Image Coding

10.0 INTRODUCTION

A major objective of image coding is to represent an image with as few bits as
possible while preserving the level of quality and intelligibility required for the
oiven application. Image coding has two major application areas. One is the
reduction of channel bandwidth required for image transmission systems. EX-
amples of this application include digital television, video conferencing, and fac-
simile. The other application is reduction of storage requirements. Examples of
this application include reduction in the storage of image data from space programs
and of video data in digital VCRSs.

The levels of image quality and intelligibility required vary widely, depending
on the application. In such applications as storage of image data from space
programs and images of objects with historical value that no longer exist, regen-
eration of the original digital data may be very expensive or even impossible. In
such applications, we may want to preserve all the information in the original digital
data for possible future use. Image coding techniques which do not destroy any
information and which allow exact reconstruction of the original digital data are
said to be information-preserving. In applications such as digital television, it is
not necessary for the coder to be information-preserving. In such applications,
high quality is very important, but some information in the original data may be
destroyed, so long as the decoded video on the TV monitor is acceptable to human
viewers. In applications such as remotely piloted vehicles (RPVs), image intel-
ligibility is essential, but we may be able to sacrifice a significant degree ot quality.
The more quality and intelligibility we can sacrifice, the lower will be the required
bit rate.

Image coding is related to image enhancement and restoration. If we can
enhance the visual appearance of the reconstructed image or if we can reduce the
degradation that results from the image coding algorithm (quantization noise being
an example), we may be able to reduce the number of bits required to represent
an image at a given level of quality and intelligibility, or conversely to hold the
number of bits steady while improving the image quality and intelligibility.
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17.2 LOSSLESS COMPRESSION TECHNIQUES

] .ossless data compression algorithms £41l into two broad categories: dictionary-based tecih'
niques and statistical methods. Dictionary-based techniques generate a compressed file
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containing fixed-length codes (usually 12 to 16 bits), each of which represents a particular

sequence of values 1n the original file.
Statistical methods implement data compression by representing frequently occur-

ring characters in the file with fewer bits than they do less commonly occurring ones [2].
This is the approach Samuel F. B. Morse used when he defined the international telegraph
code. The often used letter ¢, for example, is represented by a single dot, whereas the much
less common z is coded as dash, dash, dot, dot. |

17.2.1 Dictionary-Based Techniques
17.2.1.1 Run-Length Encoding

The simplest dictionary-based data compression technique is run length encoding (RLE).
Images—particularly those having few gray tevels—often contain regions of adjacent pix-
els, all with the same gray level or color. In an image being stored line by line, a series of
pixels having the same gray-level value s called a run. One can store a code specifying that
value, followed by the length of the run, rather than simply storing the same value many
times over. This 1S run-lengthrencoding. It ~chieves considerable compaction, for example,
with graphics and with 1mages of objects residing upon a constant backeround. Other types
of images compress poorly. Under worst case conditions (for example, where every pixel
differs from its neighbors) RLE can actually double the size of the file.

17.2.1.2 LZW Encoding

LZ coding is a lossless technique first described by Lemple and Ziv [3,4]. It was extended
by Welch [5] to form the widely used, proprietary LZW algorithm [6]. Like RLE, it effects
compression by encoding strings of characters. However, unlike RLE, it builds up a table of
strings (particular sequences of bytes) and their corresponding codes as 1t encodes the file.
A file of 8-bit bytes can be encoded, for example, into 12-bit codes. Of the 4,096 possible
codes, 256 of them represent all possible single bytes. The remaining 3 840 are assigned to
strings as they are encountered in the data during COmpression.

The first time a string not already 1n the table occurs, itis stored in full. along with the
code that is assigned to it. Thereatter, when that string occurs again, only its code is stored.
This squeezes redundancy out of the file. Not only is the string table built dynamically dur-
ing compression, but it need not be stored with the compressed file: The decompression
algorithm can reconstruct it from the information in the compressed file.
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Name

Organization

Description

Continuous-Tone Still Images

BMP

GIF

PDF

PNG

TIFF

Video
AVS

HDV

M-JPEG

Quick-Time

VC-1
WMVO9

Microsoft

CompuServe

Adobe Systems

World Wide Web
Consortium
(W3C)

Aldus

MII

Company
consortium

Various
companies

Apple Computer

SMPTE
Microsoft

Windows Bitmap. A file format used mainly for
simple uncompressed images.

Graphic Interchange Format. A file format that
uses lossless LZW coding [8.2.4] for
1- through 8-bit images. It is frequently used
to make small animations and short low
resolution films for the World Wide Web.

Portable Document Format. A format for
representing 2-D documents in a device and
resolution independent way. It can function as
a container for JPEG, JPEG 2000, CCITT, and
other compressed images. Some PDF versions
have become ISO standards.

Portable Network Graphics. A file format that
losslessly compresses full color images with
transparency (up to 48 bits/pixel) by coding
the difference between each pixel’s value and
a predicted value based on past pixels [8.2.9].

Tagged Image File Format. A flexible file format
supporting a variety of image compression
standards, including JPEG, JPEG-LS, JPEG-
2000, JBIG2, and others.

Audio-Video Standard. Similar to H.264 but uses
exponential Golomb coding [8.2.2]. Developed
in China.

High Definition Video. An extension of DV
for HD television that uses MPEG-2 like
compression, including temporal redundancy
removal by prediction differencing [8.2.9].

Motion JPEG. A compression format in which
each frame is compressed independently
using JPEG.

A media container supporting DV, H.261, H.262,
H.264, MPEG-1, MPEG-2, MPEG-4, and
other video compression formats.

The most used video format on the Internet.
Adopted for HD and Blu-ray high-definition
DVDs. It is similar to H.264/AVC, using an
integer DCT with varying block sizes [8.2.8
and 8.2.9] and context dependent variable-
length code tables [8.2.1] —but no predictions
within frames.

TABLE 8.4
Popular image
compression
standards, file
formats, and
containers, not
included in
Table 8.3.



17.2.2 Statistical Encoding Methods-

17.2.2.1 The Information Content of a Message

Before discussing statistical coding techniques, we consider the classical theory of infor-
mation content. Suppose we have a memoryless source of messages that uses an alphabet
{a,},k=0,1,...,K— 1. Here the g, are the symbols of that alphabet. Suppose further that the
probability of occurrence of each symbol is known and denoted as P(ay). In a message from
a memoryless source, the ordering of the symbols in the message 1s unimportant; only their

presence in the message matters.
Shannon [7,8] defined a measure of the information imparted by the occurrence of the

symbol g, 1n a message as

e 5 - % iw Ay F i i -
e o] e —- R V2 e m.hl-lil-lul.':rr

s ok M- a & a I S =ik . ST~ - i L. s
‘4
R L

[(ay) = ~10§[P(ﬂ;c)]

This measure 1s satisfying because (a) the more unlikely a symbol is, the more mfonnaﬁg
its presence contributes to the message, and (b) the information in a message is the SUm’; {)
the information contributed by the symbols that comprise it. Notice that a symbo] th
always appears in every message (i.e., P(a;) = 1) conveys no information (I(a,) = 0). A ,

example of such a noninformative symbol is the word Dear in the salutation of a Ietter -'"

The entropy of the message source, defined by
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specifies the average information content (per symbol) of the messages generated by _F:i
source. lhe entropy of a message source is nonnegative and takes on its maximum Valu

when all symbols are equally likely. If we choose 2 as the base for the logarithm, the uni ih
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of entropy are bits per Symboi -
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The redundancy remaining in a message after encoding it by a particular COdln
scheme 1s the difference between the average word len gth of the code and the entropy of .»

source; that is, “
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where L,,(a;) 1s the length (in bits, for binary coding) of the_ code word used to represent th -
symbol a,. A coding scheme removes all redundancy if it produces an average word Ienﬁ

thatis equal to the entropy of the message source. This can be achieved if one can design th:;
code so that the word lengths are

1s possible only if the probabilities of all the Symbols are neﬁame INteger powers of tw
(e 5+ 057, 0‘23, etc_)_ P
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Entropy = - Epf.]agz(p!.) (in bits per pixel)

i
where p = the probability of the 7th gray level = —
| N

the total number of pixels with gray value k

Fey

L = the total number of gray levels (e.g., 256 for & baits)

This measure provides us with a theoretical minimum for the average number of bits
per pixel that could be used to encode the image. This number is theoretically optimal
and can be used as a metric for judging the success of a coding scheme.

EXAMPLE 8 — B

Let L = 8, meaning that there are 3 bits/pixel in the original image. Now, lets say that the num
ber of pixels at each gray-level value is equal (they have the same probability), that 1s:

I
po = pl — Zans ey p? — g
Now, we can calculate the entropy as follows:
? ~ ] 1
Entropy = - Zp log,(p,) = —log,| —| =3
i=0 -0 & {8

This tells us that the theoretical minimum for lossless coding for this image is 3 bits/pixel. Ir
other words, there is no code that will provide better results than the one currently used (callec

the natural code, since 000, = 0, 001, = 1, 010, = 2, ..., 111, = 7). This example illustrates thaf
the image with the most randﬂm dlStI‘lbutIDH of gray ]evels a uniform distribution, has the

highest entropy.

EXAMPLE b =B

Let L = 8, thus we have a natural code with 3 bits/pixel in the original image. Now let’s say tha
the entire image has'a gray level of 2, so

P :LEiI]dpQ =Py =Py TPy =P = Pg T P4 = 0

And the entropy is

Entropy = Epl@ o (p) = ~(1)log,(1) +0 +..+0 = 0

This tells us that the theoretical minimum for coding this image is 0 bits/pixel. Why is this’
Because the gray-level value is known to be 2. To code the entire image, we need only one value
This i1s called the certain event; it has a probability of 1.
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The two preceding examples illustrate the range of the entropy:
0 < Entropy < log,(L)

The examples also illustrate the information theory perspective on infarmation_and
randomness. The more randomness that exists in an image, the more evenly distrib-

uted the gray levels, and the more bits per pixel are required to represent the data.
This also correlates to information—more randomness implies each individual value

is less likely, which means more information is contained in each pixel value, so we
need more bits to code each pixel value. This also provides us with one of the key con-
cepts in coding theory: we want to assign a fewer number of bits to code more likely
events. Intuitively, this makes sense. Given an image to code, a minimum overall file
size will be achieved if a smaller number of bits is used to code the most frequent gray

levels. |
The entropy measure also provides us with a metric to evaluate coder perfor-

mance. We can measure the average number of bits per pixel (Length) in a coder by
the following:

Bl
Lave - Z Zs'pf'
i=0

where /. = length in bits of the code for ith gray level

p, = histogram-probability ot ith gray level

This can then be compared to the entropy, which provides the theoretical minimum.
The closer L, is to the entropy, the better the coder.

5.2.1 Huffman Coding

The Huffman code, developed by D. Huifman 1n 1952, 1s a minimum length code.
This means that given the statistical distribution of the gray levels (the histogram),
the Huffman algorithm will generate a code that is as close as possible to the mini-
mum bound, the entropy. This method results in a variable length code, where the

code words are of unequal length. For complex images, Huffman coding alone will typ-
ically reduce the file by 10 to 50% (1.1:1 to 1.5:1), but this ratio can be improved to 2:1

or 3:1 by preprocessing for irrelevant information removal.
The Huffman algorithm can be described in five steps:

Find the gray-level probabilities for the image by finding the histogram.

Order the input probabilities (histogram magnitudes) from smallest to largest.
. Combine the smallest two by addition.

GOTO step 2, until only two probabilities are left.

By working backward along the tree, generate code by alternating assignment of
0 and 1.

wE o e N

This procedure is best illustrated by example.
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EXAMPLE 5—7

We have an image with 2 bits/pixel, giving four possible gray levels. The image is 10 rows by 10
columns, In Step 1 we find the histogram for the image. This is shown in Figure 5.2-1a, where
we see that gray level 0 has 20 pixels, gray level 1 has 30 pixels, gray level 2 has 10 pixels, and

Figure 5.2-1 Huffman Coding Example

- 20 |
80 = 100 = 2
30
Number |
of 30 10 &
pixels 20 £q = 00 -
10 40
T 83 = 100 -
0O 1 2 3
Gray level b
a. Step 1: Histogram.
g3 — 0.4 0.4 — 04
5 0.5 0.3 —> 0.3
gy — 0.2 0.2 - 0.3
g, — 0.1 0.1 -
b. Step 2: Order. C. Step 3: Add.
04 —04— 04 04 > 04 —Xj 0.6
0.3 - 03— 0.6 g =3 L3 - 0.4
0.2--03- 0.2 0.3~
0.1 - Bel.

d. Step 4: Reorder and add until only two values remain.




Figure 5.2-2 Huffman Coding Example, Step 5

0.4 , 0.4 25 0.6
0.3 > 0.3 >< 1,04
0.2 > 0.3
0.1

a. Assign 0 and 1 to the rightmost probabilities.
0.4 04 — L0706
0.3 . 0.3 O%‘;f 1 04
0.2 03 9%
0.1

b. Bring 0 and 1 back along the tree.

0.4 , 04 2,06
0.3 > 0.3 OO%>< 'L 04
0.2 > 0.3 —21
0.1

c. Append 0 and 1 to previously added branches.

04 — 04 0.6
0.3 20 , 03 22 >< ' 04
iy —18e y g ~2

0.1 i

d. Repeat the process until the criginal branch is labeled.

Image Compression

Chap. 5



gray level 3 has 40 pixels with the value. These are converted into probabilities by normalizing
to the total number of pixels in the image. Next, in step 2, the probabilities are ordered as in
Figure 5.2-1b. For step 3 we combine the smallest two by addition. Step 4 repeats steps 2 and 3,
where we reorder (if necessary) and add the two smallest probabilities as in Figure 5.2-1d. This
step is repeated until only two values remain. Because we have only two left in our example, we
can continue to step 5 where the actual code assignment is made. The code assignment is shown
in Figure 5.2-2. We start on the right-hand side of this tree and assign s and 1’s, working our
way back to the original probabilities. Figure 5.2-22a shows the first assignment of C and 1. A 0 is
assigned to the 0.6 branch, and a 1, to the 0.4 branch. In Figure 5.2-2b the assigned 0 and 1 are
brought back along the tree, and wherever a branch occurs the code is put on both branches.
Now (Figure 5.2-2¢) we assign the 0 and 1 to the branches labeled 0.3, appending to the existing
code. Finally (Figure 5.2-2d), the codes are brought back one more level, and where the branch
splits another assignment of 0 and 1 occurs (at the 0.1 and 0.2 branch). Now we have the Huff-
man code for this image as shown in Table 5.2-1.

Tabie 5.2-1 Huffman Code

Original Gray Level (Natural Code) Probability Huffman code
8yt 00, 0.2 010,
g0 01, 0.3 00,
g0 10, 0.2 011,
g5 11, . 0.4 1,

Note that two of the gray levels now have 3 bits assigned to represent them, but
one gray level only has 1 bit assigned to represent it. The gray level represented by 1
bit, g,, is the most likely to occur (40% of the time) and thus has the least information
in the information theoretic sense. Remember that we learned from information theory
that symbols with less information require fewer bits to represent them. The original
image had an average of 2 bits/pixel, let us examine the entropy in bits per pixel and
average bit length for the Huffman coded image file.

EXAMPLE 5-8

2

Entropy = ﬁzp:logz(p‘.)
ey

=-[(0.2)1og,(0.2) + (0.3)log,(0.3) = (0.1)log,(0.1) = (0.4)log,(0.4)

= 1.846 bits/pixel
(Note: log,(x) can be found by taking log ,(x) and multiplying by 3.322)

L-1
L?iVC = Z !.’pi
=0

= 3(0.2) = 2(0.3) ~ 3(0.1) + {0.4)
= 1.9 bits/pixel (Average length with Huffman code)

In the example, we observe a 2.0:1.9 compression, which is about a 1.05 compres-
sion ratio, providing about 5% compression. From the example we can see that the
Huffman code is highly dependent on the histogram, so any preprocessing to the histo-
gram may help the compression ratio.




Huffman Coding

1. Optimal code for set of symbols subject to the constraint that the
symbols be coded one at a time

2. coding / decoding is done by a lookup table instantaneously, uniquely and
decodeable, block code
where
instantaneous = each code word can be decoded by itself
block = each source symbol yields a fixed sequence of code
unique = only one way

3. J source symbols 256 gray levels
J-2 source reductions 254
J-2 code assignments 254

Alternatives are cheaper but not optimal.

