ERRORS

. Lens Aberration (Hubble) nwTyn n'vo

. Diffraction of electromagnetic waves at aperture stop of the lens
. Defocusing Tn%

. Motions and vibrations of the camera nn7x¥xnn 7w nITaNI nivinn
telephoto lenses

motion of the object, blur wivwo - qian 7w NITAN NIYIN

. Row jittering
synchronization of frame buffer

. Bad transmission along video lines 1" 11 "1z IX7 v WT'Y
Echoes o773

. Electronic interference ninNup?x niv1on
fixed and moving patterns

. Noisy digital circuits n*70'a*T n'22yna Wy
individual bits flip - random errors ni'kR NIR'AY

. Atmospheric turbulence n'90mMLVXN N7127YN



6.1 Image Degradations—The Real World & 221

will find references at the end of this chapter to explore further. However, not all
of the math can be eliminated.

The example of the Hubble Space Telescope is an opportune one, since it is an
ideal way to introduce a technique for characterizing the distortion inherent in an
image. A star, when viewed through a telescope, should be seen as a perfect point
of light. Ideally, all of the light energy of the star would be focused on a single
pixel. In practice this is not so; the distortions of the atmeosphere and the telescope
optics will yield a slightly biurred image in which the central pixel is brightest,
and a small region around it is also brighter than the background. The distortions
that have been inflicted on the point image of the star are reflected in the shape
and intensity distoibution of the star’s image. All stars (for a reasonable optical
system) will have the same distortions imposed upen them; indeed, all points on
the image have been replaced by these smali blebs, and the sum of all of the blobs
is the sampled image.

The effect that an image acquisition system has on a perfect point source is
called the peint spread funcrion (PSF). The sample image has been produced by
convolving the PSF with the perfect image. so that the same blur exists at all
points. Figure 6.1 shows a diagrammatic view of how distortion and noise have
been applied to the original image to give the sampled, observed itmage. To obtain
the perfect image given the sampled one is the goal of restoration, and it is not
generally possible. We therefore wish to improve the image as much as possible,
and the PSF teils us what has been done to the image. The ideal sclution is to
deconvolve the image and the PSF, but this can only be done approximately and
at some significant expense.

This discussion assumes that the PSF is the same at all points of the image, in

m %\

’ —_—— —_— ——— f ————— | 1

—~ |

Original scene o Add noise

Perfect 2-D  Convolve with Resulting image
Image point spread f(i.j)
function

Figure 6.1 One model of how a perfect image becomes
distorted by imperfect {real} acquisition systems.
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b

Figure 9.2: A sequence of images of the ring lest pattern with incredasing degree
of defocusing. -After focusing (image a), the camera was moved Step by step
toward the test pattern from b to d (exercise 9.1).




What is a Point Spread Function?

The PSF of an optical system is the irradiance distribution that results from a
single point source in object space. A telescope forming an image of a distant
star is a good example: the star is so far away that for all practical purposes it
can be considered a point.

Although the source may be a point, the image is not. There are two main
reasons. First, aberrations in the optical system will spread the image over a
finite area. Second, diffraction effects will also spread the image, even in a
system that has no aberrations.

optical transfer function

The optical transfer function (OTF) of an imaging system ( camera, video,
system, microscope etc.) is the true measure of resolution (image sharpness)
that the system is capable of. The common practice of defining resolution in
terms of pixel count is not meaningful, as it is the overall OTF of the complete
system, including lens and anti-aliasing filter as well as other factors, that
defines true performance. In the most common applications (cameras and
video systems) it is the Modulation Transfer Function (the magnitude of the
OTF), that is most relevant, although the phase component can have a
secondary effect. While resolution, as commonly used with reference to
camera systems, describes only the number of pixels in an image, and hence
the potential to show fine detail, the transfer function describes the ability of
adjacent pixels to change from black to white in response to patterns of
varying spatial frequency, and hence the actual capability to show fine detail,
whether with full or reduced contrast. An image reproduced with an optical
transfer function that 'rolls off' at high spatial frequencies will appear 'blurred'
in everyday language. Modulation Transfer Function or MTF (the OTF
magnitude with phase ignored) is roughly the equivalent of frequency
response in an audio system, and can be represented by a graph of light
amplitude (brightness) versus spatial frequency (cycles per picture width).


http://en.wikipedia.org/wiki/Imaging
http://en.wikipedia.org/wiki/Image_resolution
http://en.wikipedia.org/wiki/Optical_resolution
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hix. y:cB8) Noise
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g Input = Im?gmg p—— ItDUT
sysiem

P Y o
0 0 X

Figure 1.7 Blurring due to an imaging sysiem. Given the noisy and blurred im-
age the image restoration problem is to find an estimate of the input 1mage f(x, y).

.4 IMAGE RESTORATION

Image restoration refers to removal or minimization of known degradations in an
image. This includes deblurring of images degraded by the limitations of a sensor or
its environment, noise filtering, and correction of geometric distortion or non-
linearities due to sensors. Figure 1.7 shows a typical situation in image restoration.
The image of a point source is blurred and degraded due to noise by an imaging
system. If the imaging sytem is linear, the image of an object can be expressed as

g =] | hGoyiaB)f(@p)dads s n(y) (L.1)
where n(x, v) is the additive noise function, f(qo, B) is the object, g(x, y) is the image,
and h(x, y;«a, B) is called the point spread function (PSF). A typical imnage restora-
tion problem is to find an estimate of f(«, B) given the PSF, the blurred image, and
the statistical properties of the noise process.

A fundamental result in filtering theory used commonly for image restoration
is called the Wiener filter. This filter gives the best linear mean square estimate of
the object from the-observations. It can be implemented in frequency domain via
the fast unitary transforms, in spatial domain by two-dimensional recursive tech-
‘niques similar to Kalman filtering, or by FIR nonrecursive filters (see Fig. 8.15). It
can also be implemented*as a semirecursive filter that employs a unitary transform
in one of the dimensions and a recursive filter in the other.

Several other image restoration methods such as least squares, constrained
least squares, and spline interpolation methods can be shown to belong to the class
of Wiener filtering algorithms. Other methods such as maximum likelihood, max-
imum entropy, and maximum a posteriori are nonlinear techniques that require
iterative solutions. These and other algorithms useful in image restoration are
discussed in Chapter 8.




MAGE OBSERVATION MODELS

sists of an image formation system, a detector, and a
lectro-optical system such as the television camera
¢ focuses an irmage on a photoelectric device, which 18
scanned for transmission OT recording of the imagﬁei. Similarly, an o;d1nar‘y. ca?lera
uses a lens to form an image that is detected and recorded on a photosensitive i

A general model for such systems (Fig. 8.3) can be expressed as

A typical imaging system cOil
recorder. For example, an €
contains an optical system tha

v(x, y) =gw i I+l y) (8.1)
W(x,y)=H hx,y;x,y ule’, y)dz"dy’ (8.2)
1 : 3
(e ) = flg(wx y)Im () + ma (e y) (8.3)
i r P.oin
w ;_\,;?teear; W(X')ﬁ nonl.iinearity
) hix, yix, ¥ gt - )

n, (%, vl mplxy)

Figure 8.3 Image observation model. '

where u(x, y) represents the object (also called the original image), and v (x, y) is
the observed image. The image formation process can often be modeled by the

l_inea; system of (8.2), where A{x, y;x’, y') is its impulse response. For space invari-
ant systems, we can write

h(x,y;x’,y’):h(}; —-x',y —y";0, O)éh(x —-x,y—y") (8.4)

The functions f(-) and g(-) are generally nonlinear and represent the characteristics
of the detector/recording mechanisms. The term m(x, y) represents the additive
noise, which has an image-dependent random component f{g(w)]n; and an image-
independent random component ms.




