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Outline 

• Introductory Mathematics 
• Image Formation & Fourier Optics 
• Deconvolution Schemes 

 Linear – optimal filtering 
 Non-Linear 
  Conjugate Gradient Minimization  
   - steepest descent search a la least squares 
  Lucy Richardson (LR) – Maximum Likelihood 
  Maximum a posteriori (MAP) 
 Regularization schemes 
 Other PSF calibration techniques 

• Quantitative Measurements 



Why Deconvolution? 

• Better looking image 
 
• Improved identification 

 Reduces overlap of image structure to more easily identify 
features in the image (needs high SNR) 

 
• PSF calibration 
       Removes artifacts in the image due to the point spread function  

 (PSF) of the system, i.e. extended halos, lumpy Airy rings etc. 
 
• Higher resolution 
  In specific cases depending upon algorithms and SNR 
  
• Better Quantitative Analysis  



Image Formation 

• Image Formation is a convolution procedure for PSF 
invariance and incoherent imaging. 
 

 Convolution is a superposition integral, i.e. 

 

i(r) = ds  o(s)p(r − s)∫ = o(r) ∗ p(r)

where 
 
i(r) – measured image 
p(r) – point spread function (impulse response function) 
o(r) – object distribution 
* - Convolution operator 



Nomenclature 

In this presentation, the following symbols are used: 

 
 
g(r) – measured image 
h(r) – point spread function (impulse response function) 
f(r) – object distribution 
* - Convolution operator 

Relatively standardized nomenclature in the field. 



Inverse Problems 

The problem of reconstructing the original target falls into a class 
of Mathematics known as Inverse Problems which has its own 
Journal.  References in diverse publications such as SPIE 
Proceedings & IEEE Journals. 
 
Multidisciplinary Field with many applications: 
 

•  Applied Mathematics 
 -  Matrix Inversion (SIAM) 
 
•  Image and Signal Processing 
 -  Medical Imaging (JOSA, Opt.Comm., Opt Let.) 
 -  Astronomical Imaging (A.J., Ap.J., P.A.S.P., A.&A.) 
 
•  OSA Topical Meetings on Signal Recovery & Synthesis  
               



Fourier Transform Theorems 

•  Autocorrelation Theorem 

•  Convolution Theorem 



Image Formation & Fourier Optics 

Fraunhofer diffraction theory (far field): 
 
The observed field distribution (complex wave in 
the focal plane) u(r) is approximated as the 
Fourier transform of the aperture distribution 
(complex wave at the pupil) P(r'). 

J. Goodman “Introduction to Fourier Optics” 

The point spread function (impulse response) is the 
square amplitude of the Fourier Transform of a plane 
wave sampled by the finite aperture, i.e. 
 
h(r) = |u(r)|2    = |FT{P(r')}|2 
 
The power spectral density of the complex field at the 
pupil. 

P(r') 

h(r) 



The Transfer Function 

The Optical Transfer Function (OTF) is the spatial 
frequency response of the optical system. 
 
The Modulation Transfer Function (MTF) is the 
modulus of the OTF and is the Fourier transform of 
the PSF.                                   fc = λ/D 

 

From the autocorrelation theorem the 
MTF is the autocorrelation of the 
complex wavefront at the pupil. 

Normalized Spatial Frequency 

M
TF

 



The Fourier Domain 

Binary Stars 
 
 
 
 
 
Fourier Modulus  

Two delta functions produce a set of “fringes”, the frequency of which is inversely 
proportional to the separation and which are oriented along the separation vector. 
The “visibility” of the fringes corresponds to the intensity differences. How? 



The Fourier Domain 

Gaussian 
 
 
 
 
 
Fourier Modulus 
(also Gaussian)  

These Fourier modulus of a Gaussian produces another Gaussian. A large object 
comprised of low spatial frequencies produces a compact Fourier modulus and a 
smaller object with higher spatial frequencies produces a larger Fourier modulus. 