LZW uses interpixel redundancies



5.2.2 Run-Length Coding

The image is an 8 x § binary lmage, which requires 3 bits for each run-length coded word. In the
actual image file are stored 1's and 0’s, although upon dispiay the 1's become 255 (white) and the
0’s are 0 (black). To appiy RLC to this image, using horizontal RLC:

0 0 0 0 0 0 0 0]
It i 1 0 0 0 0
o I 1 0 0 0 0 ©
o 1 1 1 1 1t 0 0
¢ L 1 1 0 0 1 0

‘0 0 0t 0 0 1 1t 0
b1 10 100
6 0 0 0 0 0 0 0]

The RLC numbers are:
First row: &
Second row: 0, 4, 4
Thirdrow: 1, 2,5
Fourth row: 1,5, 2
Fifth row: 1, 3,2, 1, 1
Qixthrow: 2, 1,2,2, 1
Seventh row: 0,4, 1,1, 2
Eighth row: 8

Note that in the second and seventh rows, the first RLC number is 0, since we are using the ¢
vention that the first number corresponds to the number of zeros in a run.




EXAMPLE 5-13

(3iven the following 8 x 8§, 4-bit image:

10 10 10 10 10 10 10 10|
10 10 10 w0 10 12 12 12
0 10 10 10 10 12 12 12
c o0 o0 10 10 10 0 0
s s s o o 6 0 0
s s 5 10 10 9 9 10
s 5 s 4 4 4 0 0
o o o 0 0 0 O]

The corresponding gray-level pairs are as follows:

First row: 10,8
Second row: 10,5 12,3
Third row: 10,5 12,3
Fourth row: 0,3 10,3 0,3
Fifth row: 5,3 0,5
Sixth row: 5,3 10,2 9,2 10,1
Seventh row: 5,3 4,3 0,2
Eighth row: 0,8
These numbers are then stored in the RLC compressed file as:

10, 8,10, 5,12, 3,10,5,12, 3,0, 3, 10,3,0,3,5,3,0,5,5,3,10,2,9,2,10,1,5,3,4,3,0,2,0, 8

The decompression process requires the number of pixels in a row, and the type
of coding used. |

Standards for RLC have been defined by the International Telecommunications
Union-Radio (ITU-R, previously CCIR). These standards, initially defined for use with
FAX transmissions, have become popular for binary image compression. They use hor-
izontal RLC but postprocess the resulting RLC with a Huffrian encoding scheme.
Newer versions of this standard also use a two-dimensional technique where the cur-
rent line is coded based on a previous line. This additional processing helps to reduce

the file size. These coding methods provide compression ratios of about 15 to 20 for
typical documents.
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2-3 Bit-Plane Run-Length Coding

by | b, | b, | by
o]0 . 0 0
o | o o

ol ol 1 o

a. 4 bits/pixel designation.

oW — p

3 c—0c0

‘___‘

b. bit-planes —» b3 b3 by &5

Another way to extend basic RLC to gray-level images is to include the gray level
of a particular run as part of the code. Here, instead of a single value for a run, two
parameters are used to characterize the run. The pair (G, L) correspond to the gray-
level value G and the run-length L. This technique is only effective with images con-
taining a small number of gray levels.




This basic method can be extended to gray-level images by using a techniqu
called bit-plane RLC. Bit-plane RLC works by applying basic RLC to each bit plar
independently. In Figure 5.2-3 the idea of bit planes is illustrated. For each binai
digit in the gray-level value, an image plane is created, and this image plane |
string of 0’s and 1’s) is then coded using RLC. Typical compression ratios of 0.5 to 1
are achieved with complex 8-bit monochrome images; so, without further processin
this is not a good compression technigue for complex images. Bit-plane RLC is mo.
useful for simple images, such as graphics files, where much higher compressic
ratios are achieved. The compression results using this method can be improved t
preprocessing to reduce the number of gray levels, but then the compression is n.
lossless. In order for this method to be effective, the reduced image data (in natur
code) needs to be mapped to a Gray code (named after Frank Gray), where adjacer
numbers differ in only one bit. Because adjacent pixel values are highly correlate
adjacent pixel values tend to be relatively close in gray-level value, and this can £
problematic for RLC.

EXAMPLE 5-12

In Figure 5.2-4 is shown the 4-bit Gray code and the natural binary code. The Gray code, by de
inition, only has one bit changing in adjacent codes. However, in, for example, the 7 to 8 tran:
tion with the natural code, all four bits change:

Natural Code Gray Code
111 0100
L I
1600 1100

When a situation such as this example occurs, each bit plane experiences a tra:
sition, which adds a code for the run in each bit plane. However, with the Gray cod
only one bit plane experiences the transition, so it only adds one extra code word.
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Figure 5.2-4 Gray Code

r Decimal

4-bit Natural Code

4-bit Gray Code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1191
11 1011 1110
12 1100 1010
13 1101 1011
14 | 1110 1001
15 1111 1000

a. Gray code versus natural code.
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FIGURE 8.19

(a) A 256-bit
monochrome
image. (b)-(h)
The four most
significant binary
and Gray-coded
bit planes of the
image in (a).
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FIGURE 8.20
(a)-(h) The four
least significant
binary (left
column) and
Gray-coded
(right column)
bit planes of
the image in
Fig. 8.19(a).



5.1 INTRODUCTION niz

Figure 5.1-5 Bit-Plane Images

a. Bit-plare 4. f. Bit-plane 3.
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Figure 5.1-5 (Continued)
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i. Bit-plane 0, the least significant bit.

coding. Secondly, the principal components transform (PCT, see Sections 1.7.3 and
2.4.3) can be used, which provides a theoretically optimal decorrelation. Also, the
spectral domain is used for image compression, so this first stage may include map-
ping into the frequency or sequency domain. These methods are all reversible, that is
information preserving, although all mapping methods are not reversible. The concept
of reversibility 1s important to a compression method.

Depending on the mapping equation used, quantization may be necessary to con-
vert the data into digital form. There are two ways to do this—uniform quantization
or nonuniform quantization. In uniform quantization all the quanta, or subdivisions
into which the range 1s divided, are of equal width. In nonuniform quan#ization these
quantization bins are not all of equal width (see Figures 2.2-15 and 2.2-16). Often,
nonuniform quantization bins are designed to take advantage of the response of the
human visual system. For example, very high brightness levels appear the same—
white—s0 wider quantization bins may be used over this range. In the spectral
domain, the higher frequencies may also be quantized with wider bins because we are




2.7.1

Group 3 Fax

CCITT Draft Recommendation T.4 describes the standardization of Group 3
facsimile apparatus for document transmission (CCITT 1980). The standard
specifies the scanning track, the dimensions of the apparatus, the transmission
time, and the coding scheme. We will dispense quickly with the first three of
these and then treat the coding scheme in complete detail.

Classic raster scanning is employed at both the transmitter and the receiver; that
is, considering the document to be in a vertical plane facing the viewer, scanning
proceeds from left to right along each line, starting at the top of the page and
working to the bottom without interlacing. Each line has 1728 picture elements
(pels). Bach pel will be either black or whlte in any spec1ﬁc document. The
standard scarininig line width is 215 mm. In the vertical dimension the standard
definition is 3.85 lines/mm; an optional mode with double vertical resolution
(7.7 lines/mm) also is supported. Group 3 apparatus must accept documents
of ISO A4 size or smaller. If one desires to send wider documents, horizontal
scanning density should be reduced accordingly.

The Group 3 standard recommends a 20-ms minimum transmission time for
the sum of the data bits, fill bits, and end-of-line (EOL) symbol that constitute
the coded representation of any scan line. This requirement is imposed by
mechanical limitations on the rate of advance of paper through the transmitting
and receiving devices and the desire not to let the transmitter get too many
lines ahead of the receiver. Because digital memory has become considerably
cheaper than when the Group 3 standard originally was promulgated, today’s
fax machines often scan documents many times faster than the recommended
20 ms/line and store the results internally if transmission has to proceed at a
lower rate. This saves the time of persons and machines at the transmitting
station tasked with document handling. The Group 3 standard also provides
recognized minimum transmission time options of 10 ms/iine with a mandatory
fallback to 20 ms if requested by the receiving machine, and of 5 ms/line with
mandatory fallbacks to 10 ms and 20 ms. Finally, an option for a 40-ms/line
minimum transmission time is supported, though modern equipment eschews
it. Identification of the minimum transmission time of a scanning line is made
during the premessage portion of the T.30 control procedure, sometimes referred
to as Phase B of the call setup.

At the other extreme, no line transmission time may exceed 5 seconds. This
requirement is imposed to retain synchronism and to prevent call dropping via
inadvertent activation of disconnect-sensing circuitry.

G3 Coding Scheme

Group 3 fax machines use a one-dimensional runlength coding scheme. Here,

“one-dimensional” refers to the fact that each successive horizontal line is coded
independently of all the lines that precede and follow it, and “runlength” refers
to the fact that each line is parsed into alternating runs of same-color pels—

© white run, black run, white run, black run, and so on.




L.ossless Source Coding

The first run on each line is assumed to be white; if it is not white, the
+  codeword for a white run of length 0 is sent, namely, 60110101. The sum of the
| lengths of all the runs on a line must be 1728. The end of each line is signaled by
=7y  the BOL codeword, 000000000001. We shall see shortly that this EOL pattern (11
| zeros followed by a one) can never occur anywhere else within a valid encoding
other than at the end of a line. This keeps the transmitter and receiver in line
- synch in the absence of channel errors and allows for rapid line resynch in the
event of a channel error burst that either inserts an undesired EOL or corrupts
an intended one. Also, the EOL signal is sent prior to the first line of each
page; that is, page breaks are signified by two successive EOLs. Accordingly,
any line insertion or deletion error that might occur will not propagate beyond
its page.

White runs of lengths 0 through 63 are encoded via the Terminating White
Code of Table 2.5. White runs of length 64 or greater are coded by concatenating
a word from the Make Up White Code of Table 2.6 with a Terminating White
Code word from Table 2.5. For example, a white run of length 1362 =64 - 21 +
18 = 1344 4 18 is encoded by concatenating the codeword 011011010 for 1344
from Table 2.6 with the codeword 0100111 for 18 from Table 2.5.

Note that both the Terminating White Code and the Make Up White Code
are prefix codes—no short codeword is the prefix of a longer codeword. More
importantly, note that no word in the Make Up White Code is a prefix of a word
in the Terminating White Code and, conversely, no word in the Terminating
White Code is a prefix of a word in the Make Up White Code. In other words,
the union of the Terminating White Code and the Make Up White Code is a prefix
code. This permits Group 3 decoders to determine unambiguously whether a
terminating code (TC) or a make up code (MUC) word has been sent.

Note that greater compression could be achieved if a prefix code different

“from that of Table 2.5 were used to encode the residue modulo 64 of runlengths
that are 64 or longer. The reasons are that, since this code would be invoked
if and only if 2 MUC word has just been sent, its words need not be restricted
not to be prefixes of any of the TC or MUC words, thereby allowing its word
lengths to match better the statistics of runlengths of 64 or more calculated
modulo 64. CCITT Study Group XIV chose not to do this, probably because the
improvement it afforded was insufficient to justify having to store three rather
than two tables for runs of a given color.

Black runs are similarly encoded by the TC and MUC words shown in
Tables 2.7 and 2.8. Words from the black codes are allowed to be prefixes of
words from the white codes, and vice versa. No ambiguity results because run
colors always alternate and every line starts with a white run. Although there
are no black runs of length 0, a black TC word for length 0 is needed because
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5.2.3 Lempel-Ziv-Welch Coding

The Lempel-Ziv-Welch (LZW) coding algorithm works by coding strings of data.
For images, these strings of data correspond to sequences of pixel values. It works by
creating a string table that contains the strings and their corresponding codes. The
string table is updated as the file is read, with new codes being inserted whenever a
new string is encountered. If a string is encountered that is already in the table, the
corresponding code for that string is put into the compressed file.

LZW coding uses code words with more bits than the original data. For example,
with 8-bit image data, an LZW coding method could employ 10-bit words. The corre-
sponding string table would then have 2'° = 1,024 entries. This table consists of the
original 256 entries, corresponding to the original 8-hit data, and allows 768 other
entries for string codes. The string codes are assigned during the compression process,
but the actual string table is not stored with the compressed data. During decompres-
sion the information in the string table is extracted from the compressed data itself.

For the GIF (and TIFF) image file format the LZW algorithm is specified, but
there has been some controversy over this because the algorithm is patented (by Uni-
sys Corporation under patent #4,558,302). Because these image formats are widely
used, other methods similar in nature to the LZW algorithm have been developed to be
used with these, or similar, image file formats. Similar versions of this algorithm
include the adaptive Lempel-Ziv, used in the UNIX compress function, and the Lempel-
Ziv 77 algorithm used in the UNIX gzip function.




LZ

Abraham Lempel
Jacob Ziv

g7ip, zip, pkzip, winzip

} 1977, 1978

e Welch LZW - 1984
Unix Compress, GIF, TIFF

e Yakou LZY - 1992

e parse sequences into strings/phrases

e compress code to represent phrases

o If stationary asymptotically stable = entropy rate H

e Redundancy = compression - enthalpy

Example (simplified)
I am dumb and because I am dumb I can’t even tell you that I am dumb

4

$1 and because $1 I can’t even tell you that $1
$1=(T am dumb)
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0,001, 011, 0000, 01010, 01001000, 10011,...

Tail-biting LZ77 uses only seven phrases for our data string as opposed to the
nine phrases used by ordinary LZ77. Tail-biting is invoked when parsing the
second and sixth phrases. The second phrase is formed by copying a phrase of
length 2 starting at the lone 0 then in the window and then adding a terminal 1;
we slide the first digit copied (a 0 in this case) into the window and then imme-
diately copy it to get the second digit of the current phrase. Similarly, the sixth
phrase is formed by copying a string of length 7 starting at the third position
before the end of the window and then adding a terminal 0; a four-symbol tail is
bitten in this case. (It can be argued that the tail actually grasps the head rather
than the head biting the tail.) The spot to point to at which to begin the copying
need not be unique; for example, there are two different places in the window
to which we could point to start copying the 1001 portion of the seventh phrase.
The Lempel-Ziv-Welch (LZW) algorithm is a variant of LZ78. LZW is the core -

of the widely deployed Unix Compress utility. It parses our sample sequence as
follows:

0, 00, 1, 0, 1, 10, 00, 001, 01, 0010, 010, 00100, 11---, ...

Note that the phrases of an LZW parsing are not unique and tend to be shorter
than those of the other parsings we have considered so far. The advantages that
account for LZW's popularity will be detailed in Section 3.3 when we analyze -
system performance. _

Finally, the Lempel-Ziv-Yokoo (LZY) algorithm (Yokoo 1992; Kiyohara and
Kawabata 1996) parses our sample sequence as follows:

0, 00,1, 01, 10, 000, 01, 010,0100, 100, 01001, 1...

LZY uses only 11 nonunique phrases to parse one more symbol of our sample.
sequence than LZW is able to parse using 13 phrases. We argue in Section 3.3
that LZY provides a desirable mix of properties from LZ77 (with tail-biting),
LZ78, and LZW. Since LZY usually outperforms LZW in practical examples, 1t =
would have provided a better foundation for Unix Compress than does LZW.
However, LZW already was too firmly entrenched to be displaced and also is
computationally less intensive than LZY.

LZ Compression E

T s S
i

The easiest way to understand how an L7 algorithm compresses is to apply

e
Fabi
L

it step by step to an example. We shall do this now for the 29-symbol Sequence‘é%’*
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3.4

3.3.5

Compression Performance of LZW (Unix Compress)

Data Type Compression Ratio
English text 1.8
Cobol files 2—6
Floating-point arrays 1.0
Formatted scientific data 2.1
System log data 2.6
Program source code 2.3
Object code 1.5

Comparative Performance of LZ77,LZW, and LZ

Table 3.4 (from Welch 1984) shows the compression perfor
by LZW for some common types of computer files. Since the
Unix Compress utility is, in essence, Welch's implementation ¢

interpret these results as relevant for Unix Compress. In each
alphabet consists of 8-bit bytes.

