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9 Inversion of the FFT of a real sequence

In this section we show how the symmetry property (5.6) of the FFT of a real
sequence can be used to reduce by about one-half the computations involved
in inverting the FFT. Although there are other methods of doing this than the
method described below, this method is of interest because it uses no extra sines
other than the set {S(m )}(1/4 )V that was used for performing the FFT itself.

We will assume in this section that W = e®™/&  Let Ry and T, stand for
the real and imaginary parts of the FFT {F})}. That is,

Fk:Rk—{_zIky (/{?:O) 1)-*4‘\/—_1) (91)

where Fj is defined by
N—1 |
Fo=>_ [iW
7=0

Then, by the formula for DFT inversion,

1 .
where
N—1 . : |
I ST o3
k=0

Using W = ™/~ and (9.1) we have

a

Z Rk+ZI —-i2mak /N

2‘_;
)

(9.4)

2wk 2n7k
(Ry + id%) (cos IR isin ?\jr )
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Since {f;} consists of real numbers, so does {g;} because of (9.2). Conse-
quently, only the real part of the sum in (9.4) is nonzero. Therefore, we must

have
N— N—1

2mik 2’Fj/€
g9; = ;) Ry cos ~ + Z Iy sin % (9.5)
Because of (5.6} we have
RJV—k‘.:Rk': Il\f—k:a‘[ka (k: 1?"'JJV_1>‘ (96)

It follows from (9.6) that, for each fixed j, the sequences

. N—1 . N—-1
27Tjk} { _ 217]19}
F cos and I sin

are even about (1/2)/N. From formula (7.3) we obtain

2=

N—1

N—
2mik 27 'k'
Ry cos U = Ry Z g cos o (9.7)
fo=1 k=1
and
N—1 FN—1 ]
2 . 2wik
ZI;C sin 298 _ 5 ST py gin 2208 (9.8)
N
k=1
Using (9.7) and (9.8) in (9.5) yields
;N IN-1
= Ro + Ry y(— +22chos——}—22]ksm (9.9)

Formula (9.9) shows that {g;}. -_0 , and consequently {f;})" i '~'» can be gen-
erated from a (1/2)/V-point fast cosine transform of

{0, 2Ry, 2R,, ..., ZR%N_I}
and a fast sine transform of
{20, 20,,..., 2[1§N_1}.

These fast cosine and fast sine transforms are even and odd about (1/2)N,
respectively. Taking this symmetry into account, formula (9.9) applies to 7 = 0,
1, ..., N —1.

As we noted above, an interesting feature of (9.9) is that to compute the
fast cosine and fast sine transforms, of order (1/2)N by the methods of
Section 7, one needs only the same sines {S (m)}(l/ )V generated to calcu-
late the FFT {Fk x—o - Therefore, inverting the FFT using (9.9) requires only
these same sines. This is a useful memory savings.




Cosine Transform

Define

Then

2n+—1)k7[:|k :0’1’___N -1

N-1 (
V. =¢, > U COS
n=0

Note this uses half points in the interval.
Then the inverse is given by

u, :Niav COS{%} n=01..N-1

k "k
=0

=~



To evaluate this fast we relate itto a FFT

ik N1 _2zikn

\QzR%@@MEN@ N} Re{a,w,, DFT (u)}

k™ 2N

where

Inverse

U=Sav co{%} n=01..N-1

0 = Re{[Zav eﬂ } n =o,1,...%—1

Then
u, =0,

~

u =u

2n+l 2(N-1-n)
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4. DISCRETE UNITARY TRANSFORMS 57

Figure 2.18: First 8 base functions of one-dimensional unitary transforms for
N = 16: a cosine transform and b sine transform.

The cosine and sine functions only span the subspaces of the even and
odd functions, respectively. Basis vectors with the missing symumetry
can be generated, however, if trigonometric functions with haif-integer
wavelengths are added. This is equivalent to doubling the base wave-
length. Consequently, the kernels for the cosine and sine transforms in
an M-dimensional vector space are

cos (TT’I’IU )
N 3

CTL'U

i

(2.44)

Swy = sin(TAQE1),

T e n AF AT T ~rAcine and sine func.‘



N

Ly

-

N

(a} Cosine transform examples of monochrome im- {b} Cosine transform exampies of binary im;
ages;

Figure 5.11

3. The cosine transform is a fast transform. The cosine transform of a vecto
elements can be calculated in O(N log, N) operations via an N-poin
[19]. To show this we define a new sequence u(n) by reordering the eve
odd elements of u(n) as

a=un) ) g, (M)
QN —n—1)=u(2n+1)

Now, we split the summation term in (5.87) into even and odd terms ai
(5.91) to obtain