1age Formation Models

ble 8.1 lists impulse response models for several spatially invariant systems.
ffraction-limited coherent systems have the effect of being ideal low-pass filters.
r an incoherent system, this means band-limitedness and a frequency response
rtained by convolving the coherent transfer function (CTF) with itself (Fig. 8.4).
zgradations due to phase distortion in the CTF are called aberrazions and manifest
emselves as distortions in the pass-band of the incoherent optical transfer function
)TF). For example, a severely out-of-focus lens with rectangular aperture causes
aberration in the OTF, as shown in Fig. 8.4. |

Motion blur occurs when there is relative motion between the object and the
mera during exposure. Atmospheric turbulence is due to random variations in the
fractive index of the medium between the-object and the imaging system. Such
:gradations occur in the imaging of astronomical objects. Image blurring also
:curs in image acquisition by scanners in which the image pixels are integrated
rer the scanning aperture. Examples of this can be found in image acquisition by
dar, beam-forming arrays, and conventional image display systems using tele-

TABLE 8.1 Examples of Spatially Invariant Models

Impulse response Frequency response
Type cof system h(x,y) H (&, &)
Diffraction limited, coherent ab sinc{ax) sinc(by) rect (&1 %z)
{(with rectangular aperture) “\a b
Diffraction limited, incoherent © sinc*(ax) sinc*(by) " (Q & )
(with rectangular aperture) T2 b
Horizontal motion aio rect ( )5( ) ¢ ~imE1%0 Ginc(E, o)
Atmospheric turbulence exp{—ma(x*+y?)} 1 exp |:—17(§21 + 522)11
2 2
(84
_Rectangular scanning aperture rect(—i—, %) of sinc(ag:) sinc(BEy)
1 ™ 1
CCD interactions S wiBlx —kAry —IA) DD e TETAEET D
kd= —1 ki=-1
269
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Figure 3.4-3 Typical Blur Mask Coefficients

¢. Diagonal P3F mask with gaussian distribufion. d. Circular PSF mask with gaussian distribution.

| 3.4.1 Inverse Filter

The inverse filter uses the foregoing model, with the added assumption of 1
noise (N{u, v) = 0). If this is the case, the Fourier transform of the degraded image is

D, vy = Hu, v){u,v) + 0

So the Fourier transform of the original image can be found as follows:
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3.4.1 Inverse Filter

The inverse filter uses the foregoing model, with the added assumption of no
noise (N(x, v) = 0). If this is the case, the Fourier transform of the degraded image is

i ’.f Diu,v) = Hu, v i(,v) + 0

So the Fourier transform of the original image can be found as follows:

Hu, vy = Dl v) D{(u, v) ! T e

Hiu, v) H{u, v)
To find the original image, we take the inverse Fourler transform of J{w, v):
Ty - - D, vy _
Ir, o) = F i) = F 255 = YD,
{r,c) [£(u, v)] o, VJ [ (u, v) i V)}

where 7 | represents the inverse Fourier transform.

The equation implies that the original, undegraded image can be obtained by
multiplying the Fourier transform of the degraded image D(u, v) by VH(u, v) and then
inverse Fourier transforming the result. Thus, the restoration filter appiied 1s VH(u, v},
the inverse filter. Note that this inversion is a point-by-point inversion, nof a matrix
inversion.

EXAMPLE 3_ 02

1L ]
= T 5e
50 50 25 505025
11 1
Hi,v) = 20 20 20 LN I S S
Hov) |20 20 20

2035 22 -
Lot 1
20 35 22

To find VH(u, v), we take each term separately and divide it into 1.

Unfortunately, in practice, complications arise when this technique is applied. If
any points in H{x, v} are zero, we face a mathematical dilemma-—division by zero. If
the assumption of no noise is correct, then the degraded image transform D(u, v) will
also have corresponding zeros, and we are left with an indeterminate ratic, 0/0. If the
assumption is incorrect, and the image has been corrupted by additive noise, then the
zeros will not coincide, and the image restored by the inverse filter will be obscured by
the contribution of the noise terms. This can be seen by considering the following
equation: :

D, vy = H(u, v){{u, v)+ Nu, v)

Then, when we apply the inverse filter, we obtain

fu, v) = D, vy _ Huv)f(u,v) Ny, v)
U Hwoy T Havy o Ho)

= . M, v

= _[ V) —

0 Tty

As the values in H(u, v) become very small, the second term becomes very large, and_it
overshadows the I{u, v) term, which corresponds to the original image we are trying @
recover.




Frequency domain filtering operates by using the Fourier transform representaa-oﬁ of

- images. This representation consists of information about the spatial frequency ¢qp.

tent of the image, also referred to as the spectrum of the image. In Figure 3.4-7 i< the

~ general model for frequency domain filtering. The Fourier transform is performed o

three spatial domain functions: 1) the degraded image, d(r, ¢), 2) the degradation fun..
tion, k(r, ¢), and 3) the noise model, n(r, c). Next, the frequency domain filter is applied
to the Fourier transform outputs, N(u, v}, D(u, v), and H(u, v). The output of the filter
operation undergoes an inverse Fourier transform to give the restored image.

The specific models used for i(r, ¢) and n(r, ¢) depend on the applicadon and._ in
practice, often must be estimated. In some cases, they may not be explicitiy I‘equibed
(as in the previous section on spatial filters for noise removal, where the A(r ¢) was
assumed unnecessary). The typical noise models are provided in Section 3.2. The dez-
radation function can be experimentally determined in various wagys. )

Anocther name for the degradation function is the point spread funcdon PSF).
The point spread function (the 2-D equivalent of the impulse response) describes
what happens to a single point of light when it passes through a system. The PSF for

a linear, shift invariant system completely describes the system. This makes it easvto

find the degradation function for a system, if the system 18 available and the condi-
tions under which the image was acquired have not changed—all we need 1o do iz o

re 3.4-1 Frequency Domain Filtering

Degraded
image
d(r, ¢}

Degradation
Function
hir, ¢}

‘ O(u, v) T
] » Frequency
Fourier ; Hiu, W ' Do_main
Transform | Filter —_—
| AN v Ftw. )

Hm_

fnverse
Fourier Hestored '

tan

g




Pseudoinverse Filter

The pseudoinverse filter is a stabilized version of the inverse filter. Eor a llnez::tr shlj_Ft
invariant system with frequency response H(w;, w,), the pseudoinverse filter is

defined as

1
£
Hn (0-)1, (1.)2) = H((ﬂi, (Dz) (826)
' 0, H=0 -

Here, H ™ (w,, wy) 1s also called the generalized inverse of H(‘{Jh mz),qin analogy
with the de’ﬁnition of the generalized inverse of matrices. In pracuc:e', H™ (o, o) 18
set to zero whenever || is less than a suitably chosen positive quantity e.

Example 8.3

Figure 8.10 shows a blurred image simulated digitally as the output _of a noiﬂseless l.meir
sygtem Therefore, W(w,, wz) = H{w;, ws)U(w;, w,). The inverse ﬁl_ts;red image ;S c;n_
tained as U (w; wy) 2 Wiw:, w2)/H (w1, ). In the presence of additive naise, the
verse filter output can be written as

g=" Ny N (8.27)
H H H

where N{w;, w:) is the noise term. Even if N is smaﬂ, N/H. can assume laFrgUe ;ai%i?

resulting in amplification of noise in the filtered image. This is shown in 1;5 Eean

where the small amount of noise introduced by computer rounc}—oﬁ" erro; 38 o

amplified by the inverse filter. Pseudoinverse filtering reduces this effect (Fig. &.

From (9.49), a system that recovers Flng, ny) from g(n,, n,) is an inverse filter,
shown in Figure 9.17.