[\

Here are some comments on these results:

. The results for English text are fairly sood. Experimentat

that, if people fluent in English are provided with trut
binary questions they are allowed to ask about a typic
then between 1.3 and 2.5 questions per letter of text sul
deduce the sample English text losslessly, depending on w
distinguish between upper and lower case letters, use put
and/or allow numbers. Hence, it should be possible to cor
uses 8-bit byte representations of English characters (e.g., :
text file) by a factor of 8/2.5 = 3.2, but LZW achieved
be appreciated, however, that LZW does not know that
English text (as opposed to French, Spanish, or Fortran),
the rules of English grammar, possesses no a priori know
vocabulary and spelling, and most of all possesses no sem
or life experience. Nonetheless, it is true that if an 1LZ ¢
allowed to keep growing its data structure were given a |
(which it never will be given in practice), it would “learn”
Asymptotically, it would achieve compression comparable
humans and better than that of average humans!

. Apparently, not all Cobol files are comparably redundant.
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TeXfile and PSfile Performance of Unix Compress

File Input Output Compression
Name Length Length Ratio
filel.tex 75,053 33,797 222
file2.tex 64,957 30,786 2.16
fat.tex 107,697 49,533 2.17
filel.ps 209,746 30,413 2.61
filel.ps 213,921 119,683 2.64
file3.ps 244,686 94,975 2.58
filed.ps 222,201 185,827 2.55
cat.ps 992,554 378,233 2.62
fat.tex 107,697 49,533 217
fat.ps 693,713 230,491 3.01

to fat.tex. Note that fat.ps is a factor of 6.44 bigger than fat.tex. This is
representative; the expansion factors for the conversion from TeX to PS of some
50 files were observed to run from just above 2 to as much as 12.

The comparative verbosity of PSfiles accounts for why it is more desirable to
communicate a technical paper to someone as a TeXfile than as a PSfile. Nonethe-
less, PSfiles often get sent by email or by ftp because they are easier for recipients
(especially non-LaTeX recipients) to print. Also, they are less vulnerable to in-
compatibilities between the sender’s and the receiver’s versions of LaTeX (what
style files and fonts are mounted, storage and floating of encapsulated PostScript
figures, and such).

When a PSfile is sent via a modem that uses data compression, it might seem
that its verbosity shouldn't cause a problem. Indeed, the data compression rou-
tine in the modem (an L.Z77 variant in most of today’s commercial products) not
only should eliminate the factor of 6.44 expansion that occurred when fat .PS
was produced from fat.tex but should go on to achieve further compression
by eliminating redundancy lurking in fat.tex. But Table 3.5 shows that this
did not happen! (True, Unix Compress’s version of LZW, not 1.Z77, was used
to get the figures in Table 3.5. However, LZ77 achieves only moderately better
results: see Table 3.6.) Rather, fat.ps was compressed only to 230,491 bytes,
which is still 2.14 times as big as fat.tex and 2.14 - 2.17 = 4.65 times bigger
than the compressed version of fat.tex. Although Compress saved us almost
half a megabvte in the storine and/or transmittino of fat._ na. it micht ceem that




mpression

E Performance Comparisons of LZW, I;%Y, LZYEP and 1LZ77 S
o s D e
File Bytes LZW L.2Y LZYEFP 7
A 1250 1.054 1.042 0.995 0.774
B 46,976 0.480 0.4.39 (.425 0.360
C 179.021 0.394 0.301 B3] 0.301

applied to fat. tex). Here are two reasons why our supposedly “universal” LZW
algorithm did not accomplish this; no doubt, there are other reasons as well.
Reason 1 is that neither a TeX nor a PostScript file fully describes the desired
hard copy unassisted. Rather, they refer to extensive code stored in the /tex
| directory in one case and in the PS-compatible printer memory in the other;
the 1.Z compression algorithm in the above examples never sees this auxiliary
information. In the limit of an extremely long file, this stored code would become
. anegligible consideration because there is only a finite amount of it. However,
' in practice we do not operate in this limit; indeed, the stored code is several
| times larger in the above examples than are the TeXfiles and PSfiles that LZ is
being asked to compress. Although most of what's stored in the TeX utility and
most of the bitmaps stored in the PostScript cartridge are not consulted when
processing any particular target file, their presence makes it difficult to assess
the extent to which PSfiles truly deserve to be accused of being verbose. To put

e
i B

it another way, TeX usually consumes many more megabytes of computer disk

than PostScript does of printer memory, so a PSiile “deserves” to be longer than
the corresponding TeXiile.

. e i

Reason 2 is that universality is an asymptotic property. To possess true
universality, LZW must continue to grow the tree, or stack, of past phrases that
can be copied, but practical LZW implementations do not do this for a variety of

f good reasons. In this regard, consider the entry for cat . ps, which was produced

\ { by concatenating filel.ps through file4.ps and thus has a length equal
exactly to the sum of their lengths. Even though this file is almost a megabyte,
the compression ratio achieved for it effectively equals the wei ghted mixtures ot
those achieved for the files that were concatenated to produce it. This is because
each of the component files is already several times longer than the maximum
number of entries Unix Compress is willing to hold in its LZW data structure. If
we were to keep growing the data structure, slightly better performance would
result. However, even with a growing data structure, a megabyte file is not
nearly long enough to make the leading term in the redundancy analysis of (LZ}
universal alsorithms negligible (see Section 3.3.6).



10.1 QUANTIZATION .

10.1.1 Scalar Quantization

Let f denote a continuous scalar quantity that may represent a pi:{e} Intensity,
transform coefficient, or image model parameter. To represent f with a finite
number of bits, only a finite number of reconstruction or quantization levels can
be used. We will assume that a total of L levels are used to represent f. The
process of assigning a specific f to one of L levels 1s c:alled amplitude quantization,
or quantization for short. If each scalar is quantized independently, the procedure

1s called scalar quantization. If two or more scalars are quantized jointly, the
procedure 1s called vector quantization or block quantization. Vector quantization

1s discussed in Section 10.1.2.
Let f denote an f that has been quantized. We can express f as

f=0f)=r, d_,<f=d (10.1)

where Q represents the quantization operation, r;for 1 =i =< L denotes /. recon-

levels. From (10.1), if f falls between d, _, and d;, 1t s mapped to the reconstruction
level r,. If we have determined reconstruction and decision levels, quantization
of fis a deterministic process.

We can also express fin (10.1) as

f=00) =f+ e (10.2)
where e, is the quantization error given by
By = — (10.3)

Ihe quantization error ey, is also called quantization noise. The quantity €3 can
be viewed as a special case of a distortion measure d(f, f), which is a measure of
distance or dissimilarity between f and £ Other examples of d(f, f) include
f = fland ||flP - |fPP|. The reconstruction and decision levels are often deter-
mined by minimizing some error criterion based on d(f, 1), such as the average
distortion D given by

D = Eld(£. ) = |

fo=

=

. a(fos f)Pf(fD) dfo. (10.4)

The most straightforward method of quantization is uniform quantization, in
which the reconstruction and decision levels are uniformly spaced. - Specifically,
for a uniform quantizer,

i — ;g = A l=ri= L (10.5a)

: l=1= [ (10.5b)

where A is the step size equal to the spacing between two consecutive reconstruction
levels or two consecutive decision levels. An example of a uniform quantizer when
L = 4 and fis assumed to be between 0 and 1 is shown in Figure 10.3.

The quantization noise e, is typically signal dependent. For example, the
quantization noise e, for the uniform quantizer in Figure 10.3 is sketched in Figure
10.4. From Figure 10.4, e, is a function of f and therefore is signal dependent.
It 1s possible to decorrelate the quantization noise eo for the uniform quantizer bY
a method known as dithering or Roberts’s pseudonoise technique. As will tjﬂ
discussed in Section 10.3, decor{elation of quantization noise can be useful] I
improving the performance of an image coding system. It changes the character
istics of the degradation in the coded image. In addition, the decorrelated quan-

tization noise may be reduced by the image restoration algorithms discussed 11
(hanter Q



f — Uniform quantizer |—>f

P "D

Figure 10.3 Example of uniform quan-
atral - tizer. The number of reconstruction

levels is 4, f is assumed to be between 0
and 1, and [ is the result of quantizing f.

I e The reconstruction levels and decision
l ! | | >+ boundaries are denoted by r; and d.,
0{d,) 7 (dy) >(d) 2 (d;) 1(d,) respectively.

Although uniform quantization is quite straightforward and appears to be a
natural approach, it may not be optimal. Suppose f is much more likely to be 1n
one particular region than in others. Itis reasonable to assign more reconstruction
levels to that region. Consider the example in Figure 10.3. If frarely falls between
d, and d,, the reconstruction level r; is rarely used. Rearranging the reconstruction
levels 7,, ry, 75, and r, so that they all lie between d, and d, makes more sense.
Ouantization in which reconstruction and decision levels do not have even spacing
is called nonuniform quantization.

The optimum determination of r; and d; depends on the error criterion used.
One frequently used criterion is the minimum mean square error (MMSE) criterion.
Suppose we assume that fis a random variable with a probability density function
ps(fo). Using the MMOSE criterion, we determine r, and d, by minimizing the
average distortion D given by

D = E[d(f - f)] = Ele3) = E[(f — f)] (10.6)
= J;:: L Pf(fo)(f — fo)? dfo-
g = f=F

A

E | | | ' > f
i : % : |
an
i

Figure 10.4 Illustration of signal dependence of quantization noise.

). ﬂ Sec. 10.1 Quantization 593




Introduction
L]
Quantization

@ Quantization reduces ranges of values in a signal to a
single value, thereby reducing entropy.

@ Quantization is an integral part of lossy compression
algorithms.

@ Quantization is usually employed after transformation.
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Basic Quantization
[ ]

Basic Quantization Scheme: Thresholding

The most basic quantization technique is Thresholding:
Given a signal X = (x;) and a single threshold o, we replace
values as follows:

0 if |X,‘| <o

Xj) =
q0x) xi if|x| >0

Januar
2011 Joint Mathematics Meetings



Basic Quantization
[ ]

The thresholding quantization function:

ax)y

iew Ol
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The quantization function for a given region:

ax)y
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€q =%~ Q(X), (2. 2)

X and Q(x) are input and quantized
output, respectively.

Quantization error is often referred to as
quantization noise.

- Mean sguare quantization error, Msg,:

Nd

MSEq = & 5 (x- QU2 Ty (X (2.3

1dl

f.(¥): probability density function (pdf)
the outer decision levels may be -¥ or ¥

when the pdf, f.(x), remains unchanged,
fewer reconstruction levels (smaller N,
coarse quantization) result in more
distortion.

- Odd symmetry of the Input-output
characteristic respect to the x=0 axis

iImpliesthat : E(x)=0

—e 2
MSEq—Sq



Granular Zero
guantization ove.rloa.d
noise quantization
noise

0.5

\
VA A A A ATAN

-}5/-4.0 -35-3.0 -;5/-2.0-1/5/-1.0-0. 0 0/./1 175/2.0 2.5/3.0 3540 45
-0.5

Zero
overload
quantization
noise

Figure 2. 8 Quantization noise of the quantizer shown
in Figure 2.7

The mean square quantization error:

d,
MSEg =N 2 (x- Q)25 1 X

d (2. 4)
MSE, =D

qa-12°



2.2 Uniform Quantization 13

2
NRe :1OIogloziz =10log,,N2. (2. 5)
q

If we assume N =2" we then have
NRg = ZOIog10 2N=6.02n dB.

- The interpretation of the above result:

» |f use natural binary code to code the
reconstruction levels of a uniform
quantizer with a uniformly distributed
Input source, then every increased bit
In the coding brings out a 6.02 dB

increase in the NRyc.

» Equivalently from Equation 2.7,
whenever the step size of the uniform
guantizer decreases by a half, the

MSE decreases four times.

2.2.2.2 Conditions of Optimum
Quantization

- Derived by: [lloyd 1957, 1982; max 1960]
for agiven pdf f,(x).



Lloyd-Max
°

The goal is to choose [ and P to minimize the resulting
quantization error

m
E(LP)=>_|xi—q(x)?
i=1
This is a classical Calculus problem. Rewriting we obtain:

ELH=> 3 (i-p)

J=1 xi€lLy, L)

January 69 |
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Lloyd-Max
[ ]

ELP)=) Y (xi-pP

/=1 xi€[LjLji4)

Since minima will occur only if all partial derivatives are equal to
0, the following conditions need to be satisfied:

Zx,e[Lj,LvH) Xi

OE Z

o Xi€lLjLjse) #{0 | xi € [Lj; Ljs1)}
OE

aL; — 0 & L=3m-11p) 2)




Lloyd-Max
.

These equations can usually not be solved explicitly; instead a
two-step procedure is used repeatedly until a fixed point has
been (nearly?) reached:

@ Equations (1) are used to update the values p:

P = ave {x; | x; € [Lj, Lj1)}

@ Equations (2) then yield new values for L:

1 .
L = S0 +p) s j=2.n

The values for Ly and L, 1 are left unchanged.




. Sufficient conditions:

1% =-¥ and X4 =¥ (2. 6)
di+1 _
2. do(x— y) Fy (¥dx=0 i=12-- N (2.7)
i
3'di :%(yi_l+ i) i=2---,N (2. 8)

a First condition: for an input x whose
rangeis - ¥ <X<¥,

o« Second: each reconstruction level is the
centroid of the area under the pdf (%
i';\nd Ibetween the two adjacent decision
evels.

o Third: each decision level (except for
the outer intervals) is the arithmetic
average of the two neighboring
reconstruction levels

- These conditions are general in the
sense that there is no restriction
Imposed on the pdf.



2.2 Uniform Quantization 15

2.2.2.3 Optimum Uniform Quantizer with
Different [nput Distributions

Table2.1 Optimal symmetric uniform quantizer for
Gaussian, Laplacian and Gamma distributions (having
zer o mean and unit variance). Dutch[max 1960] [paez
1972]. The numbersenclosed in rectangles arethe step

S ZesS.
Uniform Gaussian Laplacian Gamma
N d Y MSE d Vi MSE yi MSE d yi M SE
-1.000 | 9500 -1.596 -1.414 -1.154
2 0000 g5y 833 | 0000 0798 o363 0000 0707 0500 0000 0577 0668
'é-?% -0.750 'é-ggé -1.494 'i-(l);‘?‘ 1631 'i-égg -1.590
' -0.250 208 . -0.498 0.119 : -0.544 . -0.530 0.320
4 0.000 0.250 . 0.000 0.498 0.000 0.544 1.963 0.000 0.500
0500] o750 “10* |099%| 1494 1.087| By 8318 10 1.590
1.000 1,991 2174 2.120
-1.000 g g75 2344 5051 -2.924 = 5559 3184 5 786
-0.750 005 S s -2193 | 1'aon 2388 1090
-0.500 | 378 Y -1462 | 3 097 1592 104
8 0.000 0.125 521 0.000 0.293 3.74 0.000 0.366 7.17 0.000 0.398 0.132
0.250] ga375 “10% [0586] (g79 107 [0731] 4497 ~10° [O.796] 194
0500 g 625 1172 1 465 1462 = 4 gog 1592 1 999
1000 2344 2.924 3.184
-1.000 © o938 -2680 5513 -3.648 | 3420 -4.320 4050
-0875 19813 e 2178 -3.192 5 964 e 3510
“0.750 0,688 20101 843 2736 2508 32400 5970
0625 5563 1675 1508 2280 © 505 2700 5 439
0500 0433 S 1173 -1.824 1 506 2160 890
-0.375 -0.313 -1.005 -0.838 -1.368 -1.140 -1.620 -1.350
-0.250 -0.188 -0.670 -0.503 -0.912 -0.684 -1.080 -0.810
-0.125 -0.335 -0.456 -0.540
-0.063 -0.168 -0.228 -0.270
16 0000 “goez 130 0000 jpg  LI5 0000  gopg 254 0000 (570 501
0125 188 10° [0835] 5oz (102 [0456] (ggs 102 [0540 go 102
0.375 0.438 1.005 1.173 1.368 1.596 1.620 1.890
0.500 = 563 1340 4 509 1824 = 5 050 2160 5 439
0.750 Npa13 B o 2736 Nogpa S -
0.875 = 0938 2345 o513 3192 3420 3.780 4050
1.000 2.680 3.648 4.320




Table 2. 2 Optimal symmetric quantizer for uniform,
Gaussian, Laplacian and Gamma distributions (The
uniform distribution is between [-1, 1], the other three
distributions have zero mean and unit variance.)
[lloyed 1957, 1982] [max 1990] [paez 1972]