Fourier Relationships 

•  Resolution of an aperture of size D is                radians 
 

 
•  Diffraction limit of an aperture of size D is                                 
 cycles/radian 

 
 -  resolution depends on wavelength and aperture 
 
 

•  Large spatial structures correspond to low-spatial frequencies 
 
 

•  Small spatial structures correspond to high-spatial frequencies 
 
 

 

α =
λ
D

 

fc =
1
α

=
D
λ



Image Formation - Convolution 

Shift invariant imaging equation (Image and Fourier Domains) 
 

Image Domain: 
 
Fourier Domain: 
 
•  g(r) -  Measurement 
•  f(r) -  Object 
•  h(r) -  blur (point spread function) 
•  g(r) -  Noise contamination 
•  Fourier Transform FT{g(r)} = G(f) etc. 
•  * - convolution 

 

g(r) = f (r) * h(r)

 

G( f ) = F ( f )H( f )



Given the measurement g(r) and the PSF h(r) the object f(r) is computed. 
 
e.g.    
 
 
and inverse Fourier transform to obtain f(r). 
 
Problem: 
 
The PSF and the measurement are both band-limited due to the finite size 
of the aperture. 
 
The object/target is not. 

Deconvolution 

The convolution equation is inverted. 



 

F

f ( )= F


f ( )  exp iφ


f ( )[ ]=

G

f ( )

H

f ( )



Images & Fourier Components 

measurement 

PSF 

Left: Fourier amplitudes (ratio) 
Right: Fourier phases (difference) 
for the object. 
note circle = band-limit   

      Modulus                      Phase 



Deconvolution via Linear Inversion 

 

f (r) = FT-1 G( f )
H( f )

Φ( f )
 
 
 

 
 
 

Inverse Filtering: F(f) is a bandpass-limited attenuating filter, e.g. a chat 
function where H(f) = 0 for f > fc. 
 
Wiener Filtering: A noise-dependent filter - 
 

 

Φ f( ) ≈
G f( )2

− N f( )2

G f( )2



Deconvolution via Linear Inversion 
with a Wiener Filter -  Example 

measurement                                 PSF                              reconstruction 

Note the negativity in the reconstruction – not physical 



Deconvolution  
Iterative non-linear techniques 

Radio Astronomers, because of working with amplitude and phase signals, have far 
more experience with image/signal processing. 
 
     -  Maximum Entropy Method  
 -  CLEAN 
 
•  Deconvolution (for visible astronomy) 
 

    HST  - The Restoration of HST Images & Spectra, ed. R.J.Hanisch & R.L.White, STScI,         
 1993 
 -  Richardson-Lucy 
     -  Pixon  - Bayesian image reconstruction 
     -  “Blind/Myopic” Deconvolution – poorly determined or   
     unknown PSFs 
 -  Maximum a posteriori  
     -  Iterative Least Squares 



A Simple Iterative  
Deconvolution Algorithm 

• Error Metric Minimization – object estimate & PSF convolve 
 to measurement 
 
 
• Strict positivity constraint 
    reparameterize the variable 
 
 
• Conjugate Gradient Search (least squares fitting) requires the first-

order derivatives w.r.t. the variable, e.g. δE /δφi 
 
• Equivalent to maximum-likelihood  (the most probable solution) for 

Gaussian statistics 
 

• Permits “super-resolution” 

 

E = gi − ˆ f i ∗ hi( )[ ]
g ∈R
∑

2

 

ˆ f i = φi( )2



Bayes Theorem on Conditional 
Probability 

P(A|B) P(B) = P(B|A) P(A) 

P  – Probabilities 
A & B  – Outcomes of random experiments 
P(A|B) - Probability of A given that B has occurred 
 
For Imaging: 
 
P(B|A) - Probability of measuring image B given that the object is A 
 
Fitting a probability model to a set of data and summarizing the result by 
a probability distribution on the model parameters and observed 
quantities. 



Bayes Theorem on Conditional 
Probability 

• Setting up a full probability model – a joint probability 
distribution for all observable and unobservable quantities 
in a problem, 

 
• Conditioning on observed data: calculating and 

interpreting the appropriate posterior distribution – the 
conditional probability distribution of the unobserved 
quantities. 
 

