
ERRORS 

1.  Lens Aberration (Hubble)  העדשה סטיה  

 

2. Diffraction of electromagnetic waves at aperture stop of the lens 

 

3. Defocusing  קדמל  

 

4. Motions and vibrations of the camera המצלמה של ותנודות תנועות  

telephoto lenses 

motion of the object, blur  טשטוש -גוף ה של ותנודות תנועות   

 

5. Row jittering 

synchronization  of frame buffer 

  

6. Bad transmission along video lines דיווי קווי לאורך רע שידור  

Echoes  הדים 

 

7. Electronic interference  עות אלקטרוניותרהפ  

fixed and moving patterns 

 

8. Noisy digital circuits דיגיטליים מעגליםב רעש  

individual bits flip - random errors אקראיות שגיאות  

 

9.  Atmospheric turbulence   האטמוספירה  תמערבול  

 
  

 







What is a Point Spread Function? 

The PSF of an optical system is the irradiance distribution that results from a 

single point source in object space. A telescope forming an image of a distant 

star is a good example: the star is so far away that for all practical purposes it 

can be considered a point. 

Although the source may be a point, the image is not. There are two main 

reasons. First, aberrations in the optical system will spread the image over a 

finite area. Second, diffraction effects will also spread the image, even in a 

system that has no aberrations. 

optical transfer function 

The optical transfer function (OTF) of an imaging system ( camera, video, 

system, microscope etc.) is the true measure of resolution (image sharpness) 

that the system is capable of. The common practice of defining resolution in 

terms of pixel count is not meaningful, as it is the overall OTF of the complete 

system, including lens and anti-aliasing filter as well as other factors, that 

defines true performance. In the most common applications (cameras and 

video systems) it is the Modulation Transfer Function (the magnitude of the 

OTF), that is most relevant, although the phase component can have a 

secondary effect. While resolution, as commonly used with reference to 

camera systems, describes only the number of pixels in an image, and hence 

the potential to show fine detail, the transfer function describes the ability of 

adjacent pixels to change from black to white in response to patterns of 

varying spatial frequency, and hence the actual capability to show fine detail, 

whether with full or reduced contrast. An image reproduced with an optical 

transfer function that 'rolls off' at high spatial frequencies will appear 'blurred' 

in everyday language. Modulation Transfer Function or MTF (the OTF 

magnitude with phase ignored) is roughly the equivalent of frequency 

response in an audio system, and can be represented by a graph of light 

amplitude (brightness) versus spatial frequency (cycles per picture width). 

 

http://en.wikipedia.org/wiki/Imaging
http://en.wikipedia.org/wiki/Image_resolution
http://en.wikipedia.org/wiki/Optical_resolution
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FFT Demo

Source image

Masked part 
of the FFT

Central part of the FFT

82

Dr. Yoram Tal

Image Deblurring
(Deconvolution)

Problem: how to undo blurring & recover the 
sharp image?













































Approximation Theory

Given a Hilbert space H with an inner product ( , ) we de�ne

d('1; '2) = jj'1 � '2jj =
p
('1 � '2; '1 � '2)

Given a subspace S � H with a basis ( 1;  2; ; :::;  n)

Any b' 2 S can be written as b' = nP
i=1

�i i.

Problem: Given ' 2 H �nd b' 2 S so that jj'� b'jj is a minimum
Solution: Choose ' so that

('� b'; v) = 0 for every v 2 S

1





or using the cross-correlation

Rfg(x; y; ex; ey) = E
h bf(x; y)g(ex; ey)i

Rgg(x�; y�; ex; ey) = E [g(x�; y�)g(ex; ey)]
Rfg(x; y; ex; ey) = RR

image
Rgg(x�; y�; ex; ey)m(x; x�; y; y�)dx�dy�

This is still very di¢ cult so we assume that all the statistics are homogeneous
and invariant. So

Rfg(x; y; ex; ey) = Rfg(x� ex; y � ey)
Rgg(x�; y�; ex; ey) = Rgg(x�� ex; y � ey)
Rnn(x�; y�; ex; ey) = Rnn(x�� ex; y � ey)
m(x; x�; y; y�) = m(x� x�y � y�)

Then

Rfg(x� ex; y � ey) =
RR
image

Rgg(x�� ex; y�� ey)m(x� x�; y � y�)dx�dy�
= Rgg(x�� ex; y�� ey) �m(x; y)

Fourier transform yields

Sfg(u; v) = Sgg(u; v)H(u; v)

but from (*) we have

g(x; y) =
RR

h(x; x�; y; y�)f(x�; y�)dx�dy�+n(x; y) =
RR

h(x�x�; y�y�)f(x�; y�)dx�dy�+n(x; y)

and in Fourier space
G = HF +N
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Wiener Filter

Notation:
f(x; y) = "original" picture
g(x; y)= "actual" picturebf(x; y) = estimate to f(x; y)
Assumption: the noise is additive. So

