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For Symmetric Positive-Definite Matrix A

+ Solve the system Ax = b

» Graph of the quadratic form f(x) = %xTAx —bTx + c:

* The minimum point of the surface is the solution to Ax = b
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Steepest Descent Method

. Quadratic function of vector x:

1
f(x) = ExTAx —bT'x+c

* Derivative:
' )—1AT Y SAx—b
f(x =5 A x+oAx
* If Ais symmetric
f'(x) =Ax—»b

- If A is also positive-definite (i.e., xT Ax > 0 for any nonzero vector x)
« Minimize f(x) by setting f'(x) to O

Ax =0b>b



Gradient of Quadratic Form
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For A Not Positive-Definite

a) Positive-definite matrix
b) Negative-definite matrix
c) Singular matrix

d) Positive-indefinite matrix
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Non-Stationary Iterative Method

« Start from initial guess x,; adjust until close
enough to the exact solution:

Xi+1 = Xi T A;P;

* p; - Adjustment Direction
* a; - Step Size

* How to choose direction and step size?



Steepest Descent Method

* Choose the direction in which f decreases
most quickly — the direction opposite to

f(xp):
ri=—f"(x)) =b— Ax;
 Which is also the direction of the residual:

Xiy1 = X; + Q;T;



Steepest Descent Method

* Direction of steepest =—=
descent is plane in 3
dimensions |

(G,

* Intersection of plane
with function
produces parabola

e +ar@) (o)

* Minimum of 140
parabola determines w
desired step size v
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Steepest Descent Method

+ How to choose step size?
* a; should minimize f, along the direction of r;, which means

d
%f(xiﬂ) =0

d , - d , .
fiv1) = f(i41)" 7= %41 = f (Xi41) 11 =0
da da

T
= Ti+1

ri =0

= (b —Axj41) 1 =0

= (b—A(x; + a;r))T'r; =0
= (b — Ax))"r; = a;(Ar)"r;

T

= q; = —Lt-
L T'iTATi




Steepest Descent Algorithm

« Given x,, iterate until the residue is smaller
than the error tolerance:

i = b — Axi
TiTTi
aA; =
TiTAT'i

Xiy1 = X; + Q;T;
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Steepest Descent Method

¢ The steepest descent method is very
reliable - it can always make progress
provided the gradient is nonzero

* Depending on the function, however,
steepest descents can take a long time to
converge to the true solution

* Instead of looking at a gradient direction,
we can speed up minimization by

searching in the conjugate direction
* The error after i steps is orthogonal to all
previous search directions
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Conjugate Gradient (CG) Method
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Conjugate Gradient Method

* The search directions are orthogonal (so-
called A-orthogonal or conjugate)

* The error is minimal over the space
spanned by the search directions

* Minimum error implies reaching an exact

solution in at most n steps

» Because of rounding errors, there is a loss of
orthogonality
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Orthogonal Directions

s Pick orthogonal search directions: d,, d;, ...

Xi+1 = X; + a;d;
diTei+1 =0
di (e; +a;dy) =0

diTei
d-Tdi

l

a; = —

* Problem — we don’t know e;
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A-Orthogonal Directions

s Instead of orthogonal search directions, we make the
search directions A—orthogonal (conjugate)

Lo

These pairs of vectors are A-orthogonal . .. ... because these pairs of vectors are orthogonal.
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Conjugate Gradient Method

¢ New search directions:
Xi+1 = X; + a;d;
* Optimum orthogonality:

_ T
0=djejq

* We say that two non-zero vectors u and v are
conjugate (with respect to A) if u’ Av = 0

* Look at the conjugation:

0 =djAej;q

17



Search Step Size

o d , . d , .
%f(le) = f (Xi+1) %le =f (Xi+1) ' d; =0

=>r..d; =0

= (b—Axy1) 'd; =0

=> b —A(; +a;d)) " d; =0
= (b —Ax;) " d; = a;(Ad)"d,

_rid;
=4 = T
L l
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Conjugate Gradient Algorithm

s Start with

* lterate:

d0=7‘0=b—Ax0

_dir

Y = 3T aa,

L l
xi+1 = xl + a;d;
_ 7"l+17"l+1

+1 — TTTL

dl+1 = Ti+1 T ,BL+1d

« scalar

« vector
« vector

« scalar
« vector
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Conjugate Gradient Algorithm

. Initialization:
xo =10 0] x_z
dO — TO — b — Axo

\

* [teration:
dg"”o |
(04 —
" dfad, . f"

X1 = X + apdy

Tl — T‘O - aoAdO \ N
" 2
nn

Pr = 137, \\4
d; =r + B1dy

dir N\ 3

a4 =
' dTAd,
xz — x1 + aldl




Preconditioning

e In exact arithmetic, CG converges in n steps
(completely unrealistic)

* The convergence rate of CG can be accelerated by
preconditioning

 Apply the CG algorithm to M~ 1A
« Choose M so that M~1A4 is better conditioned and systems
of the form My = z are easily solved
« Then solve (M~ 1A)x = M~ 1p