(Ni2) - 1 ~(4n
v =a®)] 2 u(n) cos[—(‘f—z%%]
(M) - 1
+ 2 u(Zn +1) cos[jﬁ:%?)i{}
(N/2) - 1 - Dk
= a(k) [ }_;0 i(n) cos[——(ir;;—)—}
(N12) - 1
+ 2 a(N-n-1) cos[w@rE; 3)/{}

Changing the index of summation in the second termton’'=N —n —
combining terms, we obtain




Discrete Cosine Transform

=

e Cosine Transform

The dct2 function in the Image Processing Toolbox computes the
two-dimensional discrete cosine transform (DCT) of an image. The DCT has
the property that, for a typical image, most of the visually significant
information about the image is concentrated in just a few coefficients of the
DCT. For this reason, the DCT is often used in image compression applications.
For example, the DCT is at the heart of the the international standard lossy
image compression algorithm known as JPEG. (The name comes from the

working group that developed the standard: the Joint Photographic Experts
Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows:

M-1 N-1
_ n(2m+1)p n@n+l)yg OspsM-1
00y D0 D An o.M cos - 2N 7 0<g<N-1

m=0n=0

a:{1/m,p:0 aﬁ{l/«/ﬁ,q'z
P2 M, 1sp<M-1 " \J2/N, 1<g=<N-1

The values B pg are called the DCT coefficients of A. (Note that matrix indices

in MATLAB always start at 1 rather than Q; therefore, the MATLAB matrix
elements A(1,1) and B(1,1) correspond to the mathematical quantities App

and B, , respectively.)

The DCT is an invertible transform, and its inverse is given by:

M-1N-1
2 2 o n(2m+1)p cos t2n+1)g O=sm<M-1
p q pa® IM 2N 7 0<n<N-1
p=0qg=0
a_{l/ﬂ?r,p:o a_{l/ﬂ,qzo
P2 M, 1spsM-1 ¢ |J2/N, 1<qsN-1

The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can he written as a sum of MN functions of the form:

6-15




o o COSTC(Qm+1)pcosﬂ:(2n+1)q 0<psM-1
p7q 2M 2N ' 0<gs<N-1

These functions are called the basis functions of the DCT. The DCT coefficients

B B then, can be regarded as the weights applied to each basis function. For

8-by-8 matrices, the 64 basis functions are illustrated by this image:

Horizontal frequencies increase from left to right, and vertical frequencies
‘increase from top to bottom. The constant-valued basis function at the upper
left is often called the DC basis function, and the corresponding DCT coefficient
By is often called the DC coefficient.

The DCT Transform Matrix

The Image Processing Toolbox offers two different ways to compute the DCT.
The first method is to use the function dct2. dct2 uses an FFT-based algorithm
for speedy computation with large inputs.

For small square inputs, such as 8-by-8 or 16-by-16, it may be more efficient to
use the DCT transform matrix, which is returned by the function dctmtx. The
M-by-M transform matrix T is given by:




Discrate Casins frans

fesrm

J—e p=0 0<gg<M-1

2 m2gt+ Lip <p<M-_ <g<M-1
A&cos 5[ 1<p<M-1, 0<g<M

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimengional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T ' . Since T is a real orthonormal matrix, its inverse 1s
the same as its transpose. Therefore, the inverse two-dimensional DCT of B 1s
given by T' *B*T. o

The DCT and Image Compression

In the JPEG image compression algorithm, the input image is divided into
3-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the DCT
coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in
the input image; discards (sets to zero) all but 10 of the 84 DCT coefficients in

:

6-17




each block; and then reconstructs the image using the two-dimensional inverg,
DCT of each block. The transform matrix computation method is used.

I = imread('cameraman.tif');

I = double(I)/255;

T = dcimtx(8);

B = blkproc(I,[8 8], 'P1*x*P2",T,T"),;

mask = [1 1 1 1 0 O 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 o 0 0 0 0
0 0 0 0 0 0 0 0],

B2 = blkproc(B,[8 8], 'P1.*x',mask};

I2 = blkproc(B2,[8 8], P1*x*P2',T"',T);

imshow(I), figure, imshow(I2)

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.
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To derive the inverse cosine transform relation, we relate C.(wy, ;) to
R(w,, w,) using (3.57), relate R(w,, w;) to r{n,, n,) using the inverse Fourier

transform relation, and then relate r(n,, n,) to x{n;, n,) using (3.56). The resuit

1 v ko
x(ny,n,) = mj’m: . L_ . Co(o1, wy) cos w,(n, + 3) cos wy(n, + 1) dw, dw,,

ny =0, n,= 0. (3.60)

From (3.58) and (3.60)

—

Cx(wl ? (1)2)

o

n=0 n2=0

(2m)?

x(nla nZ) =

0,

> z dx(ny, ny) cos wy(n, + 3) cos wy{n, +

Cosine Transform Pair

(3.61a)

[
p—

1 ™ v
j B J Clwy, w,) cos w, (i, + 3) cos wy{ny + 1) dowy dw,

[T

n, =0,n =10 (3.61b)

otherwise.