• Evaluating the fit of the model.  How good is the model?  



Lucy-Richardson Algorithm 

Discrete Convolution 

 

gi = hij f j
j

∑ where  

 

hij
j

∑ =1 for all j 

From Bayes theorem P(gi|fj) = hij and the object distribution can be expressed 
iteratively as 

 

f j = f j
hijgi

h jk fk
k

∑

 

 

 
 
 

 

 

 
 
 i

∑

so that the LR kernel approaches unity as the iterations progress 

 
 

Richardson, W.H., “Bayesian-Based Iterative Method of Image Restoration”,   J. Opt. Soc. Am., 62, 55, (1972). 
Lucy, L.B., “An iterative technique for the rectification of observed distributions”, Astron. J., 79, 745, (1974).  



Richardson-Lucy Application 
Simulated Multiple Star 

Note – super-resolved result and identification of a 4th component 
 
Super-resolution means recovery of spatial frequency information beyond the  
cut-off frequency of the measurement system. 

measurement                         PSF                      reconstruction 



Richardson-Lucy Application 
Simulated Galaxy 

Truth 

Diffraction 
limited 

SNR = 2500 SNR = 250 SNR = 25 

2000 iterations 200 iterations 26 iterations 

All images on a logarithmic scale 

PSF 

LR works best for high SNR 



Richardson-Lucy Application 
Noise Amplification 

All images on a logarithmic scale 

• Maximum-likelihood techniques suffer from noise amplification 
• Problem is knowing when to stop 
• SNR = 250 

26 iterations 200 iterations 500 iterations 

1000 iterations 2000 iterations 5000 iterations 

Measurement 

diffraction  
limited 



Richardson-Lucy Application 
Noise Amplification 

• For small iterations RL produces spatial frequency components not 
strongly filtered by the OTF, i.e. the low spatial frequencies. 

 
• Spatial frequencies which are strongly filtered by the OTF will take 

many iterations to reconstruct (the algorithm is relatively 
unresponsive), i.e. the high spatial frequencies. 
 

• In the presence of noise, the implication is that after many iterations 
the differences are small and are likely to be due to noise 
amplification.  
 

• This is a problem with any of these types of algorithms which use 
maximum-likelihood approaches including error metric minimization 
schemes. 



Richardson-Lucy Application 
Regularization Schemes 
Sophisticated and silly! 
 
• Why not smooth the result? – a low-pass filtering! 

SNR = 250 – 5000 iterations 

Diffraction 
limited 

No smoothing 0.5 pixels 1 pixels 

•   What is the reliability of the high SNR region? 
•   Is it oversmoothed or undersmoothed? 

 



 
Maximum a posteriori (MAP) 

Regularized Maximum-likelihood 
 
The posterior probability comes from Bayesian approaches, i.e. the 
probability of f  being the object given the measurement g is: 

 

P( f | g) =
P(g | f ) P( f )

P(g)

where P(g|f) = 

 

exp{- hkj f j
j

∑ }( hkj f j )
gk

j
∑

gk!
∏

and P(f) is now the prior probability distribution (prior) 



 
Maximum a posteriori (MAP) 

•  Poisson maximum a posteriori - Hunt & Semintilli 
 
 
 
 
 
 

-      denotes convolution 
-      denotes correlation 
 

•  Positivity assured by exponential 
• Non-linearity permits super-resolution, i.e. recovery of spatial 
frequencies for f > fc  

∗

 

⊗
 

ˆ f n +1 = ˆ f n exp
g r( )

ˆ f n r( )∗ h r( )

 

 
  

 

 
  ⊗ h r( )

 
 
 

  

 
 
 

  



Other Regularization Schemes 

 
• Physical Constraints  

– Object positivity 
– Object support  
   (finite size of the object, e.g. a star is a point) 
– Object model  

• Parametric 
• texture 

– Noise modeling 
– The imaging process 

 



Regularization Schemes 

• Reparameterization of the object with a smoothing 
 kernel – (sieve function or low-pass filter). 