Uniform Gaussian Laplacian Gamma
N d Vi MSE = d Vi MSE d yi MSE  d Vi M SE
-1.000 ¥ ¥ ¥
-0.500 079 | (363 0707 | 0500 -0577 | 0,668
0000 ' gsgp 833 0000 (799 0.000 ' g.707 0000 (577
2 1.000 102 ¢ ¥ ¥
‘é-g% 0750 0'5;82 ~1510 1'5;27 -1.834 1'5505 2108
e -0.250 2.08 e -0.453 0.118 T -0.420 1.765 T -0.302 0.233
4 0000 Hg250 7 p2 | 00000 o453 0000 H9420( ), 0000 0302
0.500 * 0750 -0982 1510 1127~ 1834 1205 2108
1.000 ¥ ¥ ¥
~L000 0875 - ¥ 3087 ¥ 3799
-0.750 505 -1.748 _1'344 -2.377 1673 -2.872 1944
'8-238 -0.375 '(1)-(5322 0756 éggg -0.833 '(1)-‘;81 -0.859
0000 | 322 521 goo0 0245 345 0000 oo 548 0000 Oi% 712
0125 2 om0 0233 > 0.149 e
0.250 0.375 10 0.501 O' 756 10 0.533 0.833 10 0.504 0.859 100
. 0500 SESE 1050 "= 1253 1673 0N | o4
0.750 = 0875 1.748 2' 152 2377 3087 2872 3799
1.000 ¥ ' ¥ ¥
-1.000 938 ¥ 733 ¥ 4316 ¥ 6085
0875~ ng13 2401 5 0p9 -3.605 > go5 5050 4015
-0.750 -0.688 -1.844 _1618 -2499 | 2103 -3407 _2.798
-0.625 © o563 -1437 1256 -1.821 | 1540 2372 1945
-0.500 "5 4ae 21099 o940 -1317 | 3005 1623 1300
0375 9313 -0800 _ge57 -0910 © 9726 -1.045 791
-0.250 -0.188 -0.522 -0.388 -0.566 -0.407 -0.588 -0.386
0125 . 0258 . 0266 | . 0229
16 0.063 0.128 0.126 0.072 ,
0000 gz 130 0000 o128 930 = 0000 gip 15 0000 o2 1%
0.125 0.188 103 0.258 0.388 10 0.266 0.407 1072 0.229 0.386 100
0.250 | 9213 0522 (657 0566 0,726 0588 (701
0375 438 0800 (g4 0.910 = 4 o5 1045 1300
0.500 0.563 1.099 1.256 1.317 1.540 1.623 1.945
0.625 0.688 1437 1618 1821 = 2103 2.372 2798
0.750 = 5813 1844 5069 2499 5895 3407 4015
0875 = g3 2401 5733 3605 4316 5050 085
1.000 ¥ ¥ ¥
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- The solution to optimum quantizer design for
finitely many reconstruction levels N when
Input X obeys Gaussian distribution was
obtained numerically [lloyd 1957, 1982, max

1960].
- Lloyd-Max quantizers.

- The design for Laplacian and Gamma
distribution were tabulated in [paez 1972].

- Performance comparison

1.0 pE

0.7 EErmEy

Error ratio

0.6

05 F
0.4

03 F
0.2

01

2 6 10 14 18 22 26 30 34 38

Number of reconstruction levels N

Figure2. 9 Ratio of error for optimal quantizer to error for optimum
uniform quantizer vs. number of reconstruction levels N. (Minimum
mean square error for Gaussian distributed input with a zero mean and
unit variance). Data from [max 1960].
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2.5 PCM

- Pulse code modulation (PCM) is closely
related to quantization.

- PCM is the earliest, best established, and
most frequently applied coding system

despite the fact that

» the most bit-consuming digitizing
system (since it encodes each pixel
Independently)

* avery demanding system in terms of
bit error rate on the digital channel.

- PCM is now the most important form of
pulse modulation.

- Pulse modulation links an analog signal to a
pulse train in the following way.

* The analog signal is first sampled

» The sampled values are used to
modul ate a pulse train.



(1)

e A
0 R O O O
f//\h\\
. T
Tappnpnnnan t
0 O O O ik

Figure 2.15 Pulse modulation
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d;
0000 vy; " 1011, 3
— 1
0001 vy, " 9 I~ 14
ds 5
0011 Ya 16
ds 6
0100 s
dsft 23 4 5
0101 ysg 17
d;
0110 vy, \
dg
0111 g 18
dg, -
1000 g
dio
1001 Y10 \
dig 19
1010 Y11
di2
1011 y1,
dis 20.
1100 Yi3
dis
1101 Y14 21
dis
1110 Yis 22 9
dis e
1111 yae 2
di7 — 25 26— —

Output code (from left to right, from top to bottom):

0101 0101 0101 0101 0101 0100 0011 0011 0010 0001 0001 0001 0010 0010 0011

0100 0101 1000 1010 1100 1101 1110 1110 1121 1111 1111 1111 1110 1110

Figure 2. 16 Pulse code modulation (PCM)
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- In PCM, a sampling, a uniform quantization,
and a natural binary code converts the input
analog signal into adigital signal.

- In this way, an analog signal modulates a
pulse train with the natural binary code.

- By far, PCM is more popular than other
types of pulse modulation

since the code modulation is much more
robust against various noises than
amplitude modulation, width modulation
and position modulation.

- In fact, almost all coding techniques include
a PCM component.

- In digital image processing, given digital
Images usually appear in PCM format.

It Is known that an acceptable PCM
representation of monochrome picture
requires 6 to 8 bits per pixel [huang 1975].

- It is used so commonly in practice that its
performance normally serves as a standard
against which other coding techniques are
compared.



“Raw” Images
°

As an example, we apply the algorithm to a grayscale image,
with n = 32. The initial bins are chosen at random.

Original image, entropy=7.65
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“Raw” Images
°

As an example, we apply the algorithm to a grayscale image,
with n = 32. The initial bins are chosen at random.

21 iterations, entropy=4.75, PSNR 40.7
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“Raw” Images
°

As an example, we apply the algorithm to a grayscale image,
with n = 32. The initial bins are chosen at random.

28 iterations, entropy=4.56, PSNR 40.0
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“Raw” Images
L]

Here is the quantization function for the second run:

ax)
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150
100

50

January 6-9 |
2011 Joint Mathematics Meetings



“Raw” Images
L]

Quantization applied to “raw” images usually gives bad results
in areas of gradual gray-value change (sky, water, etc.):

Original image:
entropy=7.63

69
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“Raw” Images
L]

Quantization applied to “raw” images usually gives bad results
in areas of gradual gray-value change (sky, water, etc.):

n=28:
10 iterations, entropy=5.53, PSNR 45.1

69
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“Raw” Images
L]

Quantization applied to “raw” images usually gives bad results
in areas of gradual gray-value change (sky, water, etc.):

n=25:
18 iterations, entropy=4.35, PSNR 38.0

69
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“Raw” Images
L]

Quantization applied to “raw” images usually gives bad results
in areas of gradual gray-value change (sky, water, etc.):

n=2%
22 iterations, entropy=3.76, PSNR 34.7

69
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Transformed Images
[ ]

We now compare step quantization to Lloyd-Max quantization
for a transformed image:

@ We use the CDF97 wavelet transform once.
@ For the step quantization we use = = 16:

Original image (-128): entropy=7.74

January 6-9 |
2011 Joint Mathematics Meetings



Transformed Images
[ ]

We now compare step quantization to Lloyd-Max quantization
for a transformed image:

@ We use the CDF97 wavelet transform once.
@ For the step quantization we use = = 16:

CDF97-transformed image

Jamary 69|
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Transformed Images
[ ]

We now compare step quantization to Lloyd-Max quantization
for a transformed image:

@ We use the CDF97 wavelet transform once.
@ For the step quantization we use © = 16:

7/2=8 =16

=16 2r=32

Step sizes for the quantization

January 69 |
2011 Joint Mathematics Meetings



Transformed Images
[ ]

We now compare step quantization to Lloyd-Max quantization
for a transformed image:

@ We use the CDF97 wavelet transform once.
@ For the step quantization we use 7 = 16:

Quantized transform: entropy=2.75

January 69 |
2011 Joint Mathematics Meetings



Transformed Images
[ ]

We now compare step quantization to Lloyd-Max quantization
for a transformed image:

@ We use the CDF97 wavelet transform once.
@ For the step quantization we use = = 16:

Reconstructed image: PSNR 32.44

69 |
2011 Joint Mathematics Meetings



Transformed Images
L ]

Here is the same example with Lloyd-Max quantization:

2011 Joint Mathematics Meetings



Noting that fis one of the L reconstruction levels obtained by (10.1), we can Write &

< Uaa
s
r i) - “-.I-

(10.6) as
Z . pr(fo)(ri = fo)* dfs - (107
To minimize D,
oD = (), l=k=L
or,
adD = 0, l=k=L —1
O (10.8)
dU - —C0
d.[. = X
From (10.7) and (10.8),
Ak
L=dk 1 pof(f{}) dfq
r, = “dk A ; l=k=1L (10.9a)
J;de“l Pf(fﬂ) dfy
Vi & Fisi
dy = 2 : l=k=sL -1 (10.9b)
d{_} = — 0 (1096)
d, = oo, (10.9d)

The first set of equations in (10.9) states that a reconstruction level r, is the centroid
of p,(fy) over the interval d,_; = fy = d,. The remaining set of equations states
that the decision level d, except d, and d; 1s the muiddle point between two recon-
struction levels r, and r.,;. Equation (10.9) is a necessary set of equations 1or
the optimal solution. For a certain class of probability density functions, including
uniform, Gaussian, and Laplacian densities, (10.9) is also sufficient.

Solving (10.9) is a nonlinear problem. The nonlinear problem has been
solved for some specific probability density functions. The solutions when p;(fo)
is uniform, Gaussian, and Laplacian are tabulated in Table 10.1. A quantizer
based on the MMSE criterion is often referred to as a Lloyd-Max quantizer [Lloyd;
Max]. From Table 10.1, the uniform quantizer is the optimal MMSE quantizer

when p,(fy) is a uniform probability density function. For other densities, the -

optimal solution is a nonuniform quantizer. For example, the optimal reconstruc-

tion and decision levels for the Gaussian p/(f,) with variance of 1 when L = 4 ar¢ g

shown 1n Figure 10.5.

It is useful to evaluate the performance improvement that the optimal MMSE :

quantizer gives over the simpler uniform quantizer. As an example, consider a

Gaussian p(f,) with mean of 0 and variance of 1. The average distortion D mn

784 Image Coding Chap. 10
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TABLE 10.1 PLACEMENT OF RECONSTRUCTION AND DECISION LEVELS

FOR LLOYD-MAX QUANTIZER. FOR UNIFORM PDF, p,(f,) IS ASSUMED

UNIFORM BETWEEN —1 AND 1. THE GAUSSIAN PDF IS ASSUMED TO - i
HAVE MEAN OF 0 AND VARIANCE OF 1. FOR THE LAPLACIAN PDF, |

V2 Vvt
pety) = e~ witho = 1.
20
Uniform (Gaussian Laplacian
Bits F; d,- I'; d:‘ g d:’
1 —-0.5000 —1.0000 —0.7979 —x —0.7071 —=
0.5000 0.0000 07979 0.0000 0.7071 0.0000
1.0000 ee 0
2 —-0.7500 —-1.0000 —1.5104 —«= —1.8340 —o

—-0.2500 —=0.5000 -0.4528 —0.9816 —0.4198 —1.1269
0.2500 0.0000 0.4528 0.0000 0.4198 0.0000
0.7500 0.5000 1.5104 0.9816 1.8340 L. 1469
1.0000 % e
2 —0.8750 -=1.0000 —2.1519 —w —3.0867 —o
—-0.6250 -—0.7500 —1.3439 —-1.7479 —1.6725 —2.3796
—{.3750 —0.5000 =D.7360 —1.0500 —0.8330 ~=1.2527
—0.1250 —0.2500 —0.2451 —-0.5005 —0.2334 —0.5332
0.1250 0.0000 0.2451 0.0000 0.2334 0.0000
0.3750 0.2500 0.7560 0.5005 0.8330 0.5332
0.6250 0.5000 1.3439 1.0500 LaTd3 L2527
0.8750 0.7500 21319 1.7479 3.0867 Z:9769
1.0000 0 0
4 —0.9375 —-1.0000 —=2.7326 — —4.4311 —« ,
—0.8125 —=0.8750 —2.0690 —2.4008 —3.0169 —3.7240 s
—0.6875 ~0.7500 ~1.6180 =1.8435% =2.1773 =2.597] '
—0.5625 —-0.6250 —1.2562 —1.4371 —1.5778 —1.8776
—-0.4375 —-0.5000 —0.9423 —1.0993 —1.1110 —1.3444
—0.3125  -0.3750 —0.6568 —0.7995 —0.7287 —0.9198
—0.1875 —0.2500 —0.3880 —0.5224 —0.4048 —0.5667
—0.0625 —0.1250 -0.1284 —0.2582 —-0.1240 —0.2664
0.0625 0.0000 0.1284 0.0000 0.1240 0.0000
0.1875 0.1250 0.38380 0.2582 0.4048 0.2644
(J.3125 0.2500 0.6568 0.5224 0.7287 0.5667
0.4375 0.3750 0.9423 0.7995 11414 0.9198

0.5625 0.5000 1.2562 1.0993 1.5778 1.3444
0.6875 0.6250 1.6180 1.4371 217173 1.8776
0.8125 0.7500 2.0690 1.8435 3.0169 L JET]
0.9375 0.8750 2.7326 2.4008 4.4311 3.7240
1.0000 e o0

(10.6) as a function of the number of reconstruction levels L is shown in Figure
10.6 tor the optimal MMSE quantizer (solid line). The average distortion D as a
function of L 1s also shown in Figure 10.6 for the uniform quantizer® (dotted line),
in which the reconstruction levels r; are chosen to be symmetric with respect to

“The definition of uniform quantization by (10.5) has been extended in this case to
account for a Gaussian random variable f whose value can range between — and .

Sec. 10.1 Quantization | 595




Nonuniform o
quantizer

f—

i 1

1.5104 - D

0.4528 p——

—0.9816 0.9816
—0.4528
e —1.5104 —

Figure 10.5 Example of a Lloyd-Max quantizer. The number of reconstruction
levels is 4, and the probability density function for f1s Gaussian with mean of
and variance of 1.

the origin, the minimum and maximum decision boundaries are assumed to be — o
and <, respectively, and the reconstruction step size A is chosen to minimize the
average distortion D. From Figure 10.6, if codewords of uniform length are used
to represent the reconstruction levels, the saving in the number of bits is in the

range of 0 ~ z bit for L between 2 (1 bit) and 128 (7 bits). This example is based

A
D s
Uniform
Q guantization
E:E =20 |-
= Figure 10.6 Comparison of average
distortion D = E[(f — f)?] as a tunc-
~30 |- =iayEar tion of L, the number of reconstruction
- TR levels, for a uniform quantizer (dotted
N line) and the Lloyd-Max quantizer
(solid line). The vertical axis is 10 lD*gw
| | | | g ; D. The probability density function 1S
-40 - . | | .
2 4 8 16 32 64 128  assumed to be Gaussian with varnanc
(1 bit) (2 bits) (3 bits) (4 bits) {5 bits) (6 bits) (7 bits) of 1.
6 Image Coding  Chap. 10
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Commonly used objective measures are the root-mean-square error egyg, the
root-mean-square signal-to-noise ratio SNRg,, and the peak signal-to-noise ratio
SNRpp i We can define the error between an original, uncompressed pixel value and
the reconstructed (decompressed) pixel value as

error(r, ¢) f(r, c) — Mr, c)
where /(r,c) = the original 1mage

[(r,¢) = the decompressed image
Next, we can define the total error in an NV x [NV decompressed 1image as

N=1 N-

Total error T [(r,c) - I(r, )]

Faly el

gemial

The root-mean-square error is found by taking the square root (“root”) of the error
squared (“square”) divided by the total number of pixels in the image (“mean”

>

<] =l

| 2
s = NE Z{; [[(r,c) - 1(r, )]

~
[
[

The smaller the value of the error metrics, the better the compressed image repre-
sents the original image. Alternately, with the signal-to-noise (SNR) metrics, a larger
number implies a better image. The SNR metrics consider the decompressed image
I(r, ¢) to be the “signal” and the error to be “noise.” We can define the root-mean-square
signal-to-noise ratio as

V=] aN=] i .
, 2. el
SNR — r=0 ¢=0
RMS N-1N-1
, 2 (e} - Lre)]
\ r=0 ¢=0

Another related metric, the peak signal-to-noise ratio, 1s defined as
(L 1)

LY Yl - 1, oF
N2:20 c=0

where L = the number of gray levels
(e.g., for 8 bits L = 256)

SNR

These objective measures are often used in research because they are easy to generate
and seemingly unbiased, but remember that these metrics are not necessarily corre-
lated to our perception of an image. The subjective measures are a better method for
comparison of compression algorithms, if the goal is to achieve high-quality images as
defined by our visual perception.

