y} = h_0 + \sum_{m=1}^{M} h_m X(m)$$

- A measure of the goodness of \hat{Y} is the mean squared error (MSE):

$$\mathbf{E}[(\hat{Y}-Y)^2]$$

• Covariance and variance of random variables:

Let U and V denote two random variables with expectation $\mu_U \equiv \mathbf{E}[U]$ and $\mu_V \equiv \mathbf{E}[V]$.

- The **covariance** of *U* and *V* is defined to be:

$$\Sigma_{UV} = \mathbf{E}[(U - \mu_U)(V - \mu_V)]$$
$$= \mathbf{E}[UV] - \mu_U \mu_V$$

- The **variance** of *U* is defined to be:

$$\sigma_U^2 = \mathbf{E}[(U - \mu_U)^2] = \Sigma_{UU}$$
$$= \mathbf{E}[U^2] - (\mu_U)^2$$

Let $U = [U(1), ..., U(M)]^T$ and $V = [V(1), ..., V(M')]^T$ denote two random vectors.

The covariance matrix of U and V is defined as

$$\boldsymbol{\Sigma}_{UV} = \begin{bmatrix} \boldsymbol{\Sigma}_{U(1)V(1)} & \dots & \boldsymbol{\Sigma}_{U(1)V(M')} \\ & \dots & & \dots \\ \boldsymbol{\Sigma}_{U(M)V(1)} & \dots & \boldsymbol{\Sigma}_{U(M)V(M')} \end{bmatrix}$$

A direct way to obtain Σ_{UV} :

$$\Sigma_{UV} = \mathbf{E}[(U - \mu_U)(V - \mu_V)^T]$$
$$= \mathbf{E}[UV^T] - \mu_U(\mu_V)^T$$

where

$$\mu_{U} = \mathbf{E}[U] = [\mathbf{E}[U(1)], ..., \mathbf{E}[U(M)]]^{T}$$

$$\mu_{U} = \mathbf{E}[V]$$

Examples: $U = X = [X(1), ..., X(M)]^T$ and V = Y.

In the sequel we shall frequently make use of the following covariance matrix and vector:

(i)
$$\Sigma_{XX} = \mathbf{E}[(X - \mu_X)(X - \mu_X)^T]$$

$$= \begin{bmatrix} \sigma_{X(1)}^2 & \dots & \Sigma_{X(1)X(M)} \\ \dots & \dots & \dots \\ \Sigma_{X(M)X(1)} & \dots & \sigma_{X(M)}^2 \end{bmatrix}$$

(ii)
$$\Sigma_{XY} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

= $\left[\Sigma_{X(1)Y} \dots \Sigma_{X(M)Y}\right]^T$

• Linear minimum mean squared error estimator (LMMSEE)

A LMMSEE of Y is a linear estimator, i.e. an estimator of the form

$$\hat{Y} = h_0 + \sum_{m=1}^{M} h_m X(m) ,$$

which minimizes the MSE $\mathbf{E}[(\hat{Y} - Y)^2]$

A linear estimator is entirely determined by the (M+1)-dimensional vector $\mathbf{h} \equiv [h_0, ..., h_M]^T$.

• Orthogonality principle:

Orthogonality principle:

A necessary condition for $h = [h_0, ..., h_M]^T$ to be the coefficient vector of the LMMSEE is that its entries fulfils the (M + 1) identities:

$$\mathbf{E}[Y - \hat{Y}] = \mathbf{E}\left[Y - \left(h_0 + \sum_{m=1}^{M} h_m X(m)\right)\right] = 0$$
 (2.1*a*)

$$\mathbf{E}[(Y - \hat{Y})X(j)] = \mathbf{E}\left[\left\{Y - \left(h_0 + \sum_{m=1}^{M} h_m X(m)\right)\right\}X(j)\right] = 0,$$

$$j = 1, ..., M$$
(2.1b)

Proof:

Because the coefficient vector of the LMMSEE minimizes $\mathbf{E}[(\hat{Y} - Y)^2]$, its components must satisfy the set of equations:

$$\frac{\partial}{\partial h_j} \mathbf{E}[(\hat{Y} - Y)^2] = 0 \qquad j = 0, ..., M.$$

