2. Linear Minimum Mean Squared Error Let U=[U), ..., UM)]" and V= [V (1), ..., V(M")] " denote two ran-
o o dom vectors.
Estimation

The covariance matrix of U and V is defined as

2.1. Linear minimum mean squared error estimators Zuyr(y - Zuyren

™M
n

uv
* Situation considered: 5 5
L vy (1) = “UM)r(M)
- A random sequence X (1), ..., X (M) whose realizations can be observed. . .
A direct way to obtain Xy,

- A random variable Y which has to be estimated.

o T.
- We seek an estimate of Y with a linear estimator of the form: zUV = E[(U- “U)(V - “V) ]

T. T
M = E[UV ]*UU(“V)
Y = hO + z th(m) . where
m=1 T
Hy =E[U] = [E[U(1)], ..., E[U(M)]]
- A measure of the goodness of ¥ is the mean squared error (MSE): My =E[V]
E[(7- 1) 7
[(Y-Y)1| Examples: U = X =[X(1), ..., X(M)] " and V = Y.
e Covariance and variance of random variables: In the sequel we shall frequently make use of the following covariance matrix
Let U and V denote two random variables with expectation and vector:
. T
“UEE[U] and HVEE[V]- (@) Zyx = E[(X -y ) (X -py) ']
2
- The covariance of U and V is defined to be: 0)((]) ZX(])X(M)
%y ZEIU - 1)V 1)) -
_ 2
= E[UV] —pyhy Zxanx() - Ox ()

- The variance of U is defined to be:

oy =E(U 1)1 = T4y

= B[U7] - ()’

(i) Zyy = E[(X —uyx)(Y - Uyl

T
= [Zxqyr -+ Zxany
* Linear minimum mean squared error estimator (LMMSEE)

A LMMSEE of Y is a linear estimator, i.e. an estimator of the form
M

ho+ 2 h,X(m) ,

m=1

v

- 2
which minimizes the MSE E[(Y - Y) ].
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A linear estimator is entirely determined by the (M + 1)-dimensional vector
T

h=lhy oohyl .

* Orthogonality principle:

Orthogonality principle:
A necessary condition for & =[h, ..., hy,] r to be the coefficient vec-
tor of the LMMSEE is that its entries fulfils the (M + 1) identities:

r M
E[Y-¥] = E LEh + h X(m)% =0 (2.1a)
0° Z m g '
- m=1
0
M M. |
ot z h,X(mYDX(j)| = 0,
- O
M*l D
j=1,..M

E[(Y-7)X(j)] = E

=l

(2.1b)

DDQDD‘

Proof:
N 2
Because the coefficient vector of the LMMSEE minimizes E[(Y — Y) ], its
components must satisfy the set of equations:
0

N 2 o
ahjE[(Y—Y) 1=0 j=0,... M.

Notice that the two expressions in (2.1) can be rewritten as:
E[Y-¥] =0 (2.2a)
E[(Y-Y)X(j)] =0 j=1,...,M (22b)

Important consequences of the orthogonality principle:

E[(Y-7)¥] =0 (2.3a)
E[(Y - ¥)] = E[Y]] ~E[}7]
) (2.3h)
= E[(Y-Y)Y]
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Geometrical interpretation:

Let U and V denote two random variables with finite second moment, i.e.
E[U?] <® and E[V]] <co .

Then, the expectation E[UV] can be viewed as the scalar or inner product

of U and V.

Within this interpretation:
- U and V are uncorrelated, i.e. E{UV] = 0 if and only if, they are
orthogonal,

- JE[ Uz] is the norm (length) of U.
Interpretation of both equations in (2.3):

- (2.3a): the estimation error ¥ — ¥ and the estimate ¥ are orthogonal.

- (2.3b): results from Pythagoras” Theorem.

Computation of the coefficient vector of the LMMSEE:
The coefficients of the LMMSEE satisfy the relationships:
M
..T
My =hot Y hybyom = hot (B) My

m=1

vy = Zyyvh

XY XX

where b =[h, ...,hM]T andX =[X |, ...,XM]T.