The inverse filter in Figure 9.17 tends to be Very semsitive to noise. When
B(wy, wy) is very small, VB(wy, w,) is very large, and small noise in the frequency
regions where 1/B(w,, w,) is very large may be greatly emphasized. One methog

of lessening the noise Sensitivity problem is to limit the frequency response
1/B(w,, w,) to some threshold v as follows:

1 : f° 1 -
SN
B(wy, w,) iB(wy, wy)] Y

H(mlr w?.) = (950)
[Blwy, )]

B(U‘)D ('02) ’

The inverse filter 1/B(w,, w,) and its vanation in (9.50) can be implemented
i a variety of ways. We may design a filter whose frequency response approxi-
mates the desired one, using the filter design techniques discussed in Chapters 4
and 5, and then convolve the blurred image with the designed filter. Alternatively,

we can implement the system, using DFTs and inverse DFTs jn a manner analogous
to the Wiener filter implementation discussed in Section 9.2.1.

otherwise.



(d) Pseudo-inverse filtered

(c) Inverse filtered

Figure 8.10 Inverse and pseudo-inverse filtered images.
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One method to deal with this problem is to limit the restoration to a specific
radius about the origin in the spectrum, called the restoration cutoff frequency. For
spectral components beyond this radius, we can set the filter gain to 0 (I(x, v) = 0).
This is the equivalent of an ideal lowpass filter, which may result in blurring and ring-
ing. In practice, the selection of the cutoff frequency must be experimentally deter-
mined and 1s highly application specific. In Figure 3.4-4 we see the result of applying
the inverse filter to an image blurred by an 11 x 11 gaussian convolution mask. Here

Figure 3.4-4 Inverse Filter
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c. Inverse fitter, with cutoff frequency = 40, histo-
gram stretched with 3% low and high clipping
to show detail.

. Image blurred with an 11 x 11 gaussian convo-
lution mask.
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e. Inverse filter, with cuteff frequency = 80, histo- f. Inverse filter, with cuioff freguency = 100, his-
gram stretched. togram stretched.

g. Inverse filter, with cuioff irequency = 120, his-
togram stretched.

we see that selection of a cutoff frequency that is too low may provide poor results, and
with a cutoff frequency too high the resulting image is overwhelmed by noise effects.

With some types of degradation, the function H{x, v) falls off quickly as we move
away from the origin in the spectrum. In this case we may want to set the filter gain to
1 for frequencies beyond the restoration cutoff. Another possibility is to model a But-
terworth filter, or something between the extremes of setting the gain to 0 or 1. In
practice a similar result can be achieved by limiting the gain of the filter to some max-
imum value.




the following discussion we consider the problem of restoring an image that
has been blurred by uniform linear motion. We singled out this problem because
of its practical implications and also because it lends itself well to an analytical
formulation. Solution of the uniform blurring case also demonstrates how zeros
of H(u,v) can be handled computationally. These considerations are important,
because they often arise in practice in other contexts of image restoration by
inverse filtering.

Suppose that an image f(x, y) undergoes planar motion and that x,(¢) and
yo(t) are the time varying components of motion in the x and y directions,
respectively. The total exposure at any point of the recording medium (say,
film) is obtained in this case by integrating the instantaneous exposure over
the time interval during which the shutter is open. Assuming that shutter open-
ing and closing takes place instantaneously and that the optical imaging process
is perfect tsolates the effect of image motion. Then, if T 1s the duration of the

Figure 5.3  Example of image restoration by inverse filtering: (a) original image f(x, y); (b}
degraded (blurred) image glx, y); (¢} result of restoration by considering a neighborhood
about the origin of the uv plane that does not include excessively small values of H(u, vj; (d)

Esulr of using a larger neighborhood in which this condition does not hold. (From McGlamery
967].)
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{a) Original image {b) Realistic blurring (¢) Blurring with
cylindrical boundary
condition

{(d) Inverse filtering (e) Inverse filtering (f} Inverse filtering
of (b) of (b) omitting divi- of (b} omitting divi-
glon by O sion with terms be-

youd the firss 0

(g) Inverse filtering (k) Inverse filtering (i} Inverse filtering of
of (c) of (¢} omitting divi- {c) omitting division
sion by O with terms beyond

the first O

Figure 6.7: Tmage restoration with inverse filtering.




(b) Blurring using {c) Realistic blurring
cylindrical boundary with added Gaussian
with added Gaussian - noise (¢ = 20)

noige (o = 10)

(a) Realistic blurring
with added Gaussian
noise {o = 10)

(d) Inverse filtering {e) Inverse filtering {f} Inverse filtering
of (a), omitting divi- of (b}, omitting divi- of (¢), omitting divi-
sion by 0 ' sion by 0 sion hy 0

(g) Inverse filtering () Inverse filtering (1) Inverse filtering of
of {a}, but omitting of (b}, but omitting (¢), but omitting di-
division with terms division with terms vision with terms be-
heyvond the first 0 beyvond the first 0 vond the first 0

Figure 6.8: Image restoration with inverse filtering in the presence of

noise.
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3.2.2 Mean and Variance

The two basic parameters that describe a random variable are its medr
value (also known as the expectation value) and its variance. The mean

value p is defined as
Q-1

u=1(g)= J p(grgdg, = 2. Pada- (3.2)
. gq=0

The computation of the expectation value is denoted - as in guantum

mechanics — by a pair of angle brackets: (- 3.

The mean can also be determined without knowing the probability

density function explictly by averaging an infinite number of measure-

ments:

P
p(g) = lim =S g (3.3)
Pz Pp=1

Since we cannot take an infinite number of measurements, the determi-
nation of the mean by (3.3) remains an estimate with a res1dua'1 unFm—
tainty that depends on the form of the probability density function, L.e.,

the type of the random process.

The variance o = ({g - {g))*) is a measure of the extent to which
the measured values deviate from the mean value:

ca . Q-1
0" = J pg)g-(g)ida, o= 3 palgs— (9> (3.4)
e =0

3.2.3 Central Moments

The probability density function can be characterized in more detail
by quantities similar to the variance, the moments of nth order m,, =

(g - {g))):

o0 0-1
P = Jp(g)(g— G =S palge o) 35)
J 2

The first central moment is — by definition — zero. The second mo-
ment corresponds to the variance. The third moment, the skewness, is a
measure for the asymmetry of the probability density function around
the mean value. If this function is symmetrical with respect to the mean
value, the third and all higher-order odd moments vanish.

3.2.4 Norma! and Binomial Distribution

The probability density function depends on the nature of the underly-
ing process. Many processes with continuous random variables can be
adequately described by the normal or Gaussian probability distribution

.1 (g -(g)*
Plg) = o D (~ 52 ) (3.6)




3.3.2 Correlations and Covariances

Now we can relate the gray values at two different positions with each
other. One measure for the correlation of the gray values is the expec-
tation value for the product of the gray values at the two positions, the
autocorrelation function

Rggm,m;m’,n") = (GmnGmn)

Q-le-l (3.14)
= > > gadgpla.qim,nim, n).

q=0q=0
The probability density function has six parameters and tells us the prob-
ability that we simultaneously measure the gray value g at the point
(m,n) and g’ at the point (m’,n’). The autocorrelation function is four-
dimensional. Therefore this general statistics is hardly ever used. Things
become easier if the statistics does not explicitly depend on the position
of the pixel. Such a random field is called homogeneous. The mean value
is then constant over the whole image,

(G) = const, {3.15)
and the autocorrelation function becomes shift invariant:

Rggim+kn+Lm +kn +1)=
Ryg(m,n;m’,n’)
= Rygim-m/,n—-n";0,0)
= Rgg(0,0,m" —m,n —n).