» Possible choices for preconditioning include
Diagonalization
Incomplete LU factorization

Approximate inverse
SSOR

21



Conjugate Gradient — Other resources

« Shewchuk’s introduction to steepest descent and
CG (cited in these slides):

« http://www.cs.cmu.edu/~quake-papers/painless-conjugate-
gradient.pdf

* Another set of slides on CG, with information on

preconditioners:

 http://www.stanford.edu/class/ee364b/lectures/
conj grad_slides.pdf

* A good online text for iterative methods (see
section 5.3 for steepest descent & 6.7 for CQ):
« http://www-users.cs.umn.edu/~saad/lterMethBook 2ndEd.pdf
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Conjugate Gradient — Other resources

* Applets illustrating the steepest descent and CG
methods, from a site with an
extensive collection of applets for scientific
computing concepts and methods:

e http://www.cse.illinois.edu/iem/optimization/SteepestDescent/
e http://www.cse.illinois.edu/iem/optimization/ConjugateGradient/
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Steepest Descent

s Suppose that we want to find a local
minimum for the scalar function f of the
vector variable x, starting from an initial
point x,. Picking an appropriate x, Is
crucial but also very problem-dependent.
We start from x, and go downhill. At every
step of the way, we must make the

following decisions:
* When to stop?
* |n what direction to proceed?
 How long a step to take?
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Steepest Descent: An Optimization Problem

e Quadratic function of vector x

1
f(x) = ExTAx —blx+c

e If x" Ax > 0 for any nonzero vector x
» Matrix A is positive-definite

* If A Is symmetric and positive-definite
* f(x) Is minimized by the solution Ax = b
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Symmetric Positive-Definite Matrix

s If A is symmetric and positive-definite:
p IS an arbitrary point
* x IS the solution point

x=A"1b

1
Fo) = f() + 5 — )TAP - 2)

 Since

1
E(P —x)'A(p —x) >0

« We have

fp) > f(x)

26



Steepest Descent: Example

g P | M R

a)

Starting at (-2, —2), take the
direction of steepest descent

of f

Find the point on the
intersection of these two
surfaces that minimizes f

Intersection of surfaces

The gradient at the
bottommost point is
orthogonal to the gradient of
the previous step
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Case Study
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Other Krylov Subspace Methods

* Nonsymmetric linear systems:
« GMRES:
fori=1,2,3, ...
find x, € K, (A, b) such that = (Ax,—b) L K (A, b)
But, no short recurrence => save old vectors => lots more
space (usually “restarted” every k iterations to use less
space)

 BiCGStab, QMR, etc.:
Two spaces K. (A, b) and K. (AT, b) w/ mutually orthogonal
bases Short recurrences => O(n) space, but less robust

« Convergence and preconditioning more delicate than CG

 Active area of current research

* Eigenvalues: Lanczos (symmetric), Arnoldi
(honsymmetric)

from J. R. Shewchuk “Painless CG"
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Conjugate Gradient: Convergence

¢ In exact arithmetic, CG converges in n
steps (completely unrealistic)

» Accuracy after k steps of CG is related to:
» Consider polynomial of degree k that is equal
to1 atstep O
* How small can such a polynomial be at all the
eigenvalues of A?

 Condition number:

k(A) = [|AlLIIAT |2 = Amax(A)/ Amin(A)
» Residual is reduced by a constant factor

over O(K'/2(4)) iterations of CG
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Preconditioning

* The convergence rate of CG can be
accelerated by preconditioning
* Apply the CG algorithm to M-'A where M is
chosen so that M-'A is better conditioned and
systems in the form of Mz=y are easily solved
* Possible choices for preconditioners include:
* Diagonal
* Incomplete LU factorization
* Approximate inverse

« SSOR

31



Preconditioners

» Suppose you had a matrix B such that:
1. Condition number k (B-A) is small
2. By =1zIs easy to solve

« Then you could solve (B-TA)x = B-'b instead of Ax
=b

« B =A s great for (1), not for (2)

B =1is great for (2), not for (1)

 Domain-specific approximations sometimes work
* B = diagonal of A sometimes works

 Better: blend in some direct-methods ideas. . .

from J. R. Shewchuk “Painless CG"
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Preconditioned Conjugate Gradient lteration

¥o) = O, o = b, do — B_lro, yO — B_lro

for k =1,2,3, ...
ak = (y;_y7x-1) / (dk-14di—1) step length
Xp = Xp—1 + apdi_q approx solution
), = T_1- A Ady_q residual
y, = B7'ry preconditioning solve
B, = ire)/(Vi_iTk-1) improvement
de =y, +06,dk-1 search direction

« One matrix-vector multiplication per iteration
* One solve with preconditioner per iteration
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—nter the Conjugate Gradient Method

* The conjugate gradient method was
originally proposed in Magnus R. Hestenes
and Eduard Stiefel (1952), Methods of
conjugate gradients for solving linear
systems, J. Research Nat. Bur. Standards
49, 409-430.
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