Subjectwe testing 1s performed by creatmg a databage of images to be tested,

- Py P i 1 e arif - 0 - ™ L o T s s — Tleonge® o o T |
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quality. This scale can then be used by human test subjects to determine 1image fidel-
ity. In order to provide unbiased results, evaluation with subjective measures requires
careful selection of the test subjects and carefully designed evaluation experiments.
The objective criteria, although widely used, are not necessarily correlated with our
perception of image quality. However, they are useful as a relative measure in compar-
ing different versions of the same image (see Figure 5.1-1).

-igure 5.1-1 Objective Fidelity Measures

a. Original image. The peak SNR of an image b. Original image guantized to 16 gray levels
with itself is theoretically infinite, so a high SNR using IGS. The peak SNR of it and original
implies a good image and a lower SNR implies image is 35.01.

an inferior image.

c. Original image with gaussian noise added with d. Original image with gaussian noise added with
a variance of 200 and mean 0. Peak SNR of it a variance of 800 and mean 0. Peak SNR of it
ana original image is 28.14. and original image is 22.73.
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criterion. The results are then analyzed statistically, typically using the averages and
standard deviations as metrics. Subjective fidelity measures can be classified into
three categories. The first type are referred to as impairment tests, where the test sub-
jects score the images in terms of how bad they are. The second type are quality tests,
where the test subjects rate the images in terms of how ogood they are. The third type
are called comparison tests, where the images are evaluated on a side-by-side basis.
The comparison type tests are considered to provide the most useful results, as they
provide a relative measure, which is the easiest metric for most people to determine.
Impairment and quality tests require an absolute measure, which is more difficult to
determine in an unbiased fashion. In Table 5.1-1 are examples of internationally
accepted scoring scales for these three types of subjective fidelity measures.

Table 5.1-1 Subjective Fidelity Scoring Scales

Impairment Quality Comparison
5—Imperceptible A—Excellent +2 much betté;r
4—Perceptible, not annoying B—Good +1 better
3—Somewhat annoying C—Fair 0 the same
2—Severely annoying D—Poor —1 worse
1—Unusable E—Bad —2 much worse

5.1.2 Compression System Model

The compression system model consists of two parts: the compressor and the
decompressor. The compressor consists of a preprocessing stage and encoding stage,
whereas the decompressor consists of a decoding stage followed by a postprocessing
stage (Figure 5.1-2). Before encoding, preprocessing is performed to prepare the image

Figure 5.1-2 Compression System Model

Input I}ﬁage

I(r, ¢) » Preprocessing - Encoding Compressed

File

a. Compression.

/" Compressed ™\ _ _
| Fig o Decoding - Postprocessing

Decoded Image

4

ir, c)

b. Decompression.
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information is évaﬂab]e} we will provide the NMSE (normalized mean square error)
and the SNR (signal to noise ratio) defined as

o _ o[ Var [Fu, n) — f(n, ny) _
NMSE in % = 100( Var [Fln,, )] Yo (10.33a)
—7
NMSE
SNR in dB = 10 log ( 81 oom %) dB (10.33b)

where f(n,, n,) is the original image, and f(n;, n,) is the coded image. The NMSE
measure in (10.33a) is identical to the NMSE used in Chapter 9. The use of
variance ensures that adding a bias to f(n,, n,) will not affect the NMSE.

10.3.1 Pulse Code Modulation (PCM)
The simplest waveform coding method is the basic pulse code modulation (PCM)
system, 1n which the image intensity f(n,, n,) is quantized by a uniform quantizer.
The basic PCM system is shown in Figure 10.17. The image intensity f(n;, n,)
that has been quantized is denoted by f(xn;, n,) in the figure. The PCM system
can be used not only to code image intensities, but also to code transform coef-
ficients and image model parameters. However, it was first used, and is still
extensively used, in coding waveforms. Therefore, a PCM system without addi-
tional specification is regarded as a waveform coder. This also applies to other
wavetorm coders, such as delta modulation (DM) and differential puise code mod-
ulation (DPCM), which will be discussed later. |

Lhe basic PCM system in Figure 10.17 is typically used in obtaining an original
digital image f(n,, n,) from an analog mmage in most digital image processing
applications. The spatial resolution of a digital image f(n;, n,) is primarily de-
termined by its size (number of pixels). The size of f(ny, n,) is chosen on the
basis of the resolution desired in a given application. A digital image of 1024 X
1024 pixels has resolution comparable to that of 35 mm film. A digital image of
012 x 512 pixels has resolution comparable to that of a TV frame (two fields).
Digital images of 256 x 256 pixels and 128 X 128 pixels are also used in such
applications as video telephone. As we decrease an image’s size, its resolution is
decreased, and details begin to disappear. This was illustrated in Figure 1.11.
T'he bit rate used in the original monochrome digital image in most applications is
s bits/pixel. Except where a very accurate representation of the original analog
image is required, such as in medical Image processing, the basic PCM system at
8 bits/pixel preserves sufficient quality and intelligibility for most applications. A
digital image with a bit rate of 8 bits/pixel will be considered an original image 1n
our discussions of monochrome image coding.

The bit rate used in our discussion is expressed in bits/pixel. It is important
to note that the measure bits/pixel can be misleading. For example, if we obtain
a digital image by sampling the analog image at a rate much higher than can be

Figure 10.17 Basic pulse code modula-
tion system. ’

f{ny, ny) ——— Uniform quantizer ——— f(n,, n,)
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5.3.4 Differenti®Predictive Coding

Differential predictive coding works by predicting the next pixel value based on
the previous values and encoding the difference between the predicted value and the
actual value (for analog signals, this is also called differential pulse code modulation
or DPCM). This technique takes advantage of the fact that adjacent pixels are highly
correlated, which means that the difference between adjacent pixels is typically small.
Because this difference is small, it will take only a small number of bits to represent
1t. The use of a predictor allows us to further reduce the amount of information to be
encoded. By using a simple prediction equation, we can estimate the next pixel value
and then encode only the difference between the estimate and the actual value. This
error 1s then quantized, to further reduce the data and to optimize visual results, and
can then be coded.
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A block diagram of this process 1s shown 1n Figure 5.3-7, where we can see that
the predictor must be in the feedback loop so that it matches the decompression sys-
tem. The system must be initialized by retaining the first value(s) without any com-
pression in order to calculate the first prediction. From the block diagram, we have

the following:

[ = the predicted next pixel value
[ = the reconstructed pixel value
e =1 - I = error
# = [ - I = quantized error

The prediction equation is typically a function of the previous pixel(s) and can also
include global or application-specific information.

The theoretically optimum predictor, using only the previous value and based on
minimizing mean-squared error between the original and the decompressed image, is
given by

[

r,e+ 1) = pl(r,e) + (1 -p) I(r, ©)
where [(r, c) = the average value for the image
p = the normalized correlation between pixel values

{1

Lure 5.3-7 Differential Predictive Coding
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For most images @is between 0.85 and 0.95. When the next pixel value has been pre-
dicted, the error is calculated: "

e(r,c+1) = I(r,c+1) - I(r,c+1)

This error signal is then quantized such that ﬁ

&r,c+1) = I(r,c+1) - ]M(r:,c+1)

This quantized error can then be encoded using a lossless encoder, such as a Huffman
coder. It should be noted that it is important that the predictor uses the same values
during both compression andsdecompression, specifically the reconstructed values and
not the original values (see Figure 5.3-7). In Figure 5.3-8 we see the results from using
the original image values in the prediction, compared to using the reconstructed
(decompressed) pixel values in the predictor. With these examples the quantization
used was simply truncation (“clipping”).

The prediction equation can be one-dimensional or two-dimensional, that is, it
can be based on previous values in the current row only or on previous rows also
(see Figure 5.3-9). The following prediction equations are typical examples of those
used in practice, with the first being one-dimensional and the next two being two-
dimensional:

[(r,e+1) = 0.97{(r, ¢)
Hr,c+1) = 0491(r.c¢) + 0.497(r - 1,c+ 1)
fr,e+1) = 0.741(r,c) + 0.74i(r = 1,c + 1) - 0.49/( - 1, ¢)

#

[

Using more of the previous values in the predictor increases the complexity of the
computations for both compression and decompression, and it has been determined

Igure 5.3-8 DPC Example

a. Original image.
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b. DPC using original values in predictor, clipping c. Error image of (b), multiplied to show dgtaii.

to the maximum, 5 bits/pixel, normalized corre-
lation .90.

B

d. DPC using reconstructed values in predictor,
clipping to the maximum, 5 bits/pixel, normal-
ized correlation .90.

e. Error image of (d), multiplied to show detail.

*a

that using more than three of the previous values provides no significant 1mpre

ment in the resulting 1mage.
The results of DPC can be further improved by using an optimal quantizer,
as the Lloyd-Max quantizer, instead of simply truncating the resulting error.
’ T lovd-Max guantizer assumes a specific distribution for the prediction error. Ass



T'he results of DPC can be further improved by using an optunal quantizer, such
as the Llﬂ}'d—i\laxéunﬂtizer, mstead of simply truncating the resulting ervor. The
Lloyd-Max quantizér assumes a specific distribution for the prediction error. Assum-

ing a 2-bit code for the error and a laplacian distribution for the error, the Lloyd-Max
quantizer is defined as follows (see Figure 5.3-10);

ERROR RANGE QUANTIZED VALUE
0 < e <1.1020 - +0.3950
1.1020 <« e <o - +]18l0

-1.1020 < e <0 - -0.3950

-1.1020 £ e <-= - -18lo

where o = the standard deviation of the error distribution
-

Tables for the coefficients for n-bit codes can be found in the references. For most
images, the standard deviation o for the error signal is between 3 and 15. In Figure 5.3-
11 1s a comparison of using the Lloyd-Max quantizer and truncation as a quantization
method. Figure 5.3-12 shows the error images and decompressed images using different
bit rates for DPC compression (with Lloyd-Max quantization and a one-dimensional
predictor).

Figure 5.3-9 DPC Predictor Dimensions

4 X A
“m *zﬁ
X
a. One-dimensional predictor, based on current b. Two-dimensional predictor based on current
row only; x = current pixel. and previous row or rows.
Figure 5.3-10 Lloyd-Max Quantizer
Quantized values: -1.81 0 -0.395 © 0.395 ¢ 1.81 0
A , .f'l\ | ,)‘\ _f/‘\
= — aY e
- | | | _
| | |
Error ranges: -1.102 s 0 1.102 s

a. 2-bit Lloyd-Max quantizer with laplacian error distribution.
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Figure 5.3-12 (Continued)
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&
h. Lloyd-Max quantizer, using 4 bits/pixel, nor- i. Error image for (n).
malized correlation = 0.90, with standard devi-
ation = 10.
i. Lloyd-Max quantizer, using 5 bits/pixel, nor- . Error image for (j). |

malized correlation = 0.90, with standard devi-
ation = 10.
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for the encoding process, and consists of any number of operations that are application
specific. After the compressed file has been decoded, postprocessing can be performed
to eliminate some of the potentially undesirable artifacts brought about by the com-
pression process. Often, many practical compression algorithms are a combination of
a number of different individual compression techniques.

The compressor can be further broken down into stages as illustrated in Figure
5.1-3. The first stage in preprocessing 1s data reduction. Here, the image data can be
reduced by gray-level and/or spatial quantization, or they ¢an undergo any desired
irhaée enhancement (Tor exampld, noise removal) process. The second step in pfégro—
cessing 1s the mapping process, which maps the original image data into another
mathematical space where it is easier to compress the data. Next, as part of the encod-
Ing process, 1s the quantization stage, which takes the potentially continuous data
from the mapping stage and puts it in discrete form. The final stage of encoding
involves coding the resulting data, which maps the discrete data from the quantizer
onto a code in an optimal manner. A compression algorithm may consist of all the
stages, or 1t may consist of only one or two of the stages.

The decompressor can be further broken down into the stages shown in Figure

5.1-4. Here the decoding process is divided into two stages. The first, the decoding
stage, takes the compressed file and reverses the original coding by mapping the codes

-igure 5.1-3 The Compressor

Data

Input Image M _
- Reduction - SRR

ir, ¢)

Preprocessing

Compressed

o Quantization _ - Coding .

File

Encoding
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Figure 5.1-4 The Decompressor

D 4in Inverse
- =R | - Mapping

Compressed

File

¥ Decoding

Decoded Image
i(r, c)

— Postprocessing .

to the original, quantized values. Next, these values are processed by a stage that per-
forms an inverse mapping to reverse the original mapping process. Finally, the image
may be postprocessed to enhance the look of the final image. In some cases this may
be done to reverse any preprocessing, for example, enlarging an image that was
shrunk in the data reduction process. In other cases the postprocessing may simply
enhance the image to ameliorate any artifacts from the compression process itself.

The development of a compression algorithm is highly application specific. Dur-
ing the preprocessing stage of compression, processes such as enhancement, noise
removal, or quantization are applied. The goal of preprocessing is to prepare the
1image for the encoding process by eliminating any irrelevant information, where irrel-
evant 1s defined by the application. For example, many images that are for viewing
purposes only can be preprocessed by eliminating the lower bit planes, without losing
any useful information. In Figure 5.1-5 are shown the eight bit planes corresponding
to an 8-bit image. Each bit plane is shown as an image by using white if the corre-
sponding bit is a 1 and black if the bit is a 0. Here we see that the lower bit planes con-
tain little information and can be eliminated with no significant information loss.

The mapping process 1s important because image data tend to be highly corre-
lated. What this means is that there 1s a lot of redundant information in the data
itself. Specifically, if the value of one pixel is known, it is highly likely that the adja-
cent plxemmmﬂar By finding a mapping equation that decorrelates the data,
thistype of data redundancy can be removed. One method to do this is to find the dif-
ference between adjacent pixels and encode these values; this is called differential
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result of vector quantization at 3 bit/pixel. The block size used is 4 x 4 pixels,
and the codebook in this example was designed by using a variation of the K-means
algorithm discussed in Section 10.1.2. The training data used are all the blocks

of four different images.

10.4 TRANSFORM IMAGE CODING

In transform image coding, an image is transformed to a domain significantly
different from the image intensity domain, and the transform coefficients are then
coded. In low bit rate applications (below 1 or 2 bits/pixel) such as video con-
ferencing, transform codifig techniques with scalar quantization typically perform
significantly better than waveform coding techmques with scalar quantization. They
are, however, more expensive computationally.

Iransform coding techniques attempt to reduce the correlation that eX1Sts
among image pixel intensities more fully than do waveform coding technigues.
When the correlation is reduced, redundant information does not have to be coded
repeatedly. Transform coding techniques also exploit the observation that for
typical images a large amount of energy is concentrated in a small fraction of the
transform coefficients. This is called the energy compaction property. Because
of this property, it is possible to code only a fraction of the transform coefficients
without seriously affecting the image. This allows us to code images at bit rates
below 1 bit/pixel with a relatively small sacrifice in image quality and intelligibility.

In coding transform coefficients, we can use any of the quantization methods
discussed in Section 10.1. However, the method that has been used most frequently
1s scalar quantization, because of its simplicity. In this section, we will assume
scalar quantization unless otherwise specified.