(3.16)

The last two identities are obtained when we set (k,l} = (-m/,—-n') and
{(k,1} = (-=m,—-n). Since the autocorrelation function depends only on
the distance between points, it reduces from a four- to a two-dimensional
function. Fortunately, many stochastic processes are homogeneous. A

deterministic image which additively contains zero-mean noise,

G =G+R, (G)=6,

(3.17)

isnot a homogeneous field, because the mean is a spatially varying quan-
tity. By subtraction of the mean, however, we obtain a homogeneous
random field. Some processes show multiplicative noise. Multiplicative
noise can be converted to additive noise by taking the logarithm of the

gray values.

The autocorrelation function for a homogeneous random field takes
a much simpler form, since it depends only on the distance between the

pixels:

M-1 N-1
Z Z Gm’n’Gm’+m,n’+n-

=0 n'=0

(3.18)

This expression includes spatial averaging. For a general homoge-
neous random field it is not certain that spatial averaging leads to the
same mean as the ensemble mean. A random field that meets this cri-
terion is called an ergodic random field. Another difficulty concerns in-
dexing. As soon as (m,n) = (0,0}, the indices run over the range of the
matrix. We then have to consider the periodic extension of the matrix,
as discussed in Sect. 2.3.5. This is known as cyclic autocorrelation.




As many processes consist ot a deterministic and a zero-mean ran-

dom process, it is helpful first to subtract the mean and then to calculate

the correlation:

1 M-1 N-1
ng(?’}l,?l) = Z 2 (G = (Gmrne )
e MN = -
=0 n=0
(Gimremnen — (Gi11’+i'ﬂ,ll'—-il>)-

(3.19)

This function is called the autocovariance. The autocovariance for zero-

shift {(11, n) = (0,0)) is equal o the variance.

Now we illustrate the meaning of the autocorrelation function with
some examples. First we consider an image containing only zero-mean
homogeneous noise. The fluctuations at the individual pixels should be
independent of each other. Autocorrelation (and autocovariance} then
vanishes except for zero shift, i.e., for a zerc pixel distance. For zero
shift, the autocovariance is equal to the variance of the noise. This
means that the autocorrelation is unequal to zero if the fluctuations
at neighboring pixels are not independent. If the autocorrelation grad-
ually decreases with the distance of the pixels, the pixels become more
and more statistically independent. We can then define a characteristic
length scale over which the gray values at the pixels are correlated to
each other. In this sense the autocorrelation function is a description of
the interrelation between the gray values of neighboring pixels.

In a similar manner as we correlate one image with itself, we can
correlate images from two different homogeneous stochastic processes
G and H. By analogy to (3.18) and (3.19), the cross-correlation function
and the cross covariance are defined as

1 M-1N-1
Rgh(k,l) = W z Z Gm’n’H?n’+m,n’+n (3.20)
m'=0n'=0
1 M-1 N-1
Conm,n) = —= > > (Gun —{Gmn))
MN . 27w (3.21)

(Hm'+m,n’+n - (Hm’+m,n'+n> ) .

The cross-correlation operation is very similar to convolution (Table 2.2,
Sect. 4.2). The only dilference is the sign of the indices (m,n) in the
second term.







Approximation Theory

Given a Hilbert space H with an inner product ( , ) we define

d(1,92) = lloy — @all = V(01 — 2,901 — ¥3)

Given a subspace S C H with a basis (¢, %, ,...,%,,)
n
Any @ € S can be written as $ = > a;1);.

i=1
Problem: Given ¢ € H find $ € S so that ||¢ — || is a minimum
Solution: Choose ¢ so that

(p—p,v) =0 foreveryvelS
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or using the cross-correlation

ng(ma:%%vg) = E[f(x7y)g(ivmj|
Rey(z)y,2,y) = Elg(=,9)9(z,9)]
ng($7 y7 EE’ :’J) = . ff Rgg(x/a y; 57 @m(z, "B,; y7 y))dl’,dy/
image

This is still very difficult so we assume that all the statistics are homogeneous
and invariant. So

ng(ﬂ%y’ﬁ@ = ng($_57y_37)

RQQ ("L‘/a y; 57’7 @/) = Rgg (:L.’_ 5? Yy — 37)

Rnn(w,vy,agﬂlj) = Rnn(m,_ an_g)
(

m(z,z;y,y) = mz—xy—y)

Then

ff ng(m’_ z,y—y)m(z — 96‘, y — y)dady

image

= Rgg(m/_ iay/_g) *m(QT,y)

ng(x_?iay_?j)

Fourier transform yields
ng(u’ U) = Sgg(“? U)H(u7 U)

but from (*) we have

g(@.y) = [[ bz, z;y. ) f (@, y)dady+n(z,y) = [[ h@—z,y—y) f (@) dady+n(z, y)

and in Fourier space
G=HF+N



Wiener Filter

Notation:
x, = "original" picture
Y g p
g(z,y)= "actual" picture

o~

f(z,y) = estimate to f(z,y)
Assumption: the noise is additive. So

*)  gla,y) = [f bz, 2y, f (2 ) dady + n(z,y)

We assume h(z,z;y,%) is known (?)
Assumption:

1. En(z,y)] =0
E[f(z,y)f(@,9)] = Rys(x,y,2,y) } lnown
E[n(z,y)n(z,y)] = Run(z,y, 2, Y)

Problem: R
Given g(z,y) find f(z,y) so that

-~

2=F [(f(x,y) - (x,y))z] is a minimum

Solution:

~

To get a meaningful solution we need to assume that f(z,y) is a linear
function of g(z,y).

Fa,y) = [ m(z, 5y, )9(, y)dady

We need to calculate m(xz,z;y,1) as a function of g and h
We wish that
~ , 2
E [(f(m,y) — [[m(z,z;y,9)9(, y)dx’dy’) ] be a minimum

Using the orthogonality theorem we have

E | (F.y) = [f mle, @y, 0)9( dady 9(3,5)) | =0 all 7.7

Interchanging the order of the integrals

B |F@.y)g @] = [ E [m(z,:y,y)9(a% )9 & §)datly]
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Wiener Filter

H = Fourier transform of "blurring

S,,= Fourier transform of R (noise)

S, = Fourier transform of R, (power spectrum)

R, =E{ff'} n
(Ry), =E{f.f/}
R, =E{mn’}

R, ,R_are real and symmetric



Wiener Filter

H = Fourier transform of "blurring

S,,= Fourier transform of R (noise)

S, = Fourier transform of R, (power spectrum)

R, =E{ff'} n
(Ry), =E{f.f/}
R, =E{mn’}

R, ,R_are real and symmetric



Wiener Filter

minimize e’ = E{(f - f)z}

H™(u,v)
2, Sp(U,V)
IHEWF gy

F(u,v)=: +G(u,v)

H = degradation

S, =|N(u,v)f power spectrum of noise

S, =|F(u,v)F power spectrum of undegraded image

Sometimes

A _J HY(uv)
F(uY) ‘{| H(u,v)F +K

}G(u,v)

Inverse:
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Minimization of equation (4.88) is easy if the estimate f is a linear combination of the
values in the image g; the estimate f is then close (but not necessarily equal) to the theoretical
optimum. The estimate is equal to the theoretical optimurm only if the stochastic processes
describing images f, g, and the noise v are homogeneous. and their probability density is
Gaussian [Andrews and Hunt 77]. These conditions are not usually fulfilled for typical images.

Denote the Fourier transform of the Wiener filter by Hy. Then, the estimate £ of the
Fourier iransform F' of the original image f can be obtained as

-~

Flu,v) = Hy {(u,v) G(u,v) (4.89)

The function Hy is not derived here, but may be found elsewhere [Papoulis 65, Rosenfeld
and Kak 82, Bates and McDonnell 86, Gonzalez and Woods 92]. The result is

H*(u., v)
IH(U, 'E,-‘I)|-2 + gSz/r/(LL 'U)/Sff(us UH

Hw*('u, 'U) - (4.90)

where [ is the transform function of the degradation. = denotes complex conjugate, S,, is
the spectral density of the noise. and Sy is the spectral density of the undegraded Image.