Proof:
Both identities follow by appropriately reformulating relations (2.1a) and
(2.1b) and using a matrix notation for the latter one.
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* Residual error using a LMMSEE:

. -1 . . .
Thus, provided (2 )  exists the coefficients of the LMMSEE are given by: The MSE resulting when using a LMMSEE is

W= (Cxx) Ty (2.4a) E[(V-7¥)7] = oy2—(h')TzXY (2.5)

T T -1
hg = Hy—(h) Uy = Uy —Zyy (Zxy) Ky (240) Proof:

) N
) — E[(Y - 7)7] = E[(¥ - 1)7]
* Example: Linear prediction of a WSS process

Let Y (n) denote a WSS process with = E[ Yz] ~E[YY]
- zero mean, i.e E[Y(n)] = 0,
- autocorrelation function E[Y (n) Y (n + k)] = Ryy (k)
We seek the LMMSEE for the present value of Y (n) based on the M past
observations Y(n—1), ..., Y(n — M) of the process. Hence,
-Y = Y(n)
-X(m) =Y(n-m),m=1,...,M,ie.

X = [Y(n-1), 0, Y- M) O
Because iy = 0 and [y = 0, it follows from (2.4b) that
hy =0
Computation of £y, and %y : 2.2. Minimum mean squared error estimators

T * Conditional expectation:
-z =[E[Y(n-1)Y o E[Y(n-M)Y .
XY [ELY (n = 1) Y (n)] [Y(n )Y ()] Let U and V' denote two random variables.

= [Ryy(1), oo, Ryy(M)] r The conditional expectation of 7 given U = u is observed is defined to be
- - E[V|u] = (vp(v|u)dv.
Tyx = Vlu] J’ p(v]u)
r ) Notice that E[ 7 |U] is a random variable. In the sequel we shall make use of
E[Y(n-1)] ELY(n- I)Y(";z)] o E[Y(n=1)Y (n=M)] the following important property of conditional expectations:
= |E[Y(n-2)Y(n-1)] E[Y(n-2)] o E[Y(n-2)Y(n-M)] E[E[V|U]] = E[V]
Proof:
[E[Y(n—M)Y(n—1)] E[Y(n—M)Y(n-2)] ...  E[Y(n—M)"]
DRy Rp() Ry(@) e Ry(M-1)
Ryy(1) Ryy(0) Ryy(1) ... Ryy(M-2)

= Ryy(2) Ryy(1) Ryy(0) ... Ryy(M-3)

7Ryy(M_ 1) Ryy(M =2) Ryy(M—=3) ...  Ryy(0) I:l
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* Minimum mean squared error estimator (MMSEE): Example: Multivariate Gaussian variables:
The MMSEE of Y based on the observation of X (1), ..., X (M) is of the form: [Y, X(1) X (M)] T ON (W, £) with

Y (X(1), ..., X(M)) = E[Y|X(1), ..., X(M)]

— T
-H=E [uy, U)((l)v ""uX(M)]

Hence if X (1) = x(1), ..., X(M) = x(M) is observed, then
T (1), oo x(M)) = E[Y[x(1), ..., x(M)] 5|0y Gy

= [rp(1x(1), o x(M))dy Zxy %

XX

From Equation (6.22) in [Shanmugan] it follows that
Proof:

Let ¥ denote an arbitrary estimator. Then, Y = E[Y|X] = Uy, + (ZXY)T(ZXXf1 (X -Hy)

EL(F - 1) = BW(T-T)- (v - 7)) tarite o — 1 () — X
ivariate case: = N =

A ~ 2 A ~ ~ ~ 2
- EUT-T) 1 2R Y5 )~ BT P
=0 XX X
CE(-T) 1+ E(-T) z
= E[(Y-1)] [(¥-71)] -Zyy = PO, Oy, where p = XY s the correlation coefficient of ¥ and
0,0
Thus, X7y
X.

A 2 2
E[(Y-Y)]zE[(Y-7Y)]
R . In this case,

with equality if, and only if, ¥ = Y . We still have to prove that

—~ _ _ poY
E[(Y-7Y)(¥y-7)] =o0. Y = E[Y|X] —uﬁg(Xqu)

OOoooOoOod ||
hy h

We can observe that Y is linear, i.e. is the LMMSEE ¥ = Y in the bivariate
case. This is also true in the general multivariate Gaussian case. In fact,

¥ = Y if,and only if, [ Y, X (1), ...,X(M)]T is a Gaussian
random vector.
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2.3. Time-discrete Wiener filters

Problem:
Estimation of a WSS random sequence Y (n) based on the observation of

another sequence X (n). Without loss of generality we assume that
E[Y(n)] = E[X(n)] = 0.