Notice that the two expressions in (2.1) can be rewritten as:

$$\mathbf{E}[Y - \hat{Y}] = 0 \tag{2.2a}$$

$$\mathbf{E}[(Y - \hat{Y})X(j)] = 0 \qquad j = 1, ..., M \qquad (2.2b)$$

Important consequences of the orthogonality principle:

$$\mathbf{E}[(Y - \hat{Y})\hat{Y}] = 0 \qquad (2.3a)$$

$$\mathbf{E}[(Y - \hat{Y})^2] = \mathbf{E}[Y^2] - \mathbf{E}[\hat{Y}^2]$$

$$= \mathbf{E}[(Y - \hat{Y})Y] \qquad (2.3b)$$

Geometrical interpretation:

Let U and V denote two random variables with finite second moment, i.e.

$$\mathbf{E}[U^2] < \infty \text{ and } \mathbf{E}[V^2] < \infty.$$

Then, the expectation E[UV] can be viewed as the **scalar or inner product** of U and V.

Within this interpretation:

- U and V are uncorrelated, i.e. $\mathbf{E}[UV] = 0$ if and only if, they are **orthogonal**,
- $\sqrt{\mathbf{E}[U^2]}$ is the norm (length) of U.

Interpretation of both equations in (2.3):

- (2.3a): the estimation error $Y \hat{Y}$ and the estimate \hat{Y} are orthogonal.
- (2.3b): results from Pythagoras' Theorem.

• Computation of the coefficient vector of the LMMSEE:

The coefficients of the LMMSEE satisfy the relationships:

$$\mu_Y = h_0 + \sum_{m=1}^{M} h_m \mu_{X(m)} = h_0 + (\mathbf{h})^T \mu_X$$

$$\Sigma_{XY} = \Sigma_{XX} \mathbf{h}$$

where
$$\mathbf{h}^{-} \equiv [h_1, ..., h_M]^T$$
 and $\mathbf{X} \equiv [X_1, ..., X_M]^T$.

Proof:

Both identities follow by appropriately reformulating relations (2.1a) and (2.1b) and using a matrix notation for the latter one.

Thus, provided $(\Sigma_{YY})^{-1}$ exists the coefficients of the LMMSEE are given by:

$$\mathbf{h}^{-} = (\Sigma_{XX})^{-1} \Sigma_{XY}$$
 (2.4a)
$$h_{0} = \mu_{Y} - (\mathbf{h}^{-})^{T} \mu_{X} = \mu_{Y} - \Sigma_{XY}^{T} (\Sigma_{XX})^{-1} \mu_{X}$$
 (2.4b)

$$h_0 = \mu_Y - (h^-)^T \mu_X = \mu_Y - \Sigma_{XY}^T (\Sigma_{XX})^{-1} \mu_X$$
 (2.4b)

• Example: Linear prediction of a WSS process

Let Y(n) denote a WSS process with

- zero mean, i.e $\mathbb{E}[Y(n)] = 0$,
- autocorrelation function $\mathbf{E}[Y(n)Y(n+k)] = R_{yy}(k)$

We seek the LMMSEE for the present value of Y(n) based on the M past observations Y(n-1), ..., Y(n-M) of the process. Hence,

$$-Y = Y(n)$$

$$-X(m) = Y(n-m), m = 1, ..., M, i.e.$$

$$X = [Y(n-1), ..., Y(n-M)]^T$$

Because $\mu_Y = 0$ and $\mu_X = 0$, it follows from (2.4b) that

$$h_0 = 0$$

Computation of Σ_{XY} and Σ_{XX} :