- If Wiener filtration is used, the narure of degradation I and statistical parameters of the

| noise need to be known. Wiener filtration theory solves the problem of optimal a posteriori

"} linear mean square estimates——all statistics (for example, power spectrum) should be available

in advance. Note the term Sf¢(u.2) in equation (4.90). which represents the spectrum of the

undegraded image. This information may be difficult to obrain considering the goal of image
restoration. to determine the undegraded image.

Note that the ideal inverse filter is a spectal case of the Wiener filter in which noise is
absent, i.e.. S,, = 0.

Restoration is illustrated in Figures 4.29 and 4.30. Figure 4.29a shows an image that was
degraded by 5 pixels motion in the direction of the z axis. and Figure 4.29b shows the result
of restoration where Wiener filiration was used. Figure 4.30a shows an image degraded by
wrong focus and Figure 4.30b is the result of restoration using Wi iener filtration.

e N
f Despite its unquestionable power, ‘Wiener filtration suffers several substantial hrnltatlons \
'\ First, the criterion of optimality is based on minimum mean square error and weights all |
| errors equally, a mathematically fully acceptable criterion that unfortunately does not per- |
| form well if an image is restored for human viewing. The reason is that humans perceive the
/ restoration errors more seriously in constant-gray-level areas and in bright regions. while they
{ are much less sensitive to errors located in dark regions and in high-gradient areas. Second,
( spatially variant degradations cannot be restored using the standard Wiener filtration ap-
i broach, and these degradations are common. Third, most images are highly non-stationary,
‘\ containing large homogeneous areas separated by high-contrast edges. Wiener filtration can-
!\ not handle non-stationary signals and noise. To deal with real-life image degradations, more
'gi sophisticated approaches may be needed. Examples include power spectrum equalization
rand geometric mean filtration. These and other specialized restoration techniques can

be found in higher-level texts devoted to this topic; [Castleman 96] is well suited for such a
Durpose. '
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3.4.2 Wiener Filter

The Wiener filter, also called a minimum mean-square estimator (developed by
Norbert Wiener in 1942), alleviates some of the difficulties inherent in inverse filter-
ing by attempting to model the error in the restored image through the use of statisti-
cal methods. After the error is modeled, the average error is mathematically
minimized, thus the term minimum mean-square estimator. The resulting equation 1is
the Wiener {ilter:

H(u,v)

S, (u,v)
S{u, v)

Ry, v) =

| IH (u, W+

where H "(u, v) = complex conjugate of H(x, v)
S (u,v) = [N, v)f = power spectrum of the noise

S, v) = [(u,v)}' = power spectrum of the original image

This equation assumes a square image of size N x N. The complex conjugate can be
found by negating the imaginary part of a complex number. Other practical consider-
ations are discussed in Section 3.4.6. Examining this equation will provide us with
some understanding of how it works.

If we assume that the noise term S, (u, v) is zero, this equation reduces to an
inverse filter since | H{u, v)1% = H*(w, v}H(u, v}. As the noise term increases, the
denominator of the Wiener filter increases, thus decreasing the value of Ry {u, v).
Thus,as the contribution of the noise increases, the filter gain decreases. This seems
reasonable—in portions of the spectrum uncontaminated by noise we have an inverse
filter, whereas in portions of the spectrum heavily corrupted by noise, the filter atten-
uates the signal, with the amount of attenuation being determined by the ratio of the
noise spectrum to. the uncorrupted image spectrum.

The Wiener filter is applied by multiplying it by the Fourier transform of the
degraded image, and the restored image is obhtained by taking the inverse Fourier
transform of the result, as follows:

w

fryey = F i, v)] - F R,y Gt v) D, v)]

Figure 3.4-3 compares the inverse filter and the Wiener filter. The filters are applied to
images that have been blurred and then had various amounts of gaussian noise
added. With small amounts of noise, the inverse filter works adequately, but when the
noise level is increased, the Wiener filter results are cbhviously superior.

In practical applications the original, uncorrupted image is not typically avail-
able, so the power spectrum ratio is replaced by a parameter K whose optimal value
must be experimentally determined:

Hu, vy
\Hu, VF + K

Making the K parameter a function of the frequency domain variables (¢, v) may also
provide some added benefits, Because the noise typically dominates at high frequencies,

Ry (u,v) =




Phase of the Wiener Filter. Equation (8.41) can be written as

\

G = ]G]e jBG
IS, o .
|G| - FHl:zSuu + S!m (846)
b= 96(031, (02) = Qe = —0y = 0y-1)

that is, the phase of the Wiener filter is equal to the phase of the inverse filter (in the
frequency domain). Therefore, the Wiener filter or, equivalently, the mean square
criterion of (8.28), does not compensate for phase distortions due to noise in the
observations.

Wiener Smoothing Filter. In the absence of any blur, # =1 and the
Wiener filter becomes

Suu Snr

GIH:l:Sw+Sm:SW+1

(8.47)

where §,, é S!S+ defines the signal-to-noise ratio at the frequencies (w,, w,). This
is also called the (Wiener) smoothing filter. 1t is a zero-phase filter that depends only

Syuley, 0)

{a} Noise smoothing (H = 1)

Inverse
filter

Smoothing
filter

{b} Debiurring

Figure 8.11 Wiener filter characteristics.
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on the signal-to-noise ratio S,.. For frequencies where S, > 1, G becomes nearly
equal to unity which means that all these frequency components are in the
passband. When S, <1, G = §,,; that is, all frequency components where §,, <1,
are attenuated in proportion to their signal-to-noise ratio. For images, S, is usually
high at lower spatial frequencies. Therefore, the noise smoothing filter is a low-pass
filter (see Fig. 8.11a).

Relation with Inverse Fﬁtering. In the absence of noise, we set S, = G and

the Wiener filter reduces to
_HS. 1
m= HPFS,., H

which is the inverse filter. On the other hand, taking the limit S.,— 0, we obtain

1
im G =(H’ HED

S0 0, H=0

Gls (8.48)

H- (8.49)

which is the pseudoinverse filter. Since the blurring process is usually a low-pass
filter, the Wiener filter acts as a high-pass filter at low levels of noise.

Interpretation of Wiener Filter Frequency Response. When both noise
and blur are present, the Wiener filter achieves a compromise between the low-pass
noise smoothing filter and the high-pass inverse filter resulting in a band-pass filter
(see Fig. 8.11b). Figure 8.12 shows Wiener filtering results for noisy blurred images..
Observe that the deblurring effect of the Wiener filter diminishes rapidly as the
noise level increases.

Wiener Filter for Diffraction Limited Systems. The Wiener filter for the
continuous observation model, analogous to (8.39)

vy = [[ThG =y =y a0 dy e y)  (850)

is given by

Suu (gly gZ)H* (gl: gZ)
> (8.51)
[H(gla EZ){ Suu (gla §2) + SWT'] (gly gZ)
For a diffraction limited system, H (&, &) will be zero outside a region, say 9%, in the

frequency plane. From (8.51), G will also be zero outside 9. Thus, the Wiener filter
cannot resolve beyond the diffraction limit.

G(&,&) =




"
s

8
{2} Blurred with smail noise

~oes ..

{c) Biurred with increased noise ) Reg{;‘red g};ége“(c)

Figure 8.12 Wiener filtering of noisy blurred images.