(*) g(x; y) =
RR

h(x; x�; y; y�)f(x�; y�)dx�dy�+ n(x; y)

We assume h(x; x�; y; y�) is known (?)
Assumption:

1. E [n(x; y)] = 0

2.
E [f(x; y)f(x�; y�)] = Rff (x; y; x�; y�)
E [n(x; y)n(x�; y�)] = Rnn(x; y; x�; y�)

�
known

Problem:
Given g(x; y) �nd bf(x; y) so that

"2 = E

��
f(x; y)� bf(x; y)�2� is a minimum

Solution:

To get a meaningful solution we need to assume that bf(x; y) is a linear
function of g(x; y).

bf(x; y) = RR m(x; x�; y; y�)g(x�; y�)dx�dy�
We need to calculate m(x; x�; y; y�) as a function of g and h
We wish that

E

�� bf(x; y)� RR m(x; x�; y; y�)g(x�; y�)dx�dy��2� be a minimum
Using the orthogonality theorem we have

E
h� bf(x; y)� RR m(x; x�; y; y�)g(x�; y�)dx�dy�; g(ex; ey)�i = 0 all ex; ey

Interchanging the order of the integrals

E
h bf(x; y)g(ex; ey)i = RR E �m(x; x�; y; y�)g(x�; y�)g(ex; ey)dx�dy��

2









Wiener Filter 
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H = Fourier transform of "blurring 

nnS = Fourier transform of 
nn

R  (noise) 

ff
S = Fourier transform of 
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Wiener Filter 

 
*

2

( , )
( , )

( , )
| ( , ) |

( , )
nn

ff

H u v
M u v

S u v
H u v

S u v




 

H = Fourier transform of "blurring 

nnS = Fourier transform of 
nn

R  (noise) 

ff
S = Fourier transform of 

ff
R  (power spectrum) 

 

 

   

 

ת        חלת

 

t

ff

t

ff i jij

t

nn

R E ff

R E f f

R E nn







 

 , 
ff nn

R R  are real and symmetric 



Wiener Filter 
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2minimize        e E f f  
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H = degradation 

2| ( , ) |nn N u vS     power spectrum of noise 

2| ( , ) |
ff

F u vS   power spectrum of undegraded image 
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Inverse: 

( , )ˆ ( , )
( , )

G u v
F u v

H u v
  















One Dimensional Motion

g(x; y) =

Z T

0

f(x� x0(t); y � y0(t))dt

Fourier transform

G(m;n) =

Z 1

�1

Z 1

�1
g(x; y)e�2�i(mx+ny)dxdy

=

Z T

0

�Z 1

�1

Z 1

�1
f(x� x0; y � y0)e�2�i(mx+ny)dxdy

�
dt

=

Z T

0

F (u; v)e�2�i(mx0+ny0)dt

So the transfer function is

H(m;n) =

Z T

0

e�2�i(mx0(t)+ny0(t))dt

Assume x0 =
�t
T y0 = 0. Then

H(m;n) =

Z T

0

e�2�im
�t
T dt = Te��im�

sin(�m�)

�m�

Note that H(m;n) = 0 whenever m� is an integer.
Using sum instead of integral we get
iT = total number of pixels recorded by the same cell of the camera
N = total number of pixels in a row of the image

H(m;n) =
1

iT

sin(nmN iT )

sin(nmN )
e��i

m
N �

1



Wiener Filter

M(u; v) =
H�(u; v)

jH(u; v)j2 + Snn(u;v)
Sff (u;v)

Note: Sff (u; v) is autocorrelation of the original picture

Assumption: Noise is white:

Snn(u; v) = Snn(0; 0) =

Z 1

�1

Z 1

�1
Rnn(x; y)dxdy

can be found when there is no image f(x; y) = 0

Wierner-Khinchine Theorem

The spatial autocorrelation function of a random �eld f(x,y) is equal to the
spectral density jF (u; v)j2

example: blurred image

H(m;n) =
1

iT

sin(nmN iT )

sin(nmN )
e��i

m
N �

jH(m;n)j2 =
1

i2T

sin2(nmN iT )

sin2(nmN )

2
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Inverse filtering

Problem: 
• Given g and “some” information about H & n
• find f

Solutions:
Inverse filtering is bad:
(too much noise)

� � nf f f + 
H

g
H

= ⇒ =

Better approach: 
Minimize some error functional such as:
(the expectation value of the squared difference)

l{ }2( )E f f−
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Deblurring with Wiener

% I is flowers.tif (croped)
LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA);
Blurred = imfilter(I,PSF,'circular','conv');

wnr1 = deconvwnr(Blurred,PSF); 

Without noise, 
this is an inverse 
filter.
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Additive Noise

Source image Blurred & noised image

PSF = fspecial('gaussian',5,5);
Blurred = imfilter(I,PSF,'symmetric','conv');
V = .002;
BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
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Deblurring noisy images

Source image deblurred image

luc1 = deconvlucy(BlurredNoisy,PSF,15);

Lucy–Richardson deconvolution
Number of iterations
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Methods
deconvblind Restore image using blind deconvolution

deconvlucy Restore image using accelerated Richardson-
Lucy algorithm.

deconvreg Restore image using Regularized filter

deconvwnr Restore image using Wiener filter
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Deblurring Model
Image degradation can be approximately described by 
this equation 

g = H•f + n, where:

g = The blurred image
H = The distortion operator, also called the point-

spread function (PSF). This function, when
convolved with the image, creates the distortion

f = The original undegraded image
n = Additive noise, introduced during image 

acquisition, that corrupts the image.