$$-\Sigma_{XY} = [\mathbf{E}[Y(n-1)Y(n)], ..., \mathbf{E}[Y(n-M)Y(n)]]^{T}$$

$$= [R_{VV}(1), ..., R_{VV}(M)]^{T}$$

$$-\Sigma_{XX} =$$

$$= \begin{bmatrix} \mathbf{E}[Y(n-1)^2] & \mathbf{E}[Y(n-1)Y(n-2)] & \dots & \mathbf{E}[Y(n-1)Y(n-M)] \\ \mathbf{E}[Y(n-2)Y(n-1)] & \mathbf{E}[Y(n-2)^2] & \dots & \mathbf{E}[Y(n-2)Y(n-M)] \\ \dots & \dots & \dots & \dots \\ \mathbf{E}[Y(n-M)Y(n-1)] & \mathbf{E}[Y(n-M)Y(n-2)] & \dots & \mathbf{E}[Y(n-M)^2] \end{bmatrix}$$

$$= \begin{bmatrix} R_{YY}(0) & R_{YY}(1) & R_{YY}(2) & \dots & R_{YY}(M-1) \\ R_{YY}(1) & R_{YY}(0) & R_{YY}(1) & \dots & R_{YY}(M-2) \\ R_{YY}(2) & R_{YY}(1) & R_{YY}(0) & \dots & R_{YY}(M-3) \\ \dots & \dots & \dots & \dots & \dots \\ R_{YY}(M-1) & R_{YY}(M-2) & R_{YY}(M-3) & \dots & R_{YY}(0) \end{bmatrix}$$

• Residual error using a LMMSEE:

The MSE resulting when using a LMMSEE is

$$\mathbf{E}[(\hat{Y}-Y)^2] = \sigma_Y^2 - (\boldsymbol{h})^T \Sigma_{XY}$$
 (2.5)

Proof:

$$\mathbf{E}[(Y - \hat{Y})^{2}] = \mathbf{E}[(Y - \hat{Y})Y]$$
$$= \mathbf{E}[Y^{2}] - \mathbf{E}[\hat{Y}Y]$$

2.2. Minimum mean squared error estimators

• Conditional expectation:

Let *U* and *V* denote two random variables.

The conditional expectation of V given U = u is observed is defined to be

$$\mathbf{E}[V|u] \equiv \int v p(v|u) dv.$$

Notice that $\mathbf{E}[V|U]$ is a random variable. In the sequel we shall make use of the following important property of conditional expectations:

$$\mathbf{E}[\mathbf{E}[V|U]] = \mathbf{E}[V]$$

Proof:

• Minimum mean squared error estimator (MMSEE):

The MMSEE of Y based on the observation of X(1), ..., X(M) is of the form:

$$\widehat{Y}(X(1),...,X(M)) = \mathbf{E}[Y|X(1),...,X(M)]$$

Hence if X(1) = x(1), ..., X(M) = x(M) is observed, then

$$\widehat{Y}(x(1), ..., x(M)) = \mathbb{E}[Y|x(1), ..., x(M)]$$

$$= \int yp(y|x(1), ..., x(M))dy$$

Proof:

Let \hat{Y} denote an arbitrary estimator. Then,

$$\mathbf{E}[(\widehat{Y} - Y)^{2}] = \mathbf{E}[((\widehat{Y} - \widehat{Y}) - (Y - \widehat{Y}))^{2}]$$

$$= \mathbf{E}[(\widehat{Y} - \widehat{Y})^{2}] - \underbrace{2\mathbf{E}[(\widehat{Y} - \widehat{Y})(Y - \widehat{Y})]}_{= 0} + \mathbf{E}[(Y - \widehat{Y})^{2}]$$

$$= \mathbf{E}[(\widehat{Y} - \widehat{Y})^{2}] + \mathbf{E}[(Y - \widehat{Y})^{2}]$$

Thus,

$$\mathbf{E}[(\hat{Y} - Y)^2] \ge \mathbf{E}[(Y - \widehat{Y})^2]$$

with equality if, and only if, $\hat{Y} = \widehat{Y}$. We still have to prove that

$$\mathbf{E}[(\hat{Y}-\widehat{Y})(Y-\widehat{Y})] = 0.$$

Example: Multivariate Gaussian variables:

$$[Y, X(1), ..., X(M)]^T \sim N(\mu, \Sigma)$$
 with

$$-\mu = [\mu_Y, \mu_{X(1)}, ..., \mu_{X(M)}]^T$$

$$- \Sigma \equiv \begin{bmatrix} \sigma_Y^2 & (\Sigma_{XY})^T \\ \Sigma_{XY} & \Sigma_{XX} \end{bmatrix}$$