One Dimensional Motion

T
o(z,y) = /0 F — zo(t),y — yo(t))dt

Fourier transform

G(m,n) = / / g(z, y)e*%i(mwr"y)da:dy

T o o
/ ( / / f(@ - 2oy - yo>e2”<m“"y>dzdy) i
0 —00 J —0oc0o

T
/ F(u,v)ef%i(m“’”+”y°)dt
0

So the transfer function is

T
H(mm):/ e~ 2milman(t)+nyo(t)) gy
0

Assume xo = %t 1o = 0. Then

H(m,n) = /T e=2mimt gy _ pe—rima SN{TMA)
0 Tmao
Note that H(m,n) = 0 whenever ma is an integer.
Using sum instead of integral we get
17 = total number of pixels recorded by the same cell of the camera
N = total number of pixels in a row of the image

1 sin(%Fir)
ir sin(%57)

—
T(’LNQ

H(m,n) =



Wiener Filter

H*(u,v)

2 | Snn(u,0)
[H (u,0)* + 322070

Note: S¢¢(u,v) is autocorrelation of the original picture

M(u,v) =

Assumption: Noise is white:

S’rm(uy U) = Snn(07 0) = / / Rnn(xvy)dxdy

can be found when there is no image f(z,y) =0

Wierner-Khinchine Theorem

The spatial autocorrelation function of a random field f(x,y) is equal to the
spectral density |F(u,v)[?

example: blurred image

H(m,n) = 1 sCNT) i
’ iT sin(%)
|H(m,n)]> = 1 sin®(*rir)
’ i sin®(%R)
T N
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wiener2 estimates the local mean and variance around each pixel

1
W= NM Z a(ny, ng)
ny, g €M
2 1 2 2
Ty, Ny €
where 1 is the N-by-M local neighborhood of each pixel in the image A. wiener2
then creates a pixel-wise Wiener filter using these estimates
ot v

where v¥ is the noise variance. If the noise variance is not given, wiener2 uses
the average of all the local estimated variances.

filter2, medfilt2

Lim, Jae 5. Two-Dimensional Signal and Image Processing. Englewood Cliffs,
NJ: Prentice Hall, 1990. pp. 536-540.
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\MPLE 5.8:
iz function
INVWNE Lo

re a blurred,
y image.

IRE 5.8
3lurred, noisy
re. {(b) Result
verse

IRg.

lesult of

ner filtering

g a constant

1. (d) Result
Nener filtering

o
>

correlation
tions.

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm. it sometimes helps to use function edgetaper
prior to calling deconvwnr. The syntax is

J = edgetaper(Il, PSF)

This function blurs the edges of the input image, I, using the point spread func-
tion, PSF. The output image, J. is the weighted sum of I and its blurred version.
The weighting array, determined by the autocorrelation function of PSF,
makes J equal to I in its central region, and equal to the blurred version of I
near the edges.

Figure 5.8(a) is the same as Fig. 5.7(d), and Fig. 5.8(b) was obtained using
the command

>> fri = deconvwnr(g, PSF);
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Inverse filtering

Problem:

* Given g and “some” information about H & n

- find f
Solutions: . g R n
Inverse filteringisbad:| f == = =+ —
(too much noise) H H
Better approach: R
Minimize some error functional such as: E{(f - f)2}
(the expectation value of the squared difference)

85

LEN = 31;
THETA = 11;

Original image

PSF = fspecial(‘motion' LEN,THETA);
Blurred = imfilter(I PSF, circular','conv');

wnrl = deconvwnr(Blurred,PSF);

ﬁ Deblurring with Wiener

% I is flowers.tif (croped)

filter.

Without noise,
this is an inverse

@

Blurred image Image restored by Wiener fiker

86
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Additive Noise

PSF = fspecial('gaussian',5,5);

Blurred = imfilter(I PSF,' symmetric’, conv');
vV =.002;

BlurredNoisy = imnoise(Blurred,'gaussian’,0,V);

Al Wi=Co

| ™1/0, IR, RAM -
& . SOFT

| 280._2.00000
300, 18, CCOOD
WE-RBM-ADDRES
=] » NONE/SOF T
w 08000

Source image Blurred & noised image

87
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Deblurring noisy images
Lucy—Richardson deconvolution

’ Number of iterations ‘j
lucl = deconvlucy(BlurredNoisy PSF ,15);

deblurred image

. SOFT
| .@80._3.00000
300, 18, CCOOD
WE-RBM-ADDRES
wNONE/SOF T

88
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Methods

deconvblind Restore image using blind deconvolution

deconvlucy Restore image using accelerated Richardson-

Lucy algorithm.
deconvreg Restore image using Regularized filter

deconvwnr Restore image using Wiener filter

83

O Deblurring Model

Image degradation can be approximately described by
this equation

g = H-f + n, where:
g=  The blurred image
H=  The distortion operator, also called the point-
spread function (PSF). This function, when
convolved with the image, creates the distortion
f = The original undegraded image
n=  Additive noise, introduced during image

acquisition, that corrupts the image.

84




Constrained Matrix

g = Hf+n
= g—Hf
Assume statistics of the noise are known, eg n’n = ¢

Let Lf be a functional of the picture e.g. discrete Laplacian. We wish to
find

(LA (LF) = minimum
(9-HN" (g-Hf) = ¢
Use Lagrange multipliers
f = [H*H+~L*L] " H*g
__Hyg
|H|?> +~L*L

Note instead of L = Laplacian take L*L = — Laplacian.

Looks similar to Wiener L*L = gLf;



Image Restoration Chap. 5

i1t seems reasonable to have the value of K increase as the frequency increases, which
will cause the filter to attenuate the signal at high frequencies. The following filter
applies this 1dea.

3.4.3 Constrained Least-Squares Filter

The constrained least-squares filter provides a filter that can eliminate some of
the artifacts caused by other frequency domain filters. This is done by including a

ure 3.4-5 Wiener Filter
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smoothing criterion in the filter derivation, so that the result will not have undesir-
able oscillations (these appear as “waves” in the image), as sometimes cccurs with
other frequency domain filters. The constrained least-squares filter is given by

Ryl v)

where v
Plu, v)

fl

1t

i

H*(u, v)
e, VF + 1P, v

adjustment factor
the Fourier transform of smoothness criterion function
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The adjustment factor’s value is experimentally determined and is application depen-
dent. A standard function to use for p(r, c) (the inverse Fourier transform of P(u, v)} is
the laplacian filter mask, as follows:

] 0 -1 ¢
plr,cy = |1 4 -1
0 -1 0O

However, before P(u, v) is calculated, the p(r, ¢) fanction must be extended with zeros
{zero-padded) to the same size as the image. Figure 3.4-6 shows the results of applying
this filter.

The constrained least-squares filter is applied by multiplying it by the Fourier
transform of the degraded image, and the restored image is obtained by taking the
inverse Fourier transform of the result as follows:

ftr,e) = i, )] = F 7 Reys(, 9Dl )

3.4.4 Geometric Mean Filters

The geometric mean filter equation provides us with a general form for many of
the frequency domain restoration filters. It is defined as folloWs:

+2 -«
_ A (v H(w, v)
R (u,v) = -2 2
o LH(u, v)lz} I N )
\HG, w1+
S {u, v)

The terms are as previously defined, with v and « being positive real constants. If o =
1/2 and v = 1, this filter is called a power spectrum equalization filter (also called a
homomaorphic filter). If o = 1/2, then this filier is an average between the inverse filter
and the Wiener filter, hence the term geometric mean, although it is standard to refer
to the general form of the equation as geometric mean filter(s).

The geometric mean filter is applied by multiplying it by the Fourier transform
of the degraded image, and the restored image is obtained by taking the inverse Fou-
rier transform of the result, as follows:

ftre) = F )] = FoRgy 00 v)D(, v)]

If o = 0, this filter is called a parametric Wiener filter. The equation reduces to the
Wiener filter equation, but with v included as an adjustment parameter:

Hu, v)
S, (%, v)
Sfu,v) |
When v = 1, this filter becomes a standard Wiener filter, and when vy = 0, this filter

becomes the inverse filter. As v is adjusted, the results vary between these two filters,
with larger values providing more of the Wiener filtering effect.