Constrained Matrix

g = Hf + n

n = g �Hf

Assume statistics of the noise are known, eg nTn = �
Let Lf be a functional of the picture e.g. discrete Laplacian. We wish to

�nd

(Lf)
T
(LF ) = minimum

(g �Hf)T (g �Hf) = �

Use Lagrange multipliers

f = [H�H + L�L]
�1
H�g

=
H�g

jHj2 + L�L

Note instead of L = Laplacian take L�L = �Laplacian.
Looks similar to Wiener L�L = Snn

Sff

3





























Lucy - Richardson Deconvolution

Bt Bayes’s theorem

P (x|y) = P (y|x)P (x)∫
P (y|x)P (x)dx

P (y|x) is the conditional probability of y given x.
Thus, P (x) is the object distribution f(x)
P (y|x) is the PSF cenetered at x i.e. g(x, y)
P (y) is the degraded image or equivalentlu the convolution kernel c(y)
So we construct an iterative method

fi+1(x) =

(∫
g(y, x)c(y)dy∫
g(y, z)fi(z)dz

)
fi(x)

or equivalently

fi+1(x) =

{[
c(x)

fi(x)⊗ g(x)

]
⊗ g(−x)

}
fi(x)

In this case g(x) is known (non-blind convolution) and one iterates until
fi(x) is known.

For blind convolution we replace this by two steps
1, Given the object n Lucy-Richardson iterations are done to find the PSF

g(k)(x)
2. The next f(x) is found by using n Lucy-Richardson iterations

gki+1 =

{[
c(x)

gki (x)⊗ fk−1(x)

]
⊗ fk−1(−x)

}
gki

fki+1(x) =

{[
c(x)

fki (x)⊗ gk(x)

]
⊗ gk(−x)

}
fki (x)

1



 *g H f= +    n
  

  
Wiener Deconvolution – minimum least square error estimation 

 

  
*

2

( , )( , ) ( , )| ( , ) |
( ,

n

f

H u vG u v P u vH u v
P u v

=
+

 ,

)

  

Problems: 
1. MSE is not physically relevant 

        Human eye more tolerant of errors in dark areas and high gradient areas 
 
2. Cannot handle spatially variant blurring PSF 
3. Cannot handle nonstationary signals and noise 

Which are not usually known4. Depends on   f nP P
  

       
  Homomorphic filter   - Power Spectrum Equalization 
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⎛ ⎞
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Geometric Mean Filter 

 

 

1

* *

2
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n

f
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α

α

γ

−
⎛ ⎞
⎜ ⎟⎡ ⎤ ⎜ ⎟= ⎢ ⎥ ⎜ ⎟⎣ ⎦ +⎜ ⎟
⎝ ⎠
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α=   Called the parametric Wiener filter    If     
  
  

Constrained Least Square Restoration 
 

2|| ||g Hf n− =  
 
So consider Lagrange multiplier formulation 
 

( )2 2ˆ ˆ ˆ( ) || || || || || ||W f Qf g Hf nλ= + − − 2  

Set 0ˆ
w
f

∂
=

∂
 Then              

*

2
ˆ

| | | |
H gf

H Qγ
=

+ 2                    1γ λ=  

 
Example: Q=Laplacian      2 2( , ) 4 ( )Q u v u vπ= − +



 *g H f= +    n
  

  
Wiener Deconvolution – minimum least square error estimation 

 
  fr = deconvwnr(g, PSF, NACORR, FACORR) 

 
NACORR, FACORR are the autocorrelation functions of the noise and the 
undegraded picture (in picture space as matrix or scalar). This is the inverse FFT of 
the power spectrum. 

 
 

      Constrained Least Square Restoration 
 

            
*

2
ˆ

| | | |
H gf

H Qγ
=

+ 2                    1γ λ=  

 
Example: Q=Laplacian      2 2( , ) 4 ( )Q u v u vπ= − +
 
Fr=deconvreg(g, PSF, NOISEPOWER, RANGE) 
 

Lucy Richardson Restoration 
 

Fr=deconvlucy(g, PSF, NUMIT, DAMPAR, WEIGHT) 
 

Blind Deconcolution 
 

Fr=deconvblind(g, INITPSF, NUMIT, DAMPAR, WEIGHT) 
 