 
     
 
• Truncated iterations 

 
 
 
  stop convergence when the error-metric reaches 

the  noise-limit,              , such that   

E = gi − fi

^
* hi

 
 
 

 
 
 

 
  

 
  

g ∈R
∑

2 

f r( )= φ r( )2 ∗ a r( )

 

gi = g'i +ni

 

E → Nσ n
2



Object Prior Information 

Prior information about the target can be used to modify 
the general algorithm. 

 
• Multiple point source field – N sources 

 
 
    
 Solve for three parameters per component: 
      amplitude Aj  
      location rj 

 

 

f r( )= Ajδ(r − r j[ ]
j

N

∑



Object Prior Information 

Planetary/hard-edged objects (avoids ringing)  
      (Conan et al, 2000) 
 
 Use of the finite-difference gradients ∆f(r) to generate 

an extra error term which preserves hard edges in 
f(r).  

 α & β are adjustable parameters. 
 
 

 

EFD = α
∆f r( )

β
− ln 1+

∆f r( )
β

 

 
 

 

 
 

 

 
 

 

 
 

r
∑



Object Prior Regularization - Texture 

Generalized Gauss-Markov Random Field Model (Jeffs) 
 a.k.a.  Object “texture” – local gradient 

   
 

 
bi,j  - neighbourhood influence parameter 
p    - shape parameter 

 

EGM = bi. j fi − f j
p

i, j(i≠ j )
∑



Object Prior Regularization 

Generalized Gauss-Markov Random Field Model 
 

truth                                 raw 

over                                 under 



The Imaging Process 

Model the preprocessing in the imaging process 
 
• Light from target to the detector 

– Through optical path – PSF 
– Detector  

• Gain – (flat field) a(r) 
• Dark current – (darks) d(r) 
• Background – (sky) b(r) 
• Hot and dead pixels – included in a(r) 
• Noise  

• Most algorithms work with “corrected” data 
• Forward model the estimate to compare with the measurement 
  

truth                                 raw 

 

′ ′ g r( )= ˆ f r( )∗ h r( )[ ]+ b r( ){ }a r( )+ d r( )



PSF Calibration: 
Variations on a Theme 

•  Poor or no PSF estimate – Myopic/Blind Deconvolution 
 

• Astronomical imaging typically measures a point source reference  
    sequence with the target.  

- Long exposure – standard deconvolution techniques 
- Short exposure – speckle techniques – e.g. power spectrum & bispectrum 

 
•  Deconvolution from wavefront sensing (DWFS) 
 Use a simultaneously obtained wavefront to deconvolve the 
     focal-plane data frame-by-frame.  PSF generated from  
 wavefront.  
 
•  Phase Diversity 
 Two channel imaging typically in & out of focus.  Permits 
 restoration of target and PSF simultaneously.  No PSF  
 measurement needed. 



Blind Deconvolution 

Measurement 

unknown  
   object 

unknown or poorly 
       known PSF 

contamination 

Need to solve for both object & PSF 

“It’s not only impossible, it’s hopelessly impossible” 



 

g r ( )= f r ( )∗ h r ( )+ n r ( )



Blind Deconvolution – Key Papers 

Ayers & Dainty, “Iterative blind deconvolution and its applications” , Opt. Lett. 13 , 547-
549, 1988.  
 
Holmes , “Blind deconvolution of speckle images quantum-limited incoherent imagery: 
maximum-likelihood approach” , J. Opt. Soc. Am. A,  9 , 1052-106, 1992. 
 
Lane , “Blind deconvolution of speckle images” , J. Opt. Soc. Am. A, 9 , 1508-1514, 1992 . 
 
Jefferies & Christou, “Restoration of astronomical images by iterative blind deconvolution” 
, Astrophys. J. 415, 862-874, 1993. 
 
Schultz , “Multiframe blind deconvolution of astronomical images” , J. Opt. Soc. Am. A, 10 
, 1064-1073, 1993.  
 
Thiebaut & Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution” , 
J. Opt. Soc. Am. A,  12 , 485-492, 1995. 
 
