
Multiscale image segmentation 
and anisotropic diffusion  



Diffusion approach 
Diffusion  

Denoising –  How can we get a cleaner image? 
 

D determines the behavior of the diffusion process  



Diffusion examples 
Vector field 

Ex. 1: Isotropic diffusion (Heat Equation) 

Diffusion  



Di¤usion Equation

@u

@t
= k

@2u

@x2
�1 < x <1

u(x; 0) = f(x)

Properties of Di¤usion equation

Maximum Principle

Theorem 1 � Maximum Principle For 0 � x; y � l 0 � t � T
the maximum of u(x; t) occurs either at t = 0 or along the boundaries
x = 0 or x = l or y = 0 or y = l

(proof at the maximum @u
@x =

@u
@y = 0 and

@2u
@x2 � 0 and

@2u
@y2 � 0 )

� The solution exists for all initial data f and is unique

� If u(x; 0) = f(x) and v(x; 0) = g(x)
ThenR R
(u(x; t)� v(x; t))2dx �

R R
(f(x)� g(x))2dx

Fourier integral in x

bu(�; t) = Z 1Z
�1

e�ix�u(x; t)dx

Then but = �k�2bu
So bu(�; t) = bu(�; 0)e�k�2t
So

(a) k > 0 gives exponential decay

(b) k < 0 gives exponential growth not well posed !!

explicit solution
For �1 < x <1

u(x; t) =
1p
4�kt

Z 1Z
�1

e�
(x�y)2
4kt f(y)dy
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So

(a) k > 0 di¤usion operator is smoothing

b k < 0 (-di¤usion operator) is sharpening

De�nition 2
K� =

1

2��
e�

x2

2�2

Then the solution to the di¤usion equation is

u(x; t) =

(
f(x) t = 0

(Kp
2t � f)(x) t > 0

and
ju(x; t)j �Meax

2

i.e.

� =
p
2t

T =
1

2
�2

Note:

F(K�) = e
� !2

2
�2
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Scale Space

Image representation at a continuum of scales.
Consider a sequence Ttf with

T0f = f

Tt+s = Tt(Tsf) semi-group

We want the following properties

� no new level curves

� non-enhancement of local extrema

� decreasing number of extrema

� maximum principle

De�nition 3 Gaussian Scale Space: Convolution of the picture with a Gaussian
with increasing �2.

Note that this is equivalent to the di¤usion equation with t! 0.

Theorem 4 Let

�(f; x; �) =

Z 1Z
�1

�(f(x0); x; x0; �)dx0

Assume

� �(Af; x; �) = A�(f; x; �)

� �(f(x0 � a); x; �) = �(f; x� a; �)

� �(f(x0� ; x; �) = �(f;
x
� ; �)

� � [�(f(x00); x0; �1); x; �2] = �(f(x00); x; �3)

� �(f; x; �) > 0 when f > 0 and � > 0

Then

�(f; x; �) =

1Z
�1

f(x0)e�
(x�x0)
4�2 dx0 = K �p

2
� f
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Image Segmentation: 

1. Compute edge regions by threshold on a gradient 

2. Thin the edges 

3. Close the gap between edge segments 

4. Determine regions by connectivity 

5. Eliminate small regions 

6. Shrink again edge regions 

7. again add edge points to close gaps 

8. eliminate small edge regions 

9. calculate properties of uniform untensity regions 

 

Importance of Variational Formulation 

1. Axiomatic 

2.  comparison between different segmentations 

3. Most practical methods lead to a minimization problem 

 



Multiscale Analysis 

Given an image 
0

u  we wish to construct a sequence of simpler images u


 

where as  increases the image becomes coarser. u


 keeps edges  whose scale 

exceeds  . 
0

( , ) : ( )K u S u u
   

  where K


 is the set of edges at scale  . 

basic properties 

1. 
00

Fidelity: limu u

  

2. 
'

'

0
Causality: ( ) depends only on  where S u u

 
   

3. Euclidean Invariance: If A is an isometry then 
0 0

( ) ( )S u A S u A
 

  

4. Strong Causality: 
'

'where K K
 

    
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 Ex. 2: Anisotropic diffusion 
Perona-Malik 1990 

The extension of the Perona-Malik  kernel for multi-channel 
is the well-known Beltrami flow (Kimmel, Malladi, Sochen, 98) 

Diffusion  



 Diffusion: restoration properties 

Courtesy of Weickert   

Isotropic 
diffusion 

Anisotropic 
diffusion 

Diffusion  

Trade off - “smoothing” and  “edge preservation”   



