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Introduction

The singular value decomposition, SVD, is just as
amazing as the LU and QR decompositions.

It is closely related to the diagonal form A = QΛQT

of a symmetric matrix. What happens if the matrix
is not symmetric?

It turns out that we can factorize A by Q1ΣQT
2 ,

where Q1, Q2 are orthogonal and Σ is nonnegative
and diagonal-like. The diagonal entries of Σ are
called the singular values.
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SVD Theorem

Any m × n real matrix A can be factored into

A = Q1ΣQT
2 = (orthogonal)(diagonal)(orthogonal).

The matrices are constructed as follows: The
columns of Q1 (m × m) are the eigenvectors of
AAT , and the columns of Q2 (n × n) are the
eigenvectors of ATA. The r singular values on the
diagonal of Σ (m × n) are the square roots of the
nonzero eigenvalues of both AAT and ATA.
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Proof of SVD Theorem

The matrix ATA is real symmetric so it has a complete
set of orthonormal eigenvectors: ATAxj = λjxj, and

xT
i ATAxj = λjx

T
i xj = λjδij.

For positive λj’s (say j = 1, . . . , r), we define σj =
√

λj

and qj =
Axj

σj
. Then qT

i qj = δij. Extend the qi’s to a basis

for Rm. Put x’s in Q2 and q’s in Q1, then

(QT
1 AQ2)ij = qT

i Axj =

{

0 if j > r,

σjq
T
i qj = σjδij if j ≤ r.

That is, QT
1 AQ2 = Σ. So A = Q1ΣQT

2 .
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Remarks

For positive definite matrices, SVD is identical to
QΛQT . For indefinite matrices, any negative
eigenvalues in Λ become positive in Σ.

The columns of Q1, Q2 give orthonormal bases for
the fundamental subspaces of A. (Recall that the
nullspace of ATA is the same as A).

AQ2 = Q1Σ, meaning that A multiplied by a
column of Q2 produces a multiple of column of Q1.

AAT = Q1ΣΣTQT
1 and ATA = Q2Σ

TΣQT
2 , which

mean that Q1 must be the eigenvector matrix of AAT

and Q2 must be the eigenvector matrix of ATA.
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Applications of SVD

Through SVD, we can expand a matrix to be a sum
of rank-one matrices

A = Q1ΣQT
2 = u1σ1v

T
1 + · · · + urσrv

T
r .

Suppose we have a 1000 × 1000 matrix, for a total
of 106 entries. Suppose we use the above expansion
and keep only the 50 most most significant terms.
This would require 50(1 + 1000 + 1000) numbers, a
save of space of almost 90%.

This is used in image processing and information
retrieval (e.g. Google).
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SVD for Image

A picture is a matrix of gray levels. This matrix can be
approximated by a small number of terms in SVD.
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Pseudoinverse

Suppose A = Q1ΣQT
2 is the SVD of an m × n

matrix A. The pseudoinverse of A is defined by

A+ = Q2Σ
+QT

1 ,

where Σ+ is n × m with diagonals 1

σ1

, . . . , 1

σr
.

The pseudoinverse of A+ is A, or A++ = A.

The minimum-length least-square solution to
Ax = b is x+ = A+b. This is a generalization of the
least-square problem when the columns of A are not
required to be independent.
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Proof of Minimum Length

Multiplication by QT
1 leaves the length unchanged, so

|Ax−b| = |Q1ΣQT
2 x−b| = |ΣQT

2 x−QT
1 b| = |Σy−QT

1 b|,

where y = QT
2 x = Q−1

2
x. Since Σ is a diagonal matrix,

we know the minimum-length least-square solution is
y+ = Σ+QT

1 b. Since |y| = |x|, the minimum-length
least-square solution for x is

x+ = Q2y
+ = Q2ΣQT

1 b = A+b.
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