162

Many properties of the cosine transform can be derived from (3.61), or (3.55)
and the Fourier transform properties. Some of the more important properties are
listed in Table 3.4. From the symmetry properties, C, {w,, »,) 1s an even function
and in addition is symmetric with respect to the w; and o, axes. When x(n;, 1)
is real, its cosine transform C (w;, w,) is also real.

TABLE 3.4

PROPERTIES OF THE COSINE TRANSFORM

x{ny, na), y(ny, ny) = Goutside n, = 0, n, = 0
x(”]a ”2) — Cx(wla U-);g)

y(”l: ”‘2) — C_v(wla wz)

Property 1.
Property 2.

Property 3.

Property 4.

Linearity
ax(ny, no) + by(n,, ny) = aClw;, w,) + bC (0, w,)
Separable Sequence ,
X, ) = xy(m)xa(n) < Clon, @3) = Colw)Colwy)
Energy Relationship
,”Eo mzo el na)f = 4(?

Symmetry Properties

(a) Clw,, wy) = Cl—wy, wy) = Ciloy, —wy) = C(—w;, —w,)
(b) x*(n,, n,) «— Ci o, »,)

(c) real x(n,, n,) «— real C (w,, ®.)

g

f — J‘_ ‘Cx(wln (")2)]2 d(.\)l d(;.}.2

The Discrete Fourier Transform Chap. 3




ure 2.5-13 Implied Symmetry for the Fourier Transform

mage Angiysis  uhap. «

quency information. They are used for image compression or for hiding effects caused
by noise. Visually they blur the image, although this blur is sometimes considered an
enhancement because it imparts a softer effect to the image (see Figure 2.5-17). Low-
pass filtering is performed by multiplying the spectrum by a filter and then applying
the inverse transform to obtain the filtered image. The ideal filter function is shown in

«— N——

F w | 4
,' _",
N
L 2
. e
a. Implied symmetry with origin in upper-left corner. b. Increasing frequency in direction of arrows.

Each N x N block represents all the transform coeffi-
cients and is repeated infinitely in all directions.

¢. Periodic spectrum, with quadranis labeled d. Spectrum shifted to center, Freguency

AB,CD.

increases in all directions as we move away
from the origin.




jure 2.5-15 Cosine Symmetry
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a. Spectrum foided about origin, repre-

sented by the ®. The 2N < 2N block is

repeated infinitely in all directions.

b. Arrows indicate direction of increasing fre-
quency for cosine spectrum.

jure 2.5-16 Cosine Spectrum Should Not Be Shifted to Center

a. Cosine spectrum with arrows in direction
of increasing frequency.

b. Extracting the central Nx N portion, we
lose the high-frequency infermation.

[ |Low ftrequencies High frequencies
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Sec. 13.5 Rectangular Wave Transforms 293

%

+ Figure 13-5 The Haar transform
+ basis functions for N =38

distinguishes it from the other transforms mentioned so far and establishes a starting point
for wavelet transforms, which are introduced in the next chapter.

Basis Function Indexing. Since the Haar functions vary in two aspects (scale
and position), they must be specified by a dual indexing scheme. The Haar functions are
defined on the interval [0, 1] as follows. Let the integer 0 <k <N =1 be specified (uniquely)
by two other integers, p and g, as

k=274 qg-1 (47)
Notice that, under this construction, not only is k a function of p and g, but p and ¢ are func-
tions of k as well. For any value of & > 0, 27 is the largest power of 2 such that 27 <k, and
g — 1 is the remainder.
The Haar functions are defined by

1
holx) = —= {(48)
0 J]V
and
.
2P q-1 . x < 2
0P ok
i
h(x) = —= 1 (49)
TS I
2P __fgxc< i
op 2P
| 0 otherwise
Ifweletx=i/Nfori=0,1,...,N—1,this gives rise to a set of basis functions, each of which

is an odd rectangular pulse pair, except for £ = 0, which, as in the case-of many of the other
transforms discussed here, is constant. Further, the basis functions vary in both scale




3 . CHAPTER 2. IMAGE REPRESENTATION
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Figure 2.19: First 8 base functions of one-dimensional unitary transforms for
N = 16 a Hadamard transform and b Haar transform; '
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1t-by-eight unitary kernel matrix for the Haar transform is

Hr_::—

%

1 1 1 1 1 1 1 1
i 1 1 1-1=1 =1
24222 O 0. 0 B
0 0 0 0.J2.2-02-2
22 0-0 0 0 0 O
00 2 -2 0 0 0

000 0O 0 2-2 0 0
00 0 0 0 O -3
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(d) Hadamard;

(e) Haar; {f) Siant.