Hildreth-Marr 

 
2 2 2

0
( ) | | ( )E u u dx u u dx




 

      

Peronna-Malik 

    

2

2 2 ' 2 2

0

( (| | ) )

2 2 (| | ) (| | )

(0)

x xx y yy x y xy xx yy

u
div f u u

t

u u u u u u u f u f u u u

u u


  



      



 

Define     'g s   f s 2sf ( ), 0s b    .  Then this is equivalent to 

2 2(| | ) (| | )
TT NN

u
f u u g u u

t


   

 

Giving a normal and tangential diffusion. We wish to smooth more in the 

tangential direction T and so we demand 
'( ) ( ) 1

lim 0 or equivalently    lim
( ) ( ) 2s s

g s sg s

f s g s 
   

This implies 
1

( )  as g s s
s

  

Set 
0

( ) ( )
t

F t f s ds   and 
21

( ) (| | )
2

E u F u dx


  . 

 

Then steepest descent gives Peronna-Malik. So 

 
2 2 2

0
( ) | ( | ) ( )E u F u dx u u dx




 

      

yields 

 

2

0

0

( (| | ) ) ( )

(0)

u
div f u u u u

t

u u


    





 



Choosing ( ) 1f x   recovers the heat equation. We now assume (0) 1f   and 

f is a decreasing function with lim ( ) 0
s

f s


  

Then  

1. In regions where the gradient is small we get the heat equation and so 

isotropic diffusion. 

2. Near boundaries where the gradient is large there is no regularization and 

the edges are preserved. 

Difficulties: 

1. Noise can introduce large oscillations in u  and noise edges will be kept. 

2. Choosing 
2

1
( )

1
f s

s



 no theory is available. 

Combine Marr-Hildreth with Perona-Malik 

 

2|| ||

4

0

0

1
( (| |) ) ( ) ( )

4

(0)

xu
div f G u u u u G x e

t

u u



 



      





 

Note, that | | ( , )G u x t


   is the gradient of the solution of the heat equation. 

We would like to have diffusion only in the direction of the edge. i.e. let   be 

the directional orthogonal to u . Then ( )u    and the heat equation 

becomes 

 
u

u
t







 

or 

 

2 2

2 2

2
| |

| |

y xx x y xy x yy

x y

u u u u u u uu u
u div

t u u u

   
      

 

This models the mean curvature motion. 



Perona-Malik

Gaussian (linear) di¤usion smooths noise but also smooths edges
We want a process that reduces di¤usion at the edges (or even sharpens them)
So we have piecewise smoothing between the edges.
Consider

@u

@t
= div

�
g(jruj2) grad(u)

�
with

g(s2) =
1

1 + s2

�2

� > 0 a parameter

In one dimension

@u

@t
=
@

@x
g

 �
@u

@x

�2!
@u

@x

= g

 �
@u

@x

�2!
@2u

@x2
+ g02

@u

@x

@2u

@x2
@u

@x

=

"
g + 2

�
@u

@x

�2
g0

#
@2u

@x2

De�ne
�(s) = sg(s2)

then
@u

@t
= �0(jruj2)�u

For Perona-Malik

�(s) = sg(s2) =
s

1 + s2

�2

�0(s) =
1� s2

�2�
1 + s2

�2

�2
=

(
positive s < �

negative s > �

To see maximum principle we consider simpler equation

1

2

@

@t

�
@u

@x

�2
=
@u

@x

@

@x

�
@u

@t

�
= �00

@u

@x

@2u

@x2
+�0

@u

@x

@3u

@x3
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Now assume that
�
@u
@x

�2
has a maximum at (x0; t):Then

0 =
1

2

@

@x

�
@u

@x

�2
=
@u

@x

@2u

@x2
and

@u

@x

@3u

@x3
< 0

Also
@

@x

�
@u

@x

@2u

@x2

�
=
@u

@x

@3u

@x3
+

�
@2u

@x2

�2
So

1

2

@

@t

�
@u

@x

�2
= �0

@u

@x

@3u

@x3
= �0 � negative

and

1

2

@

@t

�
@u

@x

�2
jx=x0 =

(
negative s < �

positive s > �

Regularization: We frequently replace Perona-Malik by

@u

@t
= r�(g(j rG��u j2)ru) G� is a Gaussian with mean zero and variance �2
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Two Dimensions

@u

@t
= �0(jruj2)@

2u

@�2
+ g(jruj2)@

2u

@�2

where � direction is perpendicular to ru (direction of greatest change in u)
and � is parallel to ru