From Equation (6.22) in [Shanmugan] it follows that

$$\widehat{Y} = \mathbf{E}[Y|X] = \mu_Y + (\Sigma_{XY})^T (\Sigma_{XX})^{-1} (X - \mu_X)$$

Bivariate case: M = 1, X(1) = X

$$-\Sigma_{XX} = \sigma_X^2,$$

$$-\Sigma_{XY} = \rho \sigma_X \sigma_Y$$
, where $\rho = \frac{\Sigma_{XY}}{\sigma_X \sigma_Y}$ is the correlation coefficient of Y and X.

In this case,

$$\widehat{Y} = \mathbf{E}[Y|X] = \mu_Y + \frac{\rho \sigma_Y}{\sigma_X} (X - \mu_X)$$

$$= \underbrace{\left(\mu_Y - \frac{\rho \sigma_Y}{\sigma_X} \mu_X\right)}_{h_0} + \underbrace{\left(\frac{\rho \sigma_Y}{\sigma_X}\right)}_{h_1} X$$

We can observe that \widehat{Y} is linear, i.e. is the LMMSEE $\widehat{Y} = \widehat{Y}$ in the bivariate case. This is also true in the general multivariate Gaussian case. In fact,

 $\hat{Y} = \widehat{Y}$ if, and only if, $[Y, X(1), ..., X(M)]^T$ is a Gaussian random vector.

2.3. Time-discrete Wiener filters

· Problem:

Estimation of a WSS random sequence Y(n) based on the observation of another sequence X(n). Without loss of generality we assume that $\mathbf{E}[Y(n)] = \mathbf{E}[X(n)] = 0$.

The goodness of the estimator $\hat{Y}(n)$ is described by the MSE

$$\mathbf{E}[(\hat{Y}(n)-Y(n))^2].$$

We distinguish between two cases:

- Prediction:

 $\hat{Y}(n)$ depends on one or several past observations of X(n) only, i.e.

$$\hat{Y}(n) = \hat{Y}(X(n_1), X(n_2), ...)$$
 with $n_1, n_2, ... < n$

- Filtering:

 $\hat{Y}(n)$ depends on the present observation and/or one or many future observation(s) of X(n), i.e.

$$\hat{Y}(n) = \hat{Y}(X(n_1), X(n_2), ...)$$
 where at least one $n_i \ge n$

If all $n_i \le n$, the filter is **causal** otherwise it is **noncausal**.

Typical application: WSS signal embedded in additive white noise

$$X(n) = Y(n) + W(n) .$$

where,

- W(n) is a white noise sequence,
- Y(n) is a WSS process
- Y(n) and W(n) are uncorrelated.

However, the theoretical treatment is more general as shown below.

2.3.1. Noncausal Wiener filters

Linear Minimum Mean Squared Error Filter
 We seek a linear filter

$$\hat{Y}(n) = \sum_{m = -\infty}^{\infty} h(m)X(n-m) = h(n)*X(n)$$

which minimizes the MSE $\mathbf{E}[(\hat{Y}(n) - Y(n))^2]$.

Such a filter exists. It is called a **Wiener filter** in honour of his inventor.

• Orthogonality principle (time domain):

The coefficients of a Wiener filter satisfy the conditions:

$$\mathbf{E}[(Y(n) - \hat{Y}(n))X(n-k)] =$$

$$= \mathbf{E}\left[\left(Y(n) - \sum_{m=-\infty}^{\infty} h(m)X(n-m)\right)X(n-k)\right] = 0, \quad k = ..., -1, 0, 1, ...$$