RPW(II, v) =
|H{u, v +
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The parametric Wiener filter is applied by multiplying it by the Fourier tran:s
form of the degraded image, and the restored image is obtained by taking the invers
Fourier transform of the result as follows:

Irc) = F'l{f(u, v)} = F'i[RPW(u, V) .O(u, 1;)]

In general, the frequency domain filters work well for small amounts of blurth
and moderate amounts of additive noise. The inverse filter is inadequate with t
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FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering.
(c) Result of Wiener filtering. (d)—(f) Same sequence, but with noise variance one order of magnitude less.
(g)-(i) Same sequence, but noise variance reduced by five orders of magnitude from (a). Note in (h) how

the deblurred image is quite visible through a “curtain” of noise.
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FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (¢) with the Wiener filtering
results in Figs. 5.29(¢c), (f), and (i), respectively.
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For m = O we must remember to use:

G1(0, .
Fl((),n):—Tl(:f@ for 0<n<N-1
Gg D, T , .
FQ(O«n):—i—%_-I_—) for 0<n<N —}
If we Fourier transform back using functions Fi{m,n) an Fa(m,n) we obtain the

restored 1mage shown in Figure 6.9a. This image should be compared with images
6.7¢ and 6.7f, which are obtained by inverse filtering.

The restoration of the noisy mages of Figures 6.8a and 6.8¢ by Wiener fil-
tering is shown in Figures 6.9b and 6.9¢c. These images should be compared with
Figures 6.8¢ and 6.8i respectively. In all cases Wiener filtering produces superior
results.

—rt

(a) Wiener filtering with {b) Wiener filtering with {¢) Wiener filtering with

' = 0.0 of image 6.7b T = 0.5 of image 6.8a {re- I' = 1 of image 6.8¢ {re-

(realistic blurring) alistic blurring with addi- alistic blurring with addi-
tive Gaussian noise [0 = tive Gaussian noise (¢ =
10)) 20%)

Figure 6.9: Image restoration with Wiener filtering.

If the degradation process is assumed linear, why don’t we solve a system
of linear equations to reverse its effect instead of invoking the convolution
theorem?

Indeed, the system of linear equations we must invert is given in matrix form by
equation (6.10), g = Hf. However, we saw that it is more realistic to include in this
equation an extra term representing noise (see equation (6.26)):

oo (68.75)
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{a) Constraint matrix in- (b} Constraint matrix in- (c) Constraint matrix in-

version with + = 0.001 version with ~ = (.05 for version with v = 0.1 for

for image 6.7b {realistic image 6.8a {realistic blur- image 6.8¢ (realistic blur-

blurring) ring and Gaussian noise ring and Gaussian noise
(o = 10)) (0 20))

Figure 6.11: Restoration with constraint matrix inversion.

What is the “take home” message of this chapter?

This chapter explored some techniques used to correct (i.e. restore) the damaged
values of an image. The problem of restoration requires some prior knowledge con-
cerning the original uncorrupted signal or the imaged scene, and in that way differs
from the image enhancement problem. Geometric restoration of an image requires
knowledge of the correct location of some reference points.

Grey level restoration of an image requires knowledge of some statistical proper-
ties of the corrupting noise, the blurring process and the original image itself. Often,
we bypass the requirement for knowing the statistical properties of the original im-
age by tmposing some spatial smoothness constraints on the solution, based on the
heuristic that “the world is largely smooth”. Having chosen the correct model for the
degradation process and the uncorrupted image, we have then to solve the problem
of recovering the original image values.

The full problem of image restoration is a very difficult one as it is non-linear.
It can be solved with the help of local or global optimization approaches. However,
simpler solutions can be found, in the form of convolution filters, if we make the
assumption that the degradation process is shift invariant and if we restrict the domain
of the sought solution to that of linear solutions only. Figure 6.12 summarizes the
results obtained by the various restoration methods discussed, for an image -blurred
by motion along the horizontal axis.

el i £ s et At e e
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(a) (b) (c) (d)

Figure 6.12: (a) Original images. (b) Restoration by inverse filtering with
omission of all terms beyond the first zero of the filter transfer function.
(c) Restoration by Wiener filtering. (d) Restoration by constraint matrix
inversion.




Throughout this chapter, we will rely on a subjectuive comparison vy OLigutayy ™ ™7 ™~
degraded, and processed images by a human observer to illustrate the performance
of each image restoration algorithm. [n addition when the information is available,
we will provide the normalized mean square error (NMSE) between the original
image f{n,, n,) and the degraded image g(n,, n,). and that between the original
image f(n,, n,) and the processed image p(n,, n,). The NMSE between f(n,, n,)
and p{n,, n,) is defined by

Var {f(nl’ nQ) _ p(”’l: n?)] %
Var [f{ny, ns)]
where Var [-] 1s the variance. Using the variance ensures that the NMSE will not

be affected by adding a bias to p(n,, n,). The measure NMSE [ fln, n,}, g(ny, n5)]
1s similarly defined. The SNR improvement due to processing is defined by

NMSE [f(n,, m), p(m, na)] = 100 x (9.12)

SNR imprgvement = 10 loe w

89 NMSE [f(my, ), plr, ] o O

A human observing two lmages affected by the same type of degradation will
generally judge the one with the smaller NMSE to be closer to the original. A
very small NMSE generally can be taken to mean that the image is very close o
the original. 1t is important to note, however, that the NMSE is just one of many
possible objective measures and can be misleading. When images with different

Lo ad
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types of degradation are compared, the one with the smaliest NMSE will not
necessarily seem closest to the original.  As a result, the NMSE and SNR im-
provements are stated for reference only and should not be used in literally com-
- paring the performance of one algorithm with another,

Figure 9.5 illustrates the performance of a Wiener filter for image restoration.
Figure 9.5(a) shows an original image of 512 % 512 pixels, and Figure 9.5(b) shows
the image degraded by zero-mean white Gaussian noise at an SNR of 7 dB. The
SNR was defined in Chapter & as

Var [f(ny, ny)]

SNR indB = 101 .
" 80 Var [l 1)

(9.14)

Figure 9.5(c) shows the result of the Wiener filter applied to the degraded image.
In the Wiener filter, P,{w,, w;) was assumed given and Py(w,, w,) was estimated
by averaging {F(w,, w,)? for ten different images. For white noise degradation,
P (&, w,) is constant independent of (wy, w,). The processed image has an SNR
improvement of 7.4 dB. As Figure 9.5 shows, Wiener filtering clearly reduces the
background noise. This 1s also evidenced by the SNR improvement. However,
it also blurs the image significantly. Many variations of Wiener filtering have been
proposed to improve 1ts performance. Some of these variations will be discussed
in the next section.

[



Figure 9.5 (2) Original image of 512 x 512 pixels; (b) degraded image at SNR of 7 dB,
with NMSE of 19.7%; (c) processed image by Wiener filtering, with NMSE of 3.6% and
SNR improvement of 7.4 dB.
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as the lowpass filter cutoff frequency. Without a specific application context, only
general statements can be made. In general, the more the available knowledge
is used, the higher the resulting performance will be. If the avaitlable information
is inaccurate, however, the system’s performance may be degraded. In general,
more sophisticated rules for adaptation are associated with subimage-by-subimage
processing, while simple rules are associated with pixel-by-pixel processing for
computational reasons.

- When an adaptive mmage processing method is applied to the problem of
restoring an image degraded by additive random noise, it is possible to reduce
background noise without significant image blurring. In the next four sections,
we discuss a few representauve adaptive image restordfion systemns chosen from
among the many proposed in the hiterature.

