Conservation Laws

Let u be a density and f be a flux. We define a conservation law (1D) as
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Integrating with respect to x we get
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Hence, the change in the total "mass" changes only through fluxes that enter
and leave the boundary. In several dimesnions this generalizes to
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Generalized solution

For a linear problem discontinuities occur only across characteristics. For
nonlinear problems we can have discontinuities anywhere. We need to define a
solution when it is discontinuous
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Hence, space derivatives no longer appear. More generally let ¢ € C*
(compact support and infinite number of derivatives). Then
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Def: A solution is a generalized solution if (*) is true for every ¢ in some class
of functions

Note: A classical solution is a generalized solution but not necessarily conversely.
Uniqueness may be lost when including generalized solutions !!

Rankine-Hugoniot

Define:
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So the slope of the characteristic curves are: - % .

Choose as initial data

1 <0
up(z) =¢1—2z 0<x<1
0 1<z

Until t=1 the solution is single valued.
To choose the solution after t=1 we use the Rankine-Hugoniot condition
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So for ¢t > 1 we choose the solution
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Entropy Condition

Characteristics on either side of the discontinuity in the direction of increas-
ing t intersect the line of discontinuity. Hence, we can connect every point on
the discontiuity back to the initial line. Equivalently
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An equivalent formulation is
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Choose as initial data

uO(x){o <0

1 =z>1

Instead of characteristics colliding we have a gap. Choose

u(z,t) = {0 TS
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This satisfies the Rankine-Hugoniot condition.
Consider

u(z,t) = %

This also satisfies the R-H condition. However, only the second one satisfies the
entropy condition.

Definition: A solution is a shock if it satisfies bothe Rankine-Hugoniot con-
dition and the entropy condition



