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The singular value decomposition, SVD, is just as
amazing as the LU and ()R decompositions.

It is closely related to the diagonal form A = QAQ'
of a symmetric matrix. What happens if the matrix
IS not symmetric?

It turns out that we can factorize A by Q,XQ2,
where ()1, (), are orthogonal and X Is nonnegative
and diagonal-like. The diagonal entries of X are
called the singular values.
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Any m x n real matrix A can be factored Into

A = Q:XQ? = (orthogonal)(diagonal)(orthogonal).

The matrices are constructed as follows: The
columns of (); (m x m) are the eigenvectors of

AA”T, and the columns of Q5 (n x n) are the

eigenvectors of A? A. The r singular values on the
diagonal of > (m x n) are the square roots of the

nonzero eigenvalues of both AA” and A” A.
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The matrix A’ A is real symmetric so it has a complete
set of orthonormal eigenvectors: A* Az; = \;z;, and

T T -_— . T . -_— . o .

For positive \;’s (say j = 1,...,7), we define o; = /A,
and g; = % Then ¢/ q; = d;;. Extend the ¢;’s to a basis
for R™. Put 2’s In (), and ¢’s In ()4, then

0 if 7 >,
qu;-rquaj@j Ifjér

QT AQ),; = ¢ Az, — {

That 1s, QTAQQ Y. S0 A= leQT
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For positive definite matrices, SVD is identical to
QAQ". For indefinite matrices, any negative
eigenvalues in A become positive in ..

The columns of (), ()5 give orthonormal bases for
the fundamental subspaces of A. (Recall that the
nullspace of A’ A is the same as A).

AQ), = (122, meaning that A multiplied by a
column of (), produces a multiple of column of ().

= 1 2X1Qf and AT A = Q,X1XQL, which
mean that (); must be the eigenvector matrix of AA”
and (), must be the eigenvector matrix of A% A.
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Through SVD, we can expand a matrix to be a sum
of rank-one matrices

A= QlZQQT — ulalvlT + - urarvTT.
Suppose we have a 1000 x 1000 matrix, for a total

of 10° entries. Suppose we use the above expansion
and keep only the 50 most most significant terms.
This would require 50(1 + 1000 + 1000) numbers, a
save of space of almost 90%.

This i1s used In image processing and information
retrieval (e.g. Google).
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SVD for |mage

A picture Is a matrix of gray levels. This matrix can be
approximated by a small number of terms in SVD.
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Suppose A = Q2@ is the SVD of an m x n
matrix A. The pseudoinverse of A Is defined by

A+ — QQZ—FQ?v

where ¥F is n x m with diagonals &, ..., L.
01 o)

r

The pseudoinverse of AT is A, or AT = A.

The minimum-length least-square solution to

Ax = bisx™ = A"b. This is a generalization of the
least-square problem when the columns of A are not
required to be independent.
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Multiplication by Q1 leaves the length unchanged, so
[Az—b| = [Q12Qy2—b| = [EQy2-Q1 b| = |Zy—Q, b],

where y = QY x = Q, '=. Since X is a diagonal matrix,
we know the minimum-length least-square solution iIs

yt = XTQTb. Since |y| = |z|, the minimum-length
least-square solution for x Is

vt = Qoyt = Q:XQ7b = ATD.

Singular Value Decomposition — p. 9



	Introduction
	SVD Theorem
	Proof of SVD Theorem
	Remarks
	Applications of SVD
	SVD for Image
	Pseudoinverse
	Proof of Minimum Length