9.2.4 The Adaptive Wiener Filter

Most adaptive restoration algorithms for reducing additive noise in an image can
be represented by the system in Figure 9.9 From the degraded image and prior
knowledge, some measure of the local details of the noise-free image is determined.
One such measure 1s the local variance. A space-variant* filter A(n,, n,) which is
a function of the local image details and of additional prior knowledge is then
determined.

The space-variant filter is then applied to the degraded image in the local
region from which the space-variant filter was designed. When the noise is wide-
band, the space-variant A(n,, n,) is lowpass in character. In low-detail image
regions such as uniform intensity regions, where noise is more visible than in high-
detail regions, a large amount (low cutoff frequency) of lowpass filtering is per-
formed to reduce as much noise as possible. Since little signal variation is present
in low-detail regions, even a large amount of lowpass filtering does not signiﬁcantly
affect the signal component. In high-detail image regions such as edges, whete 2
large signal component is present, only a small amount of lowpass filtering 1

*For a space-variant filter, the filter coefficients change as a function of (n,, 7z)- For
notational simplicity, we denote the filter coefficients by h(n,, n.). It should be noted-
however, that A(n,, ny) changes as we process different parts of an image.
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performed so as not to distort (blur) the signal component. This does not reduce
much noise, but the same noise is less visible in the high-detail than in the low-
detail reglons.

A number of different alcrorlthms can be developed, depending on which
specific measure is used to represent local image details, how the space-variant
h(ny, ny) is determined as a function of the local image details, and what prior
knowledge is available. One of the many possibilities is to adaptively design and
implement the Wiener filter discussed in Section 9.2.1.  As Figure 9.3 shows, the
Wiener filter requires knowledge of the signal mean m;, nois¢ mean m,, signal
power spectrum Pr(w,, @}, and noise power spectrum P,(w;, ,). Instead of
assuming a fixed m;, m,, Pr(w,, w,), and P (v, w,) for the entire image, they can
be estimated locally. This approach will result in a space-variant Wiener filter.
Even within this approach, many vanations are possible, depending on how m,
my, Prw, ®,), and P,(w,, w,) are estimated locally and how the resulting space-
variant Wiener filter is implemented. We will develop one specific algorithm to
illustrate this approach.

We first assume that the additive noise v(n,, 71,) 1s zero mean and white with
variance of oZ. Its power spectrum P, (w, w,) is then given by

P,(0y, w) = oy (9.21)

- Consider a small local region in which the signal f(n,, n,) is assumed stationary.
Within the focal region, the signal f{n,, n,) is modeled by

[y, ny) = my + O'fw(”b 7s) (9.22)

where m; and o, are the local mean and standard deviation of f(n,, n,), and
w(n,, n,) is zero-mean white noise with unit variance.* There is some empirical
evidence that (9.22) is a reasonable model for a typical image [Trussell and Hunt;
Kuan et al. (1985)].

In (9. 22) the signal f(n,, nz) is modeled by a sum of a space-variant local

*The notation w(n,, n,) is used to represent both a window function and white noise.
Specifically which is meant will be clear from the context.
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Lucy - Richardson Deconvolution

Bt Bayes’s theorem

Ploty = LU
fP x)P(x)dx

P(y|z) is the conditional probability of y given x.

Thus, P(z) is the object distribution f(x)

P(y|z) is the PSF cenetered at x i.e. g(z,y)

P(y) is the degraded image or equivalentlu the convolution kernel ¢(y)
So we construct an iterative method

fonata) = ( [ AA20bY o
or equivalently

fin@ ={ ;5 | oo} s

In this case g(x) is known (non-blind convolution) and one iterates until
fi(x) is known.

For blind convolution we replace this by two steps
1, Given the object n Lucy-Richardson iterations are done to find the PSF

g™ (x)

2. The next f(x) is found by using n Lucy-Richardson iterations

o = { e oo
@ = { | o] oot co ) @



g=H*f+n

Wiener Deconvolution — minimum least square error estimation

H"(u,v)
G(u,v) =
Hu ) + )
P (u,v)
Problems:

1. MSE is not physically relevant
Human eye more tolerant of errors in dark areas and high gradient areas

2. Cannot handle spatially variant blurring PSF

3. Cannot handle nonstationary signals and noise
4. Depends on P, P, Which are not usually known

Power Spectrum Equalization - Homomorphic filter

1
G(u,v) =
HEwf + oY)
P (u,v)
Geometric Mean Filter
H (u,v) | H"(u,v)
G(u,v):{ }
H (u,v) > . P(u,v)
[HUV) [ +y P, (1Y)

If =0 Called the parametric Wiener filter

Constrained Least Square Restoration
lg—Hf [*=n
So consider Lagrange multiplier formulation

W () IQf 1P +4(lIlg—Hf I ~IIn|P)

—h)

oW H'g
Set — =0 Then =2 y=
of |H[ +y|QF %

Example: Q=Laplacian  Q(u,v) = —47z(u®+Vv?)



g=H*f+n

Wiener Deconvolution — minimum least square error estimation
fr = deconvwnr(g, PSF, NACORR, FACORR)
NACORR, FACORR are the autocorrelation functions of the noise and the

undegraded picture (in picture space as matrix or scalar). This is the inverse FFT of
the power spectrum.

Constrained Least Square Restoration

A~ H*

W Y
Example: Q=Laplacian  Q(u,Vv) = -4z (u®+Vv?)
Fr=deconvreg(g, PSF, NOISEPOWER, RANGE)

Lucy Richardson Restoration
Fr=deconvlucy(g, PSF, NUMIT, DAMPAR, WEIGHT)

Blind Deconcolution

Fr=deconvblind(g, INITPSF, NUMIT, DAMPAR, WEIGHT)
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Figure 4.29: Restoration of motion blur using Wiener filtration. Courtesy P. Kohout, Crim-

tnalistic Institute, Prague.

4.5 Summary

e Image pre-processing

— Operations with images at the lowest level of abstraction—both input and output
are intens:ty images—are called pre-processing.

— The aim of pre-processing is an improvement of the image data that suppresses
unwilling distortions or enhances some image features important for further pro-

cessing.
— Four basic types of pre-processing methods exist:
* Brightness transformations
* (Geometric transformations
* Local neighborhood pre-processing

* Image restoration
¢ Pixel brightness transformations

— There are two classes of pixel brightness transformations:

* Brightness corrections

* Gray-scale transformations

— Brightness corrections modify pixel brightness taking into account its orlfrmal
brightness and its position in the image. :

— Gray-scale transformations change brightness without regard to position in the)
lmage.
— Frequently used brightness transformations include:

;ﬁ
i
%
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Figure 4.30: Restoration of wrong focus blur using Wiener filtration. Courtesy P. Kohout,
Crimanalistic Institute, Prague. y

+ Brightness thresholding

+ Histogram equalization

+*

Logarithmic gray-scale transforms
* Look-up table transforms
+ Pseudo-color transforms

- The goal of histogram equalization is to create an image with equally distributed
brightness levels over the whole brightness scale.

o (Geometric transformations

— ‘Geometric transforms permit the elimination of the geometric distortions that
occur when an image is captured.

— A geometric transform typically consists of two basic steps:
« Pirel co-ordinate transformation
* Brightness interpolation

— Pixel co-ordinate transformations map the co-ordinates of the input image pixel
to a point in the output image; affine and bilinear transforms are frequently used.

— The output point co-ordinates do not usually match the digital grid after the
transform and interpolation is employed to determine brightnesses of output pixels;
nearest-netghbor, linear, and bi-cubic interpolations are frequently used.

* Local pre-processing

— Local pre-processing methods use a small neighborhood of a pixel in an input
image to produce a new brightness value in the output image.

- For the pre-processing goal, two groups are common: smoothing and edge detection.