The goodness of the estimator ¥(#) is described by the MSE
E[(F(n) - ¥(n)].
We distinguish between two cases:
- Prediction:
Y(n) depends on one or several past observations of X (n) only, i.e.
Y(n) = Y(X(n)), X(ny),...) withn|,ny, ... <n
- Filtering:

b (n) depends on the present observation and/or one or many future obser-
vation(s) of X (n), i.e.

Y(n) = f’(X(nl), X(n,), ...) where at least one n; 2 n
If all n; <n, the filter is causal otherwise it is noncausal.

v(n)A

Filtering

Typical application: WSS signal embedded in additive white noise

X(n) = Y(n)+W(n) .
where,

- W (n) is a white noise sequence,

- Y(n) is a WSS process
- Y(n) and W (n) are uncorrelated.

However, the theoretical treatment is more general as shown below.
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2.3.1. Noncausal Wiener filters

Linear Minimum Mean Squared Error Filter
We seek a linear filter

Y(n) = Z h(m)X(n—m) = h(n)*X(n)
m = —oo
o 2
which minimizes the MSE E[(Y (r) — Y (n)) ].
Such a filter exists. It is called a Wiener filter in honour of his inventor.

Orthogonality principle (time domain):
The coefficients of a Wiener filter satisfy the conditions:

E[(Y(n)-¥(n)X(n-k)] =

O 0
= E|¥(n)- Z h(m)X(n—m)DX(n—k)} =0, k=...,-1,0,1,...
0 O

m=—o0

It follows from these identities (see also (2.3)) that

E[(Y(n)- ¥ (n))¥(n)] = 0

Q@f’“
E[(Y(n)- ¥(n))’] = E[Y(n))] ~E[¥(n)’]

= E[(Y(n) - ¥ (n) Y (n)] Y(n)

With the definitions
Ry (k) =E[X(n)X(n+ k)], Ryy(k) =E[X(n)Y(n+k)]

we can recast the orthogonality conditions as follows:

00

Ryy(k) = Z h(m)R v (k —m) k=..-1,01,..

m=—oo

Ryy(k) = h(k)*R yy (k) Wiener-Hopf equation
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* Orthogonality principle (frequency domain):
SXy(f) = H(f)SXX(f)

where
Syy(f) =EF{R vy (k)}

» Transfer function of the Wiener filter:

* MSE of the Wiener filter (time-domain formulation):

[ee]

2

m=—o

E[(V() - ()] =03~ 5 h(m)R gy (m)

Proof:

EL(Y(n) - F(n)"] = E[Y ()] ~E[?(n)¥ (n)]

* MSE of the Wiener filter (frequency-domain formulation):

We can rewrite the above identity as:

00

E[(Y(n) - ¥(n)’] = Ryy(0) - Z h(m)Ryy (=m)

m=—0

N 2
E[(Y(n)—Y(n)) ] is the value p(0) of the sequence

foe]

p(k) = Ryy(k)* Z h(m)RYX(kfm)

m = —oo

= Ryy(k) = h(k)*Ry (k)

1S vy ()
P(f) = Syy()=H(f)Syy(f) = sw(f)f—s’)i;—((—ﬂ-
Hence,
5 1/2
E[(Y(n) -7 ()] = p(O) = [ PN
-1/2
1/2 2
. Sy (/)
E[(Y(n)— ¥ (n)] = [ {s”(f)—sﬂ—(?)—}df
-1/2 XX

2.3.2. Causal Wiener filters
A. X (n) is a white noise.
We first assume that X (n) is a white noise with unit variance, i.e.
E[X(n)X(n+k)] = 8(k).
* Derivation of the causal Wiener filter from the noncausal Wiener filter:

Let us consider the noncausal Wiener filter
[o0]

Y(n) = z h(m)X(n—m)

m=—cw
whose transfer function is given by
Sxy(f)
XY
H === .