It follows from these identities (see also (2.3)) that

With the definitions

$$R_{XX}(k) \equiv \mathbf{E}[X(n)X(n+k)], R_{XY}(k) \equiv \mathbf{E}[X(n)Y(n+k)]$$

we can recast the orthogonality conditions as follows:

$$R_{XY}(k) = \sum_{m = -\infty}^{\infty} h(m)R_{XX}(k - m) \qquad k = ..., -1, 0, 1, ...$$

$$R_{XY}(k) = h(k)*R_{XX}(k) \qquad \text{Wiener-Hopf equation}$$

• Orthogonality principle (frequency domain):

$$S_{XY}(f) = H(f)S_{XX}(f)$$

where

$$S_{XY}(f) \equiv F\{R_{XY}(k)\}$$

• Transfer function of the Wiener filter:

$$H(f) = \frac{S_{XY}(f)}{S_{XX}(f)}$$

• MSE of the Wiener filter (time-domain formulation):

$$\mathbf{E}[(Y(n) - \hat{Y}(n))^{2}] = \sigma_{Y}^{2} - \sum_{m = -\infty}^{\infty} h(m)R_{XY}(m)$$

Proof:

$$\mathbf{E}[(Y(n) - \hat{Y}(n))^{2}] = \mathbf{E}[Y(n)^{2}] - \mathbf{E}[\hat{Y}(n)Y(n)]$$

• *MSE of the Wiener filter (frequency-domain formulation):* We can rewrite the above identity as:

$$\mathbf{E}[(Y(n) - \hat{Y}(n))^{2}] = R_{YY}(0) - \sum_{m = -\infty}^{\infty} h(m)R_{YX}(-m)$$

 $\mathbf{E}[(Y(n) - \hat{Y}(n))^2]$ is the value p(0) of the sequence

$$p(k) = R_{YY}(k) - \sum_{m = -\infty}^{\infty} h(m)R_{YX}(k - m)$$

$$= R_{YY}(k) - h(k) * R_{YX}(k)$$

$$P(f) = S_{YY}(f) - H(f)S_{YX}(f) = S_{YY}(f) - \frac{\left|S_{XY}(f)\right|^2}{S_{XX}(f)}$$

Hence,

$$\mathbf{E}[(Y(n) - \hat{Y}(n))^{2}] = p(0) = \int_{-1/2}^{1/2} P(f)df$$

$$\mathbf{E}[(Y(n) - \hat{Y}(n))^{2}] = \int_{-1/2}^{1/2} \left[S_{YY}(f) - \frac{|S_{XY}(f)|^{2}}{S_{XX}(f)} \right] df$$

2.3.2. Causal Wiener filters

A. X(n) is a white noise.

We first assume that X(n) is a white noise with unit variance, i.e. $\mathbb{E}[X(n)X(n+k)] = \delta(k)$.

• Derivation of the causal Wiener filter from the noncausal Wiener filter: Let us consider the noncausal Wiener filter

$$\hat{Y}(n) = \sum_{m = -\infty}^{\infty} h(m)X(n - m)$$

whose transfer function is given by

$$H(f) = \frac{S_{XY}(f)}{S_{XX}(f)} = S_{XY}(f).$$

Then, the causal Wiener filter $\hat{Y}_c(n)$ results by cancelling the noncausal part of the non-causal Wiener filter:

$$\hat{Y}_{c}(n) = \sum_{m=0}^{\infty} h(m)X(n-m)$$

Sketch of the proof:

 $\hat{Y}(n)$ can be written as

$$\hat{Y}(n) = \sum_{m = -\infty}^{-1} h(m)X(n-m) + \sum_{m = 0}^{\infty} h(m)X(n-m)$$

$$\equiv U \qquad \qquad V \equiv \hat{Y}_c(n)$$

Because X(n) is a white noise, the causal part $V = \hat{Y}_c(n)$ and the noncausal part $U = \hat{Y}(n) - \hat{Y}_c(n)$ of $\hat{Y}(n)$ are orthogonal. It follows from this property

that $\hat{Y}_c(n)$ and Y(n) are orthogonal, i.e. that $\hat{Y}_c(n)$ minimizes the MSE within the class of linear causal estimators.

B. X(n) is an arbitrary WSS process whose spectrum satisfies the Paley-Wiener condition.

Usually, the above truncation procedure to obtain $\hat{Y}_c(n)$ does not apply because U and V are correlated and therefore not orthogonal in the general case.