10.4.1 Transforms

A schematic diagram of a transform image coder is shown in Figure 10.41. At
the transmitter, the image f(n,, n,) is transformed and the transform coefficients
T¢(ky, k) are quantized. The quantized Tf(kl, k,) are then coded. At the re-
ceiver, the codewords are decoded and the resulting quantized transform coeffi-
cients T?}(kl, k,) are inverse transformed to obtain the reconstructed image
f(nls HE)'

Several properties are desirable in the transform. Since we compute the
transform at the transmitter and the inverse transform at the receiver, it is important
to have efficient ways to compute them. Transforms which have been considered
for image coding are linear transforms that can be expressed as

Ni—1 Nz—-1

E ZO f(nlz nz)a(”h M, klj kz) (10.56&)

ni=0 nz=
Ni—1 N>—1

f(ny, ny) = Z Z Tf(klzr kz)b(”h ny; ki, k) (10-56b)

Ki=0 k=0

Tf(kl 3 kE)

642 Image Coding  Chap. 10




Transmitter

T, (ks k) Tk k)

o Codeword
fin,, ny) > Transform > Quantization 1 assignment Ean
Receiver A
A » Inverse _{Tf{kw ko) S &
finy, ng) transform ecoder

Figure 10.41 Transform image coder.

where f(ny, n,) is an N; X N,-point’sequence, T:(k,, k) 1s also an N; X N,-point
sequence and represents the transform coefficients, and a(n,, n,; k;, k,) and
b(n,, n,; ky, k,) are the basis functions that satisfy (10.56). From (10.56), we can
deduce that f(n,, n,) is a linear combination of the basis functions b(n,, #n,; ky, k)
and that the transform coefficients T(k,, k,) are the amplitudes of the basis func-
tions in the linear combination. When the basis functions have some form of
sinusoldal behavior, the transtorm coefficients can be interpreted as amplitudes of
generalized spectral components. From computational considerations, the basis
functions used in most transform image coders are separable, so (10.56) can be
expressed as

Ni—1 Nz2—1

Te(ky, ky) = ZD 2—0 f(ny, ny)ag(ny; ki)ac(ng; ky), (10.57a)
Ni—1 No—1

f(ny, ny) = kZ_D kz_ﬁ Te(k1, k2)br(ny; k)b (ny; k). (10.57b)

An example of a transform in the form of (10.57) is the discrete Fourier transform
(DFT) discussed in Section 3.2;

Ni—1 Nz2—1

Fllo, k) = 3 3 flm, ny)eimivkme=Grin:ir: (10.58a)

ni=0 n=0

Ni—1 Nz2—1
1: 1 2

Flk,, ky)el GmiNOkimgi @uiNokr —(10.58b
NN, ﬁuz::o k;::o Uey, ke2) ( )

f(nln ”2) R

When the basis functions are separable, the transform and inverse transform can
be computed by row-column decomposition, in which 1-D transforms are computed
row by row and then column by column. Row-column decomposition for com-
puting a 2-D DFT was discussed in Section 3.4.1. Row-column decomposition
can reduce the number of arithmetic operations by orders of magnitude compared
to direct computation. In the case of a 512 X 512-point DFT computation, row-
column decomposition alone reduces the number of arithmetic operations by a
factor of several hundred (see Section 3.4.1). For transforms such as the DFT,
additional computational savings can be obtained by exploiting the sinusoidal be-
havior of the basis functions.

Another desirable property of a transform is reduction of correlation among
ransform coefficients. We will refer to this property as the correlation reduction

Soare 10 4 Trancfarm Imaoe Codina b4z
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Figure 5.3-11 (Continued)
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e. Truncation quantizer, using 4 bits/pixel, nor-
malized correlation = 0.90.

malized correlation = 0.90, with standard devi-
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5.3.5 Transform Coding

Transform coding is a form of block coding done in the transform domain. The
image is divided into blocks, or subimages, and the transform is calculated for each
block. Any of the previously defined transforms can be used, frequency (e.g., Fourier)
or sequency (e.g., Walsh), but it has been determined that the discrete cosine trans-
form (DCT) is optimal for most images. After the transform has been calculated, the
transform coefficients are quantized and coded. The primary reason this method 1s
effective is because the frequency/sequency transform of images efficiently puts most
of the information into relatively few coefficients so that many of the high-frequency
coefficients can be quantized to O (eliminated completely). This type of transform is
really just a special type of mapping that uses spatial frequency concepts as a basis for
the mapping. Remember that for image compression the whole idea of mapping the
original data into another mathematical space is to pack the information (or energy)

into as few coefficients as possible.

The simplest form of transform coding is achieved by filtering; we can simply
eliminate some of the high-frequency coefficients. This alone will not provide much
compression because the transform data are typically floating point and thus 4 or 8
bytes/pixel (compared to the original pixel data at 1 byte/pixel), so quantization and
coding are applied to the reduced data. The quantization process is partially per-
formed by what is referred as bit allocation. Bit allocation is determining the number
of bits to be used to code each coefficient. Typically, more bits are used for lower-ire-
quency components,

_/
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EXAMPLE >5—109

We have decided to use transform coding with a DCT on an image by dividing it into 4 x 4
blocks. The selected bit allocation can be represented by the following mask:

'8 6 4 1
6 4 1 0
4 1 0 0
1 0 0 o

where the numbers in the mask are the number of bits used to represent the corresponding
transform coefficients(the upper-left corner corresponds to the zero-frequency coefficient, or
a;érage value, and the frequency increases to the right and down). This allows the lqwer fre-
quencies less quantization (more resolution) because they have more bits to represent them.

Next a quantization scheme, such as Lloyd-Maxl quantization, is applied.
Because the zero-frequency coefficient for real 1mages contains a large portion of the
energy 1n the image and is always positive, it is typically treated differently than the
higher-frequency coefficients. After they have been quantized, the coefficients can be_
coded using, for example, a Huffman coding method.

~In addition to simple filtering, two particular types of transform coding have
been widely explored: zonal and threshold coding. These two vary in the method they
use for selecting the transform coefficients to retain (using ideal filters for transform
coding selects the coefficients based on theijr location in the transform domain). Zonal
coding involves selecting specific coefficients based on maximal variance, whereas
threshold coding selects the coefficients above a specific value. In zonal coding, a zonal
mask is determined for the entire image by finding the variance for each frequency
component. This variance is cglculated by using each subimage within the image as a
separate sample and then finding the variance within this group of subimages (see
Figure 5.3-13). The zonal mask is a bitmap of 1’s and 0’s, where the 1’s correspond to
the coefficients to retain, and the s correspond to the ones to eliminate. In practice,
the zonal mask is often predetermined because the low-frequency terms tend to con-
tain the most information, and hence exhibit the most variance. In threshold coding a
different threshold mask is required for each block, which increases file size as well as
algorithmic complexity.

Bl a5

under the auspices of the International Standards Organization (ISO) to devise an

optimal still image compression standard. The result was a family of image compres-
sion methods for still images. The JPEG standard uses the DCT and 8 x 8 pixel blocks

as the basis for compression. Before computing the DCT, the pixel values are level-
shifted so that they are centered atser6—————— —————— —— e

BRI W i -
Tt -

EXAMPLE 9 =.2 4

A typical 8-bit image has a range of gray levels from 0 to 255. Level-shifting this range to be cen-

tered at zero involves subtracting 128 from each pixel value, so the resulting range is from —198
to 127. .
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FFT-Real Data

o set z=X+0%*i
do FFT
wasteful

e find FFT of two real vectors x,y
Let

Z =X +iy,
Then




9 Inversion of the FFT of a real sequence

In this section we show how the symmetry property (5.6) of the FFT of a real
sequence can be used to reduce by about one-half the computations involved
in inverting the FFT. Although there are other methods of doing this than the
method described below, this method is of interest because it uses no extra sines
other than the set {S(m )}(1/4 )V that was used for performing the FFT itself.

We will assume in this section that W = e®™/&  Let Ry and T, stand for
the real and imaginary parts of the FFT {F})}. That is,

Fk:Rk—{_zIky (/{?:O) 1)-*4‘\/—_1) (91)

where Fj is defined by
N—1 |
Fo=>_ [iW
7=0

Then, by the formula for DFT inversion,

1 .
where
N—1 . : |
I ST o3
k=0

Using W = ™/~ and (9.1) we have

a

Z Rk+ZI —-i2mak /N

2‘_;
)

(9.4)

2wk 2n7k
(Ry + id%) (cos IR isin ?\jr )

;,r
i
[ei]



Since {f;} consists of real numbers, so does {g;} because of (9.2). Conse-
quently, only the real part of the sum in (9.4) is nonzero. Therefore, we must

have
N— N—1

2mik 2’Fj/€
g9; = ;) Ry cos ~ + Z Iy sin % (9.5)
Because of (5.6} we have
RJV—k‘.:Rk': Il\f—k:a‘[ka (k: 1?"'JJV_1>‘ (96)

It follows from (9.6) that, for each fixed j, the sequences

. N—1 . N—-1
27Tjk} { _ 217]19}
F cos and I sin

are even about (1/2)/N. From formula (7.3) we obtain

2=

N—1

N—
2mik 27 'k'
Ry cos U = Ry Z g cos o (9.7)
fo=1 k=1
and
N—1 FN—1 ]
2 . 2wik
ZI;C sin 298 _ 5 ST py gin 2208 (9.8)
N
k=1
Using (9.7) and (9.8) in (9.5) yields
;N IN-1
= Ro + Ry y(— +22chos——}—22]ksm (9.9)

Formula (9.9) shows that {g;}. -_0 , and consequently {f;})" i '~'» can be gen-
erated from a (1/2)/V-point fast cosine transform of

{0, 2Ry, 2R,, ..., ZR%N_I}
and a fast sine transform of
{20, 20,,..., 2[1§N_1}.

These fast cosine and fast sine transforms are even and odd about (1/2)N,
respectively. Taking this symmetry into account, formula (9.9) applies to 7 = 0,
1, ..., N —1.

As we noted above, an interesting feature of (9.9) is that to compute the
fast cosine and fast sine transforms, of order (1/2)N by the methods of
Section 7, one needs only the same sines {S (m)}(l/ )V generated to calcu-
late the FFT {Fk x—o - Therefore, inverting the FFT using (9.9) requires only
these same sines. This is a useful memory savings.




Cosine Transform

Define

Then

2n+—1)k7[:|k :0’1’___N -1

N-1 (
V. =¢, > U COS
n=0

Note this uses half points in the interval.
Then the inverse is given by

u, :Niav COS{%} n=01..N-1

k "k
=0

=~



To evaluate this fast we relate itto a FFT

ik N1 _2zikn

\QzR%@@MEN@ N} Re{a,w,, DFT (u)}

k™ 2N

where

Inverse

U=Sav co{%} n=01..N-1

0 = Re{[Zav eﬂ } n =o,1,...%—1

Then
u, =0,

~

u =u

2n+l 2(N-1-n)



Let

a, 22 {uzn cos[—(m;\?kﬂJ +u,, . cos[—(4n * 3)k”}

n=0 2N
EZ‘: 0 COS[(4n +1)k7z} ‘a, cos[(4n + 3)k7r}
n=0 2N 2N
nNn=N-n-1 n=N-n -1
iﬁncos (4n+1krx +§U.cos (4(N —n)—-1Dkx
n=0 L 2N _ n':% " 2N
N—lU COS_(4n + Dk |
= i 2N

= Re ake7$§U. COS[M}
=3 2N

|
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Figure 2.18: First 8 base functions of one-dimensional unitary transforms for
N = 16: a cosine transform and b sine transform.

The cosine and sine functions only span the subspaces of the even and
odd functions, respectively. Basis vectors with the missing symumetry
can be generated, however, if trigonometric functions with haif-integer
wavelengths are added. This is equivalent to doubling the base wave-
length. Consequently, the kernels for the cosine and sine transforms in
an M-dimensional vector space are

cos (TT’I’IU )
N 3

CTL'U

i

(2.44)

Swy = sin(TAQE1),

T e n AF AT T ~rAcine and sine func.‘
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(a} Cosine transform examples of monochrome im- {b} Cosine transform exampies of binary im;
ages;

Figure 5.11

3. The cosine transform is a fast transform. The cosine transform of a vecto
elements can be calculated in O(N log, N) operations via an N-poin
[19]. To show this we define a new sequence u(n) by reordering the eve
odd elements of u(n) as

a=un) ) g, (M)
QN —n—1)=u(2n+1)

Now, we split the summation term in (5.87) into even and odd terms ai
(5.91) to obtain

(Ni2) - 1 ~(4n
v =a®)] 2 u(n) cos[—(‘f—z%%]
(M) - 1
+ 2 u(Zn +1) cos[jﬁ:%?)i{}
(N/2) - 1 - Dk
= a(k) [ }_;0 i(n) cos[——(ir;;—)—}
(N12) - 1
+ 2 a(N-n-1) cos[w@rE; 3)/{}

Changing the index of summation in the second termton’'=N —n —
combining terms, we obtain




Discrete Cosine Transform

=

e Cosine Transform

The dct2 function in the Image Processing Toolbox computes the
two-dimensional discrete cosine transform (DCT) of an image. The DCT has
the property that, for a typical image, most of the visually significant
information about the image is concentrated in just a few coefficients of the
DCT. For this reason, the DCT is often used in image compression applications.
For example, the DCT is at the heart of the the international standard lossy
image compression algorithm known as JPEG. (The name comes from the

working group that developed the standard: the Joint Photographic Experts
Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows:

M-1 N-1
_ n(2m+1)p n@n+l)yg OspsM-1
00y D0 D An o.M cos - 2N 7 0<g<N-1

m=0n=0

a:{1/m,p:0 aﬁ{l/«/ﬁ,q'z
P2 M, 1sp<M-1 " \J2/N, 1<g=<N-1

The values B pg are called the DCT coefficients of A. (Note that matrix indices

in MATLAB always start at 1 rather than Q; therefore, the MATLAB matrix
elements A(1,1) and B(1,1) correspond to the mathematical quantities App

and B, , respectively.)

The DCT is an invertible transform, and its inverse is given by:

M-1N-1
2 2 o n(2m+1)p cos t2n+1)g O=sm<M-1
p q pa® IM 2N 7 0<n<N-1
p=0qg=0
a_{l/ﬂ?r,p:o a_{l/ﬂ,qzo
P2 M, 1spsM-1 ¢ |J2/N, 1<qsN-1

The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can he written as a sum of MN functions of the form:

6-15




o o COSTC(Qm+1)pcosﬂ:(2n+1)q 0<psM-1
p7q 2M 2N ' 0<gs<N-1

These functions are called the basis functions of the DCT. The DCT coefficients

B B then, can be regarded as the weights applied to each basis function. For

8-by-8 matrices, the 64 basis functions are illustrated by this image:

Horizontal frequencies increase from left to right, and vertical frequencies
‘increase from top to bottom. The constant-valued basis function at the upper
left is often called the DC basis function, and the corresponding DCT coefficient
By is often called the DC coefficient.

The DCT Transform Matrix

The Image Processing Toolbox offers two different ways to compute the DCT.
The first method is to use the function dct2. dct2 uses an FFT-based algorithm
for speedy computation with large inputs.

For small square inputs, such as 8-by-8 or 16-by-16, it may be more efficient to
use the DCT transform matrix, which is returned by the function dctmtx. The
M-by-M transform matrix T is given by:




Discrate Casins frans

fesrm

J—e p=0 0<gg<M-1

2 m2gt+ Lip <p<M-_ <g<M-1
A&cos 5[ 1<p<M-1, 0<g<M

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimengional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T ' . Since T is a real orthonormal matrix, its inverse 1s
the same as its transpose. Therefore, the inverse two-dimensional DCT of B 1s
given by T' *B*T. o

The DCT and Image Compression

In the JPEG image compression algorithm, the input image is divided into
3-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the DCT
coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in
the input image; discards (sets to zero) all but 10 of the 84 DCT coefficients in

:

6-17




each block; and then reconstructs the image using the two-dimensional inverg,
DCT of each block. The transform matrix computation method is used.

I = imread('cameraman.tif');

I = double(I)/255;

T = dcimtx(8);

B = blkproc(I,[8 8], 'P1*x*P2",T,T"),;

mask = [1 1 1 1 0 O 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 o 0 0 0 0
0 0 0 0 0 0 0 0],

B2 = blkproc(B,[8 8], 'P1.*x',mask};

I2 = blkproc(B2,[8 8], P1*x*P2',T"',T);

imshow(I), figure, imshow(I2)

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.
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To derive the inverse cosine transform relation, we relate C.(wy, ;) to
R(w,, w,) using (3.57), relate R(w,, w;) to r{n,, n,) using the inverse Fourier

transform relation, and then relate r(n,, n,) to x{n;, n,) using (3.56). The resuit

1 v ko
x(ny,n,) = mj’m: . L_ . Co(o1, wy) cos w,(n, + 3) cos wy(n, + 1) dw, dw,,

ny =0, n,= 0. (3.60)

From (3.58) and (3.60)

—

Cx(wl ? (1)2)

o

n=0 n2=0

(2m)?

x(nla nZ) =

0,

> z dx(ny, ny) cos wy(n, + 3) cos wy{n, +

Cosine Transform Pair

(3.61a)

[
p—

1 ™ v
j B J Clwy, w,) cos w, (i, + 3) cos wy{ny + 1) dowy dw,

[T

n, =0,n =10 (3.61b)

otherwise.
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Many properties of the cosine transform can be derived from (3.61), or (3.55)
and the Fourier transform properties. Some of the more important properties are
listed in Table 3.4. From the symmetry properties, C, {w,, »,) 1s an even function
and in addition is symmetric with respect to the w; and o, axes. When x(n;, 1)
is real, its cosine transform C (w;, w,) is also real.