Conan et al., “Myopic deconvolution of adaptive optics images by use of object and point-
spread function power spectra”, Appl. Opt., 37, 4614-4622, 1998 . 



Multiple Frame Blind Deconvolution 



 

g1
r ( )= f r ( )∗ h1

r ( )+ n1
r ( )

g2
r ( )= f r ( )∗ h2

r ( )+ n2
r ( )

                      
gm

r ( )= f r ( )∗ hm
r ( )+ nm

r ( )

m independent observations of the same object. 

The problem reduces from  
 
 1 measurement & 2 unknowns 
 
to 
 
 m measurements & m+1 unknowns 
 



Physical Constraints 

• “Blind” deconvolution solves for both object & PSF simultaneously. 
– Ill-posed inverse problem. 
– Under – determined: 1 measurement, 2 unknowns 

 
• Uses Physical Constraints. 

– f(r) & h(r) are positive, real & have finite support. 
• Finite support reduces # of variables (symmetry breaking) 

– h(r) is band-limited – symmetry breaking 
 

• a priori information - further symmetry breaking (a * b = b * a) 
– Prior knowledge 
– PSF knowledge: band-limit, known pupil, statistical derived PSF 
– Object & PSF parameterization: multiple star systems 
– Noise statistics 



Io in Eclipse (Marchis et al.) 

Two Different BD Algorithms  
 
Keck observations to identify 
hot-spots. 
 
 
 
 

K-Band 
 
19 with IDAC 
17 with MISTRAL 
 

L-Band 
 
23 with IDAC 
12 with MISTRAL 
 



Io in Sunlight (Marchis et al.) 



• Rimmele, Marino & Christou 

– AO Solar Images from National Solar Observatory low-order system. 

Sunspot Feature – improves contrast, enhances detail showing magnetic field 
structure 

Solar Imaging 



IRS 5 IRS 10 

IRS 1W IRS 21 IRS 1W IRS 21 

IRS 10 

Deconvolution permits easier determination of extended sources of astrophysical 
interest 

Extended Sources near the Galactic Center 
Tanner et al. 



Artificial Satellite Imaging 



Deconvolution from Wavefront Sensing 

Multiframe deconvolution with a “known” PSF. 
 
The estimate of the Fourier components of the target for a series of short-exposure 
observations is (Primot et al.) (also see speckle holography) 
 
 
 
 
 
where | H`(f) |2 = H`(f) H`(f)* and H`(f) is the PSF estimate obtained from the measured 
wavefront, i.e. the autocorrelation of the complex wavefront at the pupil. 
 
F`(f) = F(f) when H`(f) = H(f)  
 
Noise sensitive transfer function.  Requires good SNR modeling.  
 
Primot et al. “Deconvolution from wavefront sensing: a new technique for compensating turbulence-degraded 
images” , J. Opt. Soc. Am. A, 7, 1598-1608, 1990.  
 

 

F '( f ) =
G( f )H*( f )

| H'( f ) |2
= F ( f )

H( f )H'* ( f )

| H'( f ) |2



Phase Diversity 

Measurement of the object in two different channels.  No separate PSF measurement.  
    
 
 
 
 
Two measurements – 3 unknowns – f(r), h1(r), h2(r)  but h1(r) & h2(r) are related by a 
known diversity, e.g. defocus.  Hence 2 unknowns f(r), h1(r) 

 

g1(r) = f (r) * h1(r)      and       g2(r) = f (r) * h2(r)

 

H1( f ) =  | H1( f ) |  exp iϑ ( f )[ ]                    H2( f ) =  | H1( f ) |  exp iϑ ( f ) + α( f )[ ]



Phase Diversity 

Phase Diversity restores both the target and the complex wavefront phases at the 
pupil. 
 
•  Solve for the wavefront phases which represent the unknowns for the PSFs 
 
•  The phases can be represented as either  
 - zonal (pixel-by-pixel)  
 - modal (e.g. Zernike modes) – fewer unknowns 
 
•  The object spectrum can be written in terms of the wavefront phases, i.e. 
 