So
� direction is lines of constant gray level
� direction is lines of maximal change in gray levels

So we have forward di¤usion in the � direction and
backward di¤usion (sharpening) in the � direction
Well-posedness

� Existence of a weak solution in c1 for �nite time.
Maximum principle

� Unstable with respect to perturbations

� staircasing - constant states divided by edges
�ner discretization gives more edges
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 Anisotropic diffusion 
Discretization  

 1D: 

Diffusion  



Alvarez-Lions-Morel 

 

0

(| |) | |
| |

( ,0)

u u
f G u u div

t u

u x u



  
       



 

The term 

 2

2

2

,
| |  in direction of the gradient

| | | |

D u u uu
u div u D

u u

  
      

  

represents a diffusion in the direction normal to the gradient u  and does not 

diffuse in the direction parallel to the gradient. So u is smooth on both sides of 

an edge.  

The term  | |f G u


   is used for enhancement of the edges. It controls the 

speed of the diffusion. If u  is small then then this point is considered an 

interior point of a smooth region and the diffusion is large. If u  is large then 

the point is considered an edge point and the diffusion is lowered since ( )f s  is 

small for large s. 

This depends on 

1. The function f which decides whether a detail is shape enough to be kept, i.e. 

contrast. This is similar to the threshold in Marr-Hildreth 

2. A scale parameter given by the variance of G. This gives the minimal size of 

details kept in the processed picture. 

 

 

 

 

 

 



Weickert 

A generalization of the above methods considers 

 

 
0

( ( | | )) )  in (0, ]

(0, ) ( )      in 

( | | )) , 0   on (0, ] N is outward normal

u
div D J u u T

t

u x u x

D J u u N T

 

 


   



 

   

 

Theorem: 

Assume 

1.   2 2 2( , ) set of symmetric matrices
ij

D d C S S S    

2.  D is uniformly positive definite 

Then for all 
0

( )u L   there is a unique solution and this depends 

continuously on 
0

u  in the 
2L  norm and satisfies a maximum principle 

 
0 0

inf ( ) ( , ) sup ( )u x u x t u x




   

We now show examples of the eigenvalues of D 

edge enhancing 4
1

1

3.315
1

2

1 if  0

1 otherwise

1

e 









 





 

coherence enhancing          

   
2

1 2

1

1 2

1
2

                         if  

1 otherwise

 is a small positive parameter

e
 

 

  


 











 
 

 

This enhance flow-like structures and closes interrupted lines. 

 



Osher-Rudin 

Choose 
1

( )f s
s

  and 0  . Then  

 
| |

u u
div

t u

  
    

 

which is a particular case of Perona-Malik. This corresponds to minimizing the 

energy 

 ( ) | |E u u dx


   

We again generalize this to 

 
2 2

0
( ) | | ( )E u u dx u u dx

 

      

Remember: Hildreth-Marr was:     
2 2 2

0
( ) | | ( )E u u dx u u dx




 

      

So we have replaced 
2| |u  by | |u  in the first integral 

 

 

 

 

 

 

 

 

 

 

 



Total Variation (TV) schemes
Rudin-Osher-Fatemi

De�nition 5

TV(u) =
Z



jrujdx =
Z



s�
@u

@x

�2
+

�
@u

@y

�2
dxdy

Rudin-Osher-Fatemi

@u

@t
= �jrujF (L(u))

u(x; o) = f(x) given image

L(u) is second order elliptic PDE whose zerocrossings correspond to edges
For example L(u) = �u
or else L(u) = @2u

@�2 with � normal to the edge i.e. � k ru k

Minimization

Consider an error function

E�;p[z j x0] =
Z 1

0

j z
0
(t) j dt+ �

Z 1

0

j z(t)� x0(t) jp dt p � 1

The ROF TV denoising model is

ETV [uju0] =
Z



j ru j dx +
�

2

Z



(u0 � u(x))2dx

To minimize ETV [uju0] we consider the Euler-Lagrange equations. This leads
to the PDE and steepest descent

�@ETV
@t

=
@u

@t
= r �

�
ru
j ru j

�
� �(u(x; t)� u0(x))

with Neumann homogeneous boundary conditions. � is a Lagrange multiplier.
To avoid a zero denominator j ru j�1 is frequently replaced by

p
j ru j�2 +a2

for some smal lparameter a

To improve the well-posedness of the solutions we regularize the equation and
consider

@u

@t
= div (g(jru�j)ru)

u� = K� � u
� and � are constants that can be played with.
The �lter is insensitive to noise at scales < �
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Segmentation problemSegmentation problem

!! Consists in computing