TABLE 3.4

PROPERTIES OF THE COSINE TRANSFORM

x{ny, na), y(ny, ny) = Goutside n, = 0, n, = 0
x(”]a ”2) — Cx(wla U-);g)

y(”l: ”‘2) — C_v(wla wz)

Property 1.
Property 2.

Property 3.

Property 4.

Linearity
ax(ny, no) + by(n,, ny) = aClw;, w,) + bC (0, w,)
Separable Sequence ,
X, ) = xy(m)xa(n) < Clon, @3) = Colw)Colwy)
Energy Relationship
,”Eo mzo el na)f = 4(?

Symmetry Properties

(a) Clw,, wy) = Cl—wy, wy) = Ciloy, —wy) = C(—w;, —w,)
(b) x*(n,, n,) «— Ci o, »,)

(c) real x(n,, n,) «— real C (w,, ®.)

g

f — J‘_ ‘Cx(wln (")2)]2 d(.\)l d(;.}.2

The Discrete Fourier Transform Chap. 3




ure 2.5-13 Implied Symmetry for the Fourier Transform

mage Angiysis  uhap. «

quency information. They are used for image compression or for hiding effects caused
by noise. Visually they blur the image, although this blur is sometimes considered an
enhancement because it imparts a softer effect to the image (see Figure 2.5-17). Low-
pass filtering is performed by multiplying the spectrum by a filter and then applying
the inverse transform to obtain the filtered image. The ideal filter function is shown in

«— N——

F w | 4
,' _",
N
L 2
. e
a. Implied symmetry with origin in upper-left corner. b. Increasing frequency in direction of arrows.

Each N x N block represents all the transform coeffi-
cients and is repeated infinitely in all directions.

¢. Periodic spectrum, with quadranis labeled d. Spectrum shifted to center, Freguency

AB,CD.

increases in all directions as we move away
from the origin.




jure 2.5-15 Cosine Symmetry

— oN
o® '\ -
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a. Spectrum foided about origin, repre-

sented by the ®. The 2N < 2N block is

repeated infinitely in all directions.

b. Arrows indicate direction of increasing fre-
quency for cosine spectrum.

jure 2.5-16 Cosine Spectrum Should Not Be Shifted to Center

a. Cosine spectrum with arrows in direction
of increasing frequency.

b. Extracting the central Nx N portion, we
lose the high-frequency infermation.

[ |Low ftrequencies High frequencies
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%

+ Figure 13-5 The Haar transform
+ basis functions for N =38

distinguishes it from the other transforms mentioned so far and establishes a starting point
for wavelet transforms, which are introduced in the next chapter.

Basis Function Indexing. Since the Haar functions vary in two aspects (scale
and position), they must be specified by a dual indexing scheme. The Haar functions are
defined on the interval [0, 1] as follows. Let the integer 0 <k <N =1 be specified (uniquely)
by two other integers, p and g, as

k=274 qg-1 (47)
Notice that, under this construction, not only is k a function of p and g, but p and ¢ are func-
tions of k as well. For any value of & > 0, 27 is the largest power of 2 such that 27 <k, and
g — 1 is the remainder.
The Haar functions are defined by

1
holx) = —= {(48)
0 J]V
and
.
2P q-1 . x < 2
0P ok
i
h(x) = —= 1 (49)
TS I
2P __fgxc< i
op 2P
| 0 otherwise
Ifweletx=i/Nfori=0,1,...,N—1,this gives rise to a set of basis functions, each of which

is an odd rectangular pulse pair, except for £ = 0, which, as in the case-of many of the other
transforms discussed here, is constant. Further, the basis functions vary in both scale




3 . CHAPTER 2. IMAGE REPRESENTATION

p| b
0 0
] 1
2 \ 2
3 3
4—__ - 4_—‘
5__. 5
6 T 6
7__ 7

Figure 2.19: First 8 base functions of one-dimensional unitary transforms for
N = 16 a Hadamard transform and b Haar transform; '
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1t-by-eight unitary kernel matrix for the Haar transform is

Hr_::—

%

1 1 1 1 1 1 1 1
i 1 1 1-1=1 =1
24222 O 0. 0 B
0 0 0 0.J2.2-02-2
22 0-0 0 0 0 O
00 2 -2 0 0 0

000 0O 0 2-2 0 0
00 0 0 0 O -3
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(d) Hadamard;

(e) Haar; {f) Siant.

Figure 5.22 Basis restriction zonal filtering using different transforms with 4:1
sample reduction.







Sine Transform

V, = ,/ 2 Nqunsin{(nJrl)(kJrl)”} k=0,1..N-1
N +1n N +1
and

u, =,/i§vksin (n+1)(k+1)7 k=0,1..N-1
N + 1= N +1

To evaluate this fast we relate itto a FFT

ik N1 27ikn

V, = Re{ozke2N Yie "
n=0

k" 2N

}: Re{a,w,, DFT (u)}

where
l]n:uZn
a =u +1 0<n<—-1

Inverse
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Yo 1/7/99

% Y = DCT(X) returns the discrete cosine transform of X. The
% vector Y is the same size as X and contains the discrete
% cosine transform coelTicients.

%
% Author(s): C. Thompson, 2-12-93
9 S. Eddins, 10-26-94, revised

% Copyright 1993-1998 The MathWorks, Inc. All Rights Reserved.
% S$Revision: 5.3 § $Date: 1997/11/24 16:21:02 §

% References:

G 1y A. K. Jain, "Fundamentals of Digital Image

% Processing”, pp. 150-153,

o 2) Wallace, "The JPEG Sull Picture Compression Standard",
Yo Communications of the ACM, April 1991.

if rem{n,2)==1 | ~isreal(a), % odd case
% Form intermediate cven-symmetric matrix,

else 9% even case

% Re-order the elements of the columns of X
y =] aa(1:2:n,:); aa(n:-2:2,2 1,

% Compute weights to multiply DFT cocfficients T

ww = 2Fexp(-* (0 D Fpi(2Hn)sqre(2*n), L =y LT - R
ww( 1} = ww(1) / sqri(2): _ - i
W = ww(:,ones{1,m)); =

9 Compute DCT using equation (5.92} in Jain
b =W R Ifi(y);

end

if isreal(a), b = real(b); cnd
if do_trans,b=b." end




Notes

o

% X =IDCT(Y) inverts the DCT transform, returning the original
% vector if Y was obtained using Y = DCT(X).

9
% Author(s): C. Thompson, 2-12-93
% S. Eddins, 10-26-94, revised

% Copyright 1993-1998 The MathWorks, Inc. All Rights Reserved.
% $Revision: 5.3 $ $Date: 1997/11/24 16:21:02 %

% References:

% 1) A. K. Jain, "Fundamentals ol Digital Image

Yo Processing”, pp. 150-153.

% 2) Wallace, "The JPEG Still Picture Compression Standard”,
G Communications of the ACM, April 1991,

if rem(n,2)==1"! ~isrcai(b), % odd case
% Form intermediate even-symmetric matrix.

clse % cven case
% Compule precorrection factor .=
ww = sqrt(2*n) * exp(j*pi*(0:n-1)/(2*n))."; -
ww(l) =ww(1)/sqrt(2); ' ” -

W = ww(;,ones(l,m)); ]

% Compute x (ilde using equation (5.93) in Jain
y = ifft(W .¥bb);

% Re-order elements of each column according to equations (5.93) and
% (5.94) in Jain

a = zeros(n,m);
all:2m,)y = y(1lm/2,);

a(2:2:n,7) = yin:-1:n/2+1,:):

end

it isrcal(b), a = rcal{(a}; end
if do trans, a =a." end
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ical Analysis of the DCT Coefficient
Distributions tor Images
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Fig. 1. Histogram of DCT coefficients of “bridge.”

“experimental results like Fig. 1 indicated that they resemble

Laplacian distributions when the Kolmogorov—Smirnov good-
ness-of-fit test is used [4]. The probability density function of a
Laplacian distribution can be written as

plz) = 5 exp{-ple(}. ()

This is sometimes also referred to as the double exponential dis-
tribution. Since then, different researchers have tried a variety of
fitting methods, such as x?, Kurtosis, and Watson tests. Many
other possible distributions of the coefficients have also been
proposed, including Cauchy, generalized Gaussian, and even a
sum of Gaussians [5]-[9]. Using different pictures for the exper-
imenits, they often differ in opinion as to what distribution model
is the most suitable, although the Laplacian distribution remains
a popular choice balancing simplicity of the model and fidelity
to the empirical data. Yet, none of them provided any analytic
justification for their choices of distributions. In this paper, we
investigate this problem in two steps: first, we derive the distri-




e JPEG is not trivial to implement. It is not likely you will be able to sit down
and write your owll JPEG encoder/decoder in a few evenings. We recom-
mend that you obtain a third-party JPEG library, rather than writing your

OWI1.

e JPEG is not Supported by very many file formats. The formats that do sup-
port JPEG are all fairly new and can be expected to be revised at frequent

intervals. »

Baseline JPEG

.The JPEG specification defines a minimal subset of the standard called baseline

JPEG, which all JPEG-awar€ applications are required to support. This baseline
uses an encoding scheme based on the Discrete Cosine Transtorm (DCT) to

schieve compression. DGT is a generic name for a class of operations identified
and published some years ago. DCT-based algorithms have smce made their

way into various compression methods.

DCT-based encoding algorithms are always lossy by nature. DGI algorithms are
capable of achieving a high degree of compression with only minimal loss of
data. This scheme is effective only for compressing continuous-tone images 1n
which the differences between adjacent pixels are usually small. In practice,
JPEG works well only on images with depths of at least four or five bits per color
channel. The baseline standard actually specifies eight bits per input sample.
Data of lesser bit depth can be handled by scaling it up to eight bits per sam-
ple, but the results will be bad for low-bit-depth source data, because of the
large jumps between adjacent pixel values. For similar reasons, colormapped

source data does not work very well, especially if the image has been dithered.
The JPEG compression scheme is divided into the following stages:
1 Transform the image into an optimal color space.

9. Downsample chrominance components by averaging groups of pixels
together.

3. Apply 2 Discrete Cosine Transform (DCT) to blocks of pixels, thus remov-

ing redundant image data. |

4, Quantize each block of DCT coethicients using weighting functions opti-
mized for the human eye.

5 FEncode the resulting coefficients (image data) using a Huftman variable
word-length algorithm to remove redundancies in the coefficients.

Figure 0.11 summarizes these steps, and the following subsections look at each
of them in turn. Note that JPEG decoding performs the reverse of these steps-

uuuuu
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FIGURE 9-11: [PEG compression and decompression

Transform the image

- The JPEG algorithm is capable of encoding images that use any type of color
space JPEG 1tself encodes each component in a color model separately, and 1t
_is completely independent of any color-space model, such as RGB, HSI, or CMY.
:?;-f;;f;;}:-:__'The best compression ratios result if a luminance/chrominance color space,
~ such as YUV or YCbCr, 1s used. (See Chapter 2 for a description of these color
. spaces. )

.x.f;:_:;z;‘-:Most of the visual information to which human eyes are most sensitive is found
__in the highfrequency, gray-scale, luminance component (Y) of the YCbCr
~ color space. The other two chrominance components (Cb and Cr) contain
...fj.;;_'_?:',;*-_;,;:hlgh-frequency color information to which the human eye 1s less sensitive.
- Most of this information can therefore be discarded.

In comparison, the RGB, HSI, and CMY color models spread their useful visual
1mage information evenly across each of their three color components, making
the selective discarding of information very difficult. All three color COMPpPO-
llents would need to be encoded at the highest quality, resulting in a poorer
cempressmn ratio. Gray-scale images do not have a color space as such and
ﬂleref()re do not require transforming.
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Downsample chrominance components -
The simplest way of exploiting the eye’s lesser sensitivity to chrominance infor-
mation is simply to use fewer pixels for the chrominance channels. For exam-
ple, in an image nominally 1000x1000 pixels, we might use a full 1000x100q
luminance pixels but only 500x500 pixels for each chrominance component,
In this representation, each chrominance pixel covers the Same area as a 2x9
block of luminance pixels. We store a total of six pixel values for each 9x9
block (four luminance values, one €ach for the two chrominance Channels),f'ff

no etfect on the perceived quality of most images. Equivalent savings are not
possible with conventional color models such as RGB, because in RGB each
color channel carries some luminance information and so any loss of resoly-
tion is quite visible.

When the uncompressed data is supplied in a conventional format (equal reso-
lution for all channels), a JPEG compressor must reduce the resolution of the
chrominance channels by downsampling, or averaging together groups of pIx-
els. The JPEG standard allows several different choices for the sampling ratios,
or relative sizes, of the downsampled channels. The luminance channel is
always left at full resolution (1:1 sampling). lypically both chrominance chan- .
nels are downsampled 2:1 horizontally and either 1:1 or 2:1 vertically, meaning
that a chrominance pixel covers the same area as either a 2x1 or a 2x2 block of
luminance pixels. JPEG refers to these downsampling processes as 2hlv and

1 Sk
L
S
p)

2h2v sampling, respectively. ,

......

tion and downsampling have been in use since the beginning of color TV

transmission). 2hlv sampling is fairly common because it corresponds to
National Television Standards Committee (NTSC) standard TV practice, but it

offers less compression than 2h2v sampling, with hardly any gain in perceived
quality.

Apply a Discrete Cosine Transform |

The 1mage data is divided up 1nto 8x8 blocks of pixels. (From this point on,
each color component is processed independently, so a “pixel” means a single
value, even in a color 1mage.) A DCT is applied to each 8x8 block. DCT con-
verts the spatial image representation into a frequency map: the low-order or
“DC” term represents the average value in the block, while successive higher- =
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.......

across the width or height of the block. The highest AC term represents the
strength of a cosine wave alternating from maximum to minimum at adjacent

piXﬁlS.

- The DCT calculation 1s fairly complex; in fact, this 1s the most costly step in

JPEG compression. The point of doing it is that we have now separated out the

high- and low-frequency information present in the image. We can discard
high-frequency data easily without losing low-frequency information. The DCT
step itself is lossless except for roundoft errors.

. Quantize each block

_ To discard an appropriate amount of information, the compressor divides each
- DCT output value by a “quantization coefficient” and rounds the result to an
_integer. The larger the quantization coefficient, the more data is lost, because
_ the actual DCT value is represented less and less accurately. Each of the 64
positions of the DCT output block has its own quantization coefticient, with the
 higher-order terms being quantized more heavily than the low-order terms
~ (that is, the higher-order terms have larger quantization coefficients). Further-
_ more, separate quantization tables are employed for luminance and chromi-
~ pance data, with the chrominance data being quantized more heavily than the
_ luminance data. This allows JPEG to exploit further the eye’s differing sensitiv-

-".:'.':

1ty to luminance and chrominance.

It is this step that is controlled by the “quality” setting of most JPEG compres-
~ sors. The compressor starts from a builtin table that is appropriate for a
.~ medium-quality setting and increases or decreases the value of each table entry
~in inverse proportion to the requested quality. The complete quantization
_tables actually used are recorded in the compressed file so that the decompres-
~ sorwill know how to (approximately) reconstruct the DCT coefficients.

.......

_ Selection of an appropriate quantization table is something of a black art. Most
~ existing compressors start from a sample table developed by the ISO JPEG com-
_ mittee. It is likely that future research will yield better tables that provide more
compression for the same perceived image quality. Implementation of
~ improved tables should not cause any compatibility problems, because decom-
pressors merely read the tables from the compressed file; they don’t care how
~ the table was picked.

Enmde the resulting coefficients

The resulting coefficients contain a significant amount of redundant data.
‘ ;j.%_HUffman compression will losslessly remove the redundancies, resulting in
| Smaller JPEG data. An optional extension to the JPEG specification allows
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arithmetic encoding to be used instead of Huffman for an even greater com.-
pression ratio. (See the section called “JPEG Extensions (Part 1)” below.) At |
this point, the JPEG data stream is ready to be transmitted across a communica-

tions channel or encapsulated inside an image file format.