• Causal whitening filter:

However, we can show (see the Spectral Decomposition Theorem below) that provided $S_{XX}(f)$ satisfies the Paley-Wiener condition (see below) then X(n) can be **converted into an equivalent white noise sequence** Z(n) **with unit variance** by filtering it with an appropriate causal filter g(n).

This operation is called **whitening** and the filter g(n) is called a **whitening** filter.

equivalent \equiv there exists another causal filter $\tilde{g}(n)$ so that $X(n) = \tilde{g}(n)*Z(n)$:

Notice that if

$$G(f) \equiv F\{g(n)\}$$

$$\tilde{G}(f) \equiv F\{\tilde{g}(n)\}\$$

then

$$|G(f)|^2 = S_{XX}(f)^{-1}$$
 We shall see that a whitening filter exists such that $|\tilde{G}(f)|^2 = S_{XX}(f)$ $\tilde{G}(f) = G(f)^{-1}$ (2.6)

· Causal Wiener filter

Making use of the result in Part A, the block diagram of the causal Wiener filter is

 $S_{ZY}(f)$ is obtained from $S_{XY}(f)$ according to

$$S_{ZY}(f) = G(f)^* S_{XY}(f)$$

2-13 2-14

Proof:

Hence, the block diagram of the causal Wiener filter is:

• Spectral Decomposition Theorem:

Let $S_{XX}(f)$ satisfies the so-called **Paley-Wiener condition**:

$$\int_{-1/2}^{1/2} \log(S_{XX}(f))df > -\infty$$

Then $S_{XX}(f)$ can be written as

$$S_{XX}(f) = G(f)^{+}G(f)^{-}$$

with $G(f)^{+}$ and $G(f)^{-}$ satisfying

$$\left| \left| G(f)^{+} \right|^{2} = \left| G(f)^{-} \right|^{2} = S_{XX}(f)$$

Moreover, the sequences

$$g(n)^{+} \equiv F^{-1} \{ G(f)^{+} \}$$

$$g(n)^{-} \equiv F^{-1} \{ G(f)^{-} \}$$

$$g^{-1}(n)^{+} \equiv F^{-1} \{ 1/G(f)^{+} \}$$

$$g^{-1}(n)^{-} \equiv F^{-1} \{ 1/G(f)^{-} \}$$

satisfy

$$g(n)^+ = g^{-1}(n)^+ = 0$$
 $n < 0$ Causal sequences $g(n)^- = g^{-1}(n)^- = 0$ $n > 0$ Anticausal sequences

• Whitening filter (cont'd):

The sought whitening filter used to obtained Z(n) is

$$g(n) = g^{-1}(n)^{+}$$

and

$$\tilde{g}(n) = g(n)^+$$
.

It can be easily verified that both sequences satisfy the identities in (2.6).

2.3.3. Finite Wiener filters

• Finite linear filter:

$$\hat{Y}(n) = \sum_{m = -M_1}^{M_2} h(m)X(n-m)$$

• Wiener-Hopf equation:

By applying the orthogonality principle we obtain the Wiener-Hopf system of equations:

$$\Sigma_{XY} = \Sigma_{XX} h$$

where

$$h = [h(-M_1), ..., h(M_2)]^T$$

and

$$\Sigma_{XY} \equiv [R_{XY}(-M_1), ..., R_{XY}(M_2)]^T$$

 $\Sigma_{XX} =$

$$= \begin{bmatrix} R_{XX}(0) & R_{XX}(1) & R_{XX}(2) & \dots & R_{XX}(M_1 + M_2) \\ R_{XX}(1) & R_{XX}(0) & R_{XX}(1) & \dots & R_{XX}(M_1 + M_2 - 1) \\ R_{XX}(2) & R_{XX}(1) & R_{XX}(0) & \dots & R_{XX}(M_1 + M_2 - 2) \\ \dots & \dots & \dots & \dots & \dots \\ R_{XX}(M_1 + M_2) & R_{XX}(M_1 + M_2 - 1) & R_{XX}(M_1 + M_2 - 2) & \dots & R_{XX}(0) \end{bmatrix}$$

Coefficient vector of the finite Wiener filter:

$$\boldsymbol{h} = (\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}})^{-1} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}}$$

provided Σ_{XX} is invertible.