Figure 5.22 Basis restriction zonal filtering using different transforms with 4:1
sample reduction.







Sine Transform

V, = ,/ 2 Nqunsin{(nJrl)(kJrl)”} k=0,1..N-1
N +1n N +1
and

u, =,/i§vksin (n+1)(k+1)7 k=0,1..N-1
N + 1= N +1

To evaluate this fast we relate itto a FFT

ik N1 27ikn

V, = Re{ozke2N Yie "
n=0

k" 2N

}: Re{a,w,, DFT (u)}

where
l]n:uZn
a =u +1 0<n<—-1

Inverse
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% Y = DCT(X) returns the discrete cosine transform of X. The
% vector Y is the same size as X and contains the discrete
% cosine transform coelTicients.

%
% Author(s): C. Thompson, 2-12-93
9 S. Eddins, 10-26-94, revised

% Copyright 1993-1998 The MathWorks, Inc. All Rights Reserved.
% S$Revision: 5.3 § $Date: 1997/11/24 16:21:02 §

% References:

G 1y A. K. Jain, "Fundamentals of Digital Image

% Processing”, pp. 150-153,

o 2) Wallace, "The JPEG Sull Picture Compression Standard",
Yo Communications of the ACM, April 1991.

if rem{n,2)==1 | ~isreal(a), % odd case
% Form intermediate cven-symmetric matrix,

else 9% even case

% Re-order the elements of the columns of X
y =] aa(1:2:n,:); aa(n:-2:2,2 1,

% Compute weights to multiply DFT cocfficients T

ww = 2Fexp(-* (0 D Fpi(2Hn)sqre(2*n), L =y LT - R
ww( 1} = ww(1) / sqri(2): _ - i
W = ww(:,ones{1,m)); =

9 Compute DCT using equation (5.92} in Jain
b =W R Ifi(y);

end

if isreal(a), b = real(b); cnd
if do_trans,b=b." end




Notes

o

% X =IDCT(Y) inverts the DCT transform, returning the original
% vector if Y was obtained using Y = DCT(X).

9
% Author(s): C. Thompson, 2-12-93
% S. Eddins, 10-26-94, revised

% Copyright 1993-1998 The MathWorks, Inc. All Rights Reserved.
% $Revision: 5.3 $ $Date: 1997/11/24 16:21:02 %

% References:

% 1) A. K. Jain, "Fundamentals ol Digital Image

Yo Processing”, pp. 150-153.

% 2) Wallace, "The JPEG Still Picture Compression Standard”,
G Communications of the ACM, April 1991,

if rem(n,2)==1"! ~isrcai(b), % odd case
% Form intermediate even-symmetric matrix.

clse % cven case
% Compule precorrection factor .=
ww = sqrt(2*n) * exp(j*pi*(0:n-1)/(2*n))."; -
ww(l) =ww(1)/sqrt(2); ' ” -

W = ww(;,ones(l,m)); ]

% Compute x (ilde using equation (5.93) in Jain
y = ifft(W .¥bb);

% Re-order elements of each column according to equations (5.93) and
% (5.94) in Jain

a = zeros(n,m);
all:2m,)y = y(1lm/2,);

a(2:2:n,7) = yin:-1:n/2+1,:):

end

it isrcal(b), a = rcal{(a}; end
if do trans, a =a." end
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Fig. 1. Histogram of DCT coefficients of “bridge.”

“experimental results like Fig. 1 indicated that they resemble

Laplacian distributions when the Kolmogorov—Smirnov good-
ness-of-fit test is used [4]. The probability density function of a
Laplacian distribution can be written as

plz) = 5 exp{-ple(}. ()

This is sometimes also referred to as the double exponential dis-
tribution. Since then, different researchers have tried a variety of
fitting methods, such as x?, Kurtosis, and Watson tests. Many
other possible distributions of the coefficients have also been
proposed, including Cauchy, generalized Gaussian, and even a
sum of Gaussians [5]-[9]. Using different pictures for the exper-
imenits, they often differ in opinion as to what distribution model
is the most suitable, although the Laplacian distribution remains
a popular choice balancing simplicity of the model and fidelity
to the empirical data. Yet, none of them provided any analytic
justification for their choices of distributions. In this paper, we
investigate this problem in two steps: first, we derive the distri-