            
 
 
•  Recent work suggests that solving for the complex wavefront, i.e. modeling 
 scintillation improved PD performance for both object and phase 
recovery. 

 

F ( f ) =
G1( f )H1

*( f ) + G2( f )H2
*( f )[ ]

| G1( f ) |2 + | G2( f ) |2[ ]



Photometric Quality in Crowded fields 

Busko, 1993 
HST Tests 
 
“Should stellar 
photometry be  
done on restored 
or unrestored 
images?” 



Photometric Quality in Crowded fields 

10″ 
 



Photometric Quality in Crowded fields 

 Two Analysis Techniques: 
 
1. Parametric Blind Deconvolution (PBD):   

o Each star modeled as a 2D elliptical Lorentzian profile in a 
simultaneous fit 

o Frame-by-frame  
o A weighted mean for the separation (sep), position angle (PA) and 

magnitude difference (∆m) for the components. 
 

2. Multi-Frame Blind Deconvolution (MFBD):   
o MFBD finds a common solution to a set of independent images of 

the same field assuming that the PSF varies from one frame to 
the next. 

o Multi-frame data subsets  
o Each component constrained to be Gaussian  
o 2D Elliptical Gaussian fits give separation (sep), position angle 

(PA) and magnitude difference (∆m) 



Photometric Quality in Crowded fields 



Summary 

•  Deconvolution is necessary for many applications to remove the effects 
of PSF  

-  PSF calibration 
-  identification of sources in a crowded field 
-  removal of asymmetric PSF artifacts etc. 
 

•  A choice of algorithms available 
-  Is any one algorithm the best? 

-  different algorithms for different applications 
-  algorithm comparison by different groups (Busko for HST & Stribling et al. for 
AFRL applications. 
-  Preservation of photometry (radiometry) and astrometry (location) of  sources in 
the image. 
 

• What happens when the PSF is poorly determined? 
       -  This is a problem for many AO cases. 
 
• What happens when the PSF is spatially variable?(anisoplanatism) 



• Describe how the PSF & MTF of a telescope changes as the central 
obscuration gets larger for a given size pupil? 
 

• How does an increase and decrease in the size of the telescope pupil 
affect the resolution and cut-off frequency?  
 

• The Fourier transform is   
 and the Fourier modulus is  
 

 a.  Compute the Fourier modulus of                ? 
 
 b.  Compute the Fourier modulus of                                      ? 
 

• If the PSF of an optical system is described as a Gaussian, i.e.   
 

                                  and the object as                                           , what is 
 
       the expression for the measurement            ?   

Homework (Fourier Transforms) 

 

G u( )= FT g x( ){ }= dx g x( ) exp −i2π ux( )[ ]
−∞

∞

∫

 

δ x − a( )

 

Aδ x − a( )+ Bδ x − b( ) 

G u( )

 

h r( )= exp −
r

2σ
 
 
 

 
 
 

2 

 
 

 

 
 

 

h r( )= Aδ r − a( )+ Bδ r − b( )

 

g r( )



 
• J. Goodman, “Introduction to Fourier Optics”, McGraw Hill, 1996. 

 
• T. Cornwell & Alan Bridle, “Deconvolution Tutorial”, NRAO, 1996. 

(http://www.cv.nrao.edu/~abridle/deconvol/deconvol.html) 
 

• J.L. Starck et al., “Deconvolution in Astronomy: A Review”, Pub. Astron. Soc. 
Pac., 114, 1051-1069, 2002.  
 

• Peyman Milanfar, “A Tutorial on Image Restoration”, CfAO Summer School 
2003. (http://cfao.ucolick.org/pubs/presentations/aosummer03/Milanfar.pdf) 
 

• M. Roggemann & B. Welch, “Imaging Through Turbulence”, CRC Press, 1996. 
 

• R.J. Hanisch & R.L. White (ed.), “The Restoration of HST Images & Spectra II”, 
STScI, 1993. 
 

• R.N. Bracewell, “The Fourier Transform and its Applications”, McGraw-Hill 
Electrical and Electronic Engineering Series. McGraw-Hill, 1978. 
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