JPEG Extensions (Part 1)

What we have examined thus far is only the baseline specification for JPEG. A
number of extensions have been defined in Part 1 of the JPEG specification
that provide progressive image buildup, improved compression ratios using

arithmetic encoding, and a lossless compression scheme. These features are

beyond the needs of most JPEG implementations and have therefore been

defined as “not required to be supported” extensions to the JPEG standard.

Progressive image buildup

Progressive image buildup is an extension for use in applications that need to
receive JPEG data streams and display them on the fly. A baseline JPEG 1mage
can be displayed only after all of the image data has been received and
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decoded. But some applications require that the image be displayed after only
some of the data is received. Using a conventional compression method, this
means displaying the first few scan lines of the image as it is decoded. In this
case, even 1f the scan lines were interlaced, you would need at least 50 percent .

of the image data to get a good clue as to the content of the image. The pro-

gressive buildup extension of JPEG offers a better solution.

Progressive buildup allows an image to be sent in layers rather than scan lines.

But instead of transmitting each bitplane or color channel in sequence (which

wouldn’t be very useful), a succession of images built up from approximations
of the original image are sent. The first scan provides a low-accuracy represen-
tation of the entire image—in effect, a very low-quality JPEG compressed
. Image. Subsequent scans gradually refine the image by increasing the effective

quality factor. If the data is displayed on the fly, you would first see a crude, but
recognizable, rendering of the whole image. This would appear very quickly

because only a small amount of data would need to be transmitted to produce
it. Each subsequent scan would improve the displayed image’s quality one
block at a time.

A limitation of progressive JPEG is that each scan takes essentially a full JPEG
decompression cycle to display. Therefore, with typical data transmission rates,
a very fast JPEG decoder (probably specialized hardware) would be needed to
make effective use of progressive transmission. |
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I'he JPEG standard does offer a separate lossless mode. This mode has Hothi.'f;f-af'-?%i
in common with the regular DCT-based algorithms, and it is currently 1mp1&_#
mented only in a few commercial applications. JPEG lossless is a form of Predie.
tive Lossless Coding using a 2D Differential Pulse Code Modulation (DP M
scheme. The basic premise is that the value of a pixel is combined with the Val
ues of up to three neighboring pixels to form a predictor value. The predicto
value 1s then subtracted from the original pixel value. When the entire bitmay
has been processed, the resulting psedictors are compressed using either thy

Hutfman or the binary arithmetic entropy encoding methods described in th;
JPEG standard. ’

s

;ossless JPEG works on images with 2 to 16 bits per pixel, but performs best on
images with 6 or more bits per pixel. For such images, the typical campressioﬁ |
ratio achieved is 2:1. For image data with fewer bits per pixels, other compres-
sion schemes do perform better. | "

JPEG Extensions (Part 3)

N
'l_';."

Variable quantization
Variable quantization is an enhancement available to the quantization proce—'f-:f
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The process of quantization used in JPEG quantizes each of the 64 DCT coeffi-
cients using a corresponding value from a quantization table. Quantization val-
ues may be redefined prior to the start of a scan but must not be changed once
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Variable quantization allows the scaling of quantization values within the com-

pressed data stream. At the start of each 8x8 block IS a quantizer scale factor
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used to scale the quantization table values within an 1mage component and to
match_thf_:se values with the AC coefficients stored in the compressed data.
Quantization values may then be located and changed as needed.

Variable quantization allows the characteristics of an image to be changed to

(:.ontml the quality of the output based on a given model. The variable quan-
lzer can constantly adjust during decoding to provide optimal output.

;Fhe a_,mount of output data can also be decreased or increased by raising ofr
owering the quantizer scale factor. The maximum size of the resulting JPEG

tile or f:lata stream may be imposed by constant adaptive adjustments made by
the variable quantizer.
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~ Lossless JPEG compression -
A question that commonly arises is “At what Q factor does JPEG become loss-
_ less?” The answer is “never” Baseline JPEG is a lossy method of compression
regardless of adjustments you may make in the parameters. In fact, DCT-based
ﬁ.;:é__:_..;i_:_f-encoders are always lossy, because roundoff errors are inevitable in the color
_ conversion and DCT steps. You can suppress deliberate information loss in the
:Ci-Omsampling and quantization steps, but you still won’t get an exact recre-
atlon of the original bits. Further, this minimum-oss setting 1s a very inefficient
= Way to use lossy JPEG.

A related JPEG extension provides for hierarchical storage ot the same image at
multiple resolutions. For cxample, an image might be stored at 250x250,
500x500, 1000x1000, and 2000x2000 pixels, so that the same image file could
support display on low-resolution screens, medium-resolution laser printers,
and high-resolution imagesetters. The higherresolution images are stored as
differences from the lower-resolution ones, so they need less space than they
would need if they were stored independently. This is not the same as a pro-
gressive serles, because each image is available in its own right at the full

desired quality.

Arithmetic encoding
The baseline JPEG standard defines Huffman compression as the final step in

the encoding process. A JPEG extension replaces the Huffman engine with a

binary arithmetic entropy encoder. The use of an arithmetic coder reduces the
resulting size of the JPEG data by a further 10 percent to 15 percent over the

results that would be achieved by the Huffman coder. With no change in
resulting image quality, this gain could be of importance in implementations
where enormous quantities of JPEG images are archived.

Arithmetic encoding has several drawbacks:

. Not all JPEG decoders support arithmetic decoding. Baseline JPEG

decoders are required to support only the Huffman algorithm.

® The arithmetic algorithm is slower in both encoding and decoding than
Huffman.

. T'he arithmetic coder used by JPEG (called a Q-coder) is owned by IBM and

- AT&T.  (Mitsubishi also holds patents on arithmetic coding.) You must
obtain a license from the appropriate vendors if their Q-coders are to be
used as the back end of your JPEG mmplementation.

b, T
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Luminance quantization table Chrominance quantization table
16 11 10 16 24 40 51 6l 17 18 24 47 99 99 99 99
12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99
14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99
14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99
18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99
24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99
49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99
FIGURE 72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99
s

9.5 Suggested Step Sizes for CCIR-601

masking properties of the eye and zero out many small coefficient values, which
shows up in Figure 9.5 as large step size values.

The JPEG sequential baseline encoder accommodates only 8-bit sample
inputs and has two Huffman tables each for the DC and AC coefficients. The
entropy coding methods are detailed in Section 9.5.

LD
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9.6 Progressive Encoding: (a) Spectral Selection; (b) Successive Approximation

distortion above cutoff, while successive approximation gives more of a constant
distortion across spatial frequencies.

Hierarchical (Pyramidal) Encoding

It may sometimes be necessary to view a high-resolution image on a lower-
resolution display device; in these situations, it would be inefficient to transmit
the DCT coefficients for the entire high-resolution image to the low-resolution
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Figure 5.3-1 Lossy Image Compression

a. Original image.
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c. JPEG compression, 48:1 ratio. d. Wavelet/vector guantization compression,
36:1 ratio.

dictive coding (DPC), block truncation coding (BTC), and vector quantization (VQ). In
the transform domain we will discuss filtering, zonal coding, threshold coding, and the
JPEG algorithm. We will also look at techniques for combining these methods into
hybrid compression algorithms, which use both the spatial and transform domains.

5.3.1 Gray-Level Run-Length Coding

In Section 5.2.2 on lossless compression we discussed methods of extending basic
run-length coding to gray-level images, by using bit-plane coding. The RLC technique

e —— T i e e e




Image Compression Chap. 5

5.3.6 Hybrid Methods

| Hybrid compression methods use both the spatial domain and the transform
domain. For example, the original image (spatial domain) can be differentially
mapped, and then this differential image can be transform coded. Alternately, a one-
dimensional transform can be performed on the rows, and this transformed data can
undergo differential predictive coding along the columns. These methods are often

used for compression of analog video signals. For digital images these techniques can
be applied to blocks (subimages), as well as rows or columns.

‘igure 5.3-14 JPEG Compression
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i. JPEG compression = 30:1. g. Error image for (f), multiplied by 8 to show
detall.

Model-based image compression can be considered a hybrid method, althoug
the transform used may be an object-based transform. Model-based compressto.
works by finding models for objects within the image and using model parameters fc
the compressed file. The objects are often defined by lines or shapes (boundaries), so
Hough transform may be used, whereas the object interiors can be defined by statist

cal texture modeling. Methods have also been developed that use texture modeling 1
the wavelet domain. The model-based methods can achieve very high compressio
ratios. but the decompressed images often have an artificial look to them.
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Degradations due to transform coding. Quantization noise in the re-
constructed image manifests itself in transform image coding differently from wave-
form image coding. In general, the effect of quantization noise is less localized
In transform image coding. Quantization of one transform coefficient affects all
the image intensities within the subimage. |
| Several types of image degradation result from quantization noise in transform
image coding. One type is loss of spatial resolution. Inthe DCT coding of images,
the discarded transform coefficients are typically high-frequency components. The

result 1s loss of detail in the image. An c¢xample of this type of degradation is
shown in Figure 10.45. Figure 10.45(a) shows an original image of 512 x 512
pixels. Figures 10.45(b) and (c) show images reconstructed by retaining 149 and
5% of the DCT coefficients in each subimage, respectively. The subimage size
used 1s 16 X 16 pixels. The transform coefficients retained are not quantized,
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Figure 10.45 [Illustration of spatial resolution loss due to discarding discrete cosine transform

f (DCT) coefficients.(a) Original image of 512 x 512 pixels. (b) reconstructed image with 14%
of DCT coefficients retained. NMSE = 0.8%, SNR = 21.1 dB. (¢) reconstructed image with
8% of DCT coefficients retained. NMSE = 1.2%. SNR = 19.3 dB.
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Figure 10.46 Illustration of graininess
increase due to quantization of DCT
coefficients. A 2-bit/pixel uniform quan-
tizer was used to quantize each DCT
coefficient retained to reconstruct the

image in Figure 10.45(b).

A T

and are selected from a zone of triangular shape shown in Figure 10.43(a). From
Figure 10.45, it is clear that the reconstructed image appears more blurry as we
retain a smaller number of coefficients. It is also clear that an image reconstructed
from only a small fraction of the transform coetficients looks quite good, illustrating
the energy compaction property.

Another type of degradation results from quantization of the retained trans-
form coefficients. The degradation in this case typically appears as graininess n
the image. Figure 10.46 shows the result of coarse quantization of transform
coefficients. This example is obtained by using a 2-bit unitorm quantizer for each
retained coefficient to reconstruct the image in Figure 10.45(D).

A third type of degradation arises from subimage-by-subimage coding. Since
each subimage is coded independently, the pixels at the subimage boundaries may
have artificial intensity discontinuities. This is known as the blocking effect, and
is more pronounced as the bit rate decreases. An image with a visible blocking
effect is shown in Figure 10.47. A DCT with zonal coding, a subimage of 16 X
" 16 pixels, and a bit rate of 0.15 bit/pixel were used to generate the image in Figure

10.47.

Examples. To design a transform coder at a given bit rate, different types
of image degradation due to quantization have to be carefully balanced by a proper
choice of various design parameters. As was discussed, these parameters include
the transform used, subimage size, selection of which coetficients will be retained,
bit allocation, and selection of quantization levels. If one type of degradation
dominates other types of degradation, the performance of the coder can usually
be improved by decreasing the dominant degradation at the expense of some

increase in other types of degradation.
Figure 10.48 shows examples of transform image coding. Figure 10.48(a)
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10.4.3 Reduction of Blocking Effect

When the bit rate is sufficiently low, the blocking effect, which results from 1n-
dependent coding of each subimage, becomes highly visible. Reconstructed images
exhibiting blocking effects can be very unpleasant visually, and blocking etfects
that are clearly visible often become the dominant degradation.

Two general approaches to reducing the blocking effect have been considered.
In one approach, the blocking efiect is dealt with at the source. An example of
this approach is the overlap method, which modifies the image segmentation proc-
ess. A typical segmentation procedure divides an image into mutually exclusive
regions. In the overlap method, the subimages are obtained with a slight overlap
around the perimeter of each subimage. The pixels at the perimeter are coded in
two or more regions. In reconstructing the image, a pixel that is coded more than
once can be assigned an intensity that is the average of the coded values. Thus,
abrupt boundary discontinuities caused by coding are reduced because the recon-
structed subimages are woven together. An example of the overlap method 18
shown in Figure 10.49. In the ficure, a 5 X 5-pixel 1mage is divided into four 3
x 3-pixel subimages by using a one-pixel overlap scheme. ‘The shaded area 1n-
dicates pixels that are coded more than once. The overlap method reduces blocking
offects well. However, some pixels are coded more than once, and this 1ncreases
the number of pixels coded. The increase is about 13% when an image of 256 X
256 pixels is divided into 16 X 16-pixel subimages with a one-pixel overlap. This
increase shows why overlap of two or more pixels is not very useful. 1t also shows
4 difference between image coding and other image processing applications such
as image restoration in dealing with blocking effects. As was discussed 1n Section
9.2.3, a blocking effect can occur in any subimage-by-subimage processing envi-
ronment. In image restoration, the cost of overlapping subimages 1s primarily an
‘ncrease in the number of computations. An overlap of 50% of the subimage size
is common in subimage-by-subimage restoration. In image coding, however, the
cost of overlapping subimages is an increase in the number of computations and,
more seriously, a potential increase in the required bit rate. An overlap of more
than one pixel is thus seldom considered in DCT image coding.

.
. . . . Figure 10.49 Example of one-pixel
. il e A
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10.6.2 Color Image Coding

Thus far we considered the problem of coding monochrome 1mages. Many of the
monochrome image coding methods can be extended directly to color image coding.
As discussed in Section 7.1.4, a color image can be viewed as three monochrome
images fu(n, n,), fo(n1, na), and fg(ny, ny), representing the red, green, and blue
components. Each of the three components can be considered a monochrome
image, and the coding methods we discussed can be applied directly.

The three components fr(#1, n2), f(, ny), and fg(n;, n,) are highly corre-
lated with each other, and coding each component separately 1s not very efficient.
One approach that exploits the correlation 1s to transform the three components
to another set of three components with less correlation. One such set is fy(7;, 1,),
fi(ny, n,), and fo(n;, n,), where fy(ny, np) is the luminance component and
fi(ny, ny) and fo(n, ny) are the two chrominance components. The linear 3 X 3
matrix transformation between R, &, and B components and Y, /, and O com-
ponents was discussed in Section 7.1.4. 'The approach to transtorm the R, G, and
B components to the Y, I, and Q components and then code the Y, I, and O
components is illustrated in Figure 10.57.

One advantage of coding Y, I, and () components rather than R, G, and B
components is that most high-frequency components of a color image are concen-
trated in the Y component. Therefore, the chrominance components / and () can
be undersampled by a factor of 2 X 2 to 4 X 4 in waveform coding without seriously

7 ) ransmutter ama Lo Chen. 1
Fylny, ”'3:__ Monochrome -
folny, n,) ] coding
ff{ﬁ1 ngl
; : rome
FoliBia 75} y| 3 X3 mathx g MGHEZ?nGm >
G viqr 2 transformation . &
fa (i, 72) | Monochrome .
fglng, ny) > 7| coding

Receiver
3 Fy L0y, 1) Monochrome -
" (13, 112) — decoding
: F,(ny, ny)

A - 3X 3matrix | L " * Mt:énnczajume w
f‘s{n“ g) transformation ecoding
A fa (4, 12) Monochrome

— . =
ek e na) = decoding

Figure 10.57 . Color image coding in the YIQ space.

affecting the high-frequency details of a color image. Intransform coding, a smaller
number of coefficients needs to be coded for the I and O components than for the
Y component. Typically, the total number of Dits assig@d to both the 7 and ¢
components is only approximately half the number of bits used to code the ¥
component; adding color does pot increase the bit rate by a factor of three. In
addition, the aesthetics of color lead to a more visually pleasant reconstrui:ted
image and tend to hide degradations in the image. A cglor image cpded at a given
bit rate typically 10oks better than a black-and-white 1mage_obtamed by coding
only the ¥ component of the color image at the same total bit rate.

Two examples of color image coding are shown in Figures 10.58 and 10.55
. CTU N Tienea 10 S8(a) shows an original color image of 512 X 512
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