Then, the causal Wiener filter ¥ +(n) results by cancelling the noncausal part
of the non-causal Wiener filter:

[ee]

Y,.(n) = Z h(m)X (n—m)

m=0

2-12



Sketch of the proof: (Causal)

Y (n) can be written as X(n) Whitening Filter |
—1 00 g(n)
Y(n) = z h(m)X (n—m) + Z h(m)X (n—m)

Yo oooooo Aabhoooooo

Z(n)  E[Z(n)Z(n+k)] = 8(k)

This operation is called whitening and the filter g(#) is called a whitening

_ =% filter.
=U V=Ye(n) ~
. equivalent = there exists another causal filter g(n) so that
Because X (n) is a white noise, the causal part ' = Y .(n) and the noncausal X(n) = g(n)*Z(n):
part U = ¥(n) - f/c(n) of ¥ (n) are orthogonal. It follows from this property
Z(n) g(n) —X(n)
\ Notice that if
G(f)=F{g(n}
Y(n)-Y 5 e
() =rm G(/)=F (&)
-
then
2 1 We shall see that a
= = - IG(NI™ = SXX(f) whitening filter exists
/ U= ¥(n)-7.(n) o such that (2.6)
G = S vy () G(f) = G(f)’l
that f/c(n) and Y (n) are orthogonal, i.e. that ?C(n) minimizes the MSE « Causal Wiener filter
within the class of linear causal estimators. Making use of the result in Part A, the block diagram of the causal Wiener fil-
] ter is

. X(n) is an arbitrary WSS process whose spectrum satisfies the Paley-
Wiener condition. (Causal)

- Whitening Filter Z(n) | Causal part of ‘ e
Usually, the above truncation procedure to obtain ¥ .(n) does not appl X(n) -1 e(n)

2 p c pply 2(n) F {8, (/)

because U and V' are correlated and therefore not orthogonal in the general

case.

Causal whitening filter: S,y(f) is obtained from S () according to

However, we can show (see the Spectral Decomposition Theorem below) that
provided S y(f) satisfies the Paley-Wiener condition (see below) then X (n)

S,y () = GU)S yy (/)

can be converted into an equivalent white noise sequence Z(n) with unit
variance by filtering it with an appropriate causal filter g(n),



Proof:

Hence, the block diagram of the causal Wiener filter is:

X (n)

Whitening Filter
g(n)

Z(n)

Spectral Decomposition Theorem:

Let S yy(f) satisfies the so-called Paley-Wiener condition:

Causal part of

F GO sy ()

1/2

I lOg(SXX(f))df>7°°
-1/2

Then S y,(f) can be written as
Sy () = G GUY
with G(f)" and G(f)  satisfying

6(n'T* =l T = 5,00 |

Moreover, the sequences

satisfy

g(n) =F {G(/)}
g(n) =F (G}

-1, t_ -1 +
g ') =F {ira(n
g () =F {1/6())

¥ (n)

g(n)’

g () =

gn) =g '(n) =

0

0

n<0 Causal sequences

n>0 Anticausal sequences

o Whitening filter (cont’d):
The sought whitening filter used to obtained Z(n) is

g(n) = g '(n)

and

2(n) = g(n)".

It can be easily verified that both sequences satisfy the identities in (2.6).

2.3.3. Finite Wiener filters

* Finite linear filter:

M,

Z h(m)X(n—m)

m=-M,

Y(n) =

» Wiener-Hopf equation:

By applying the orthogonality principle we obtain the Wiener-Hopf system of

equations:
ZXY ZXXh
where
T
h=[h(-M), ... h(M,)]
and
T
2y SRy (M), oo, Ry (M,)]
Zxx =
RXX(O) RXX(l) RXX(2) RXX(MI + MZ)
RXX(I) RXX(O) RXX(l) b RXX(M1+M271)
= RXX(Z) RXX(I) RXX(O) . RXX(MI+M2_2)

Ry (M, + My) Ryy(M |+ My—1) Ryy(M,+M,=2) ... Ry (0)

Coefficient vector of the finite Wiener filter:

-1
h=(Zxx) Zxy

provided Z yy is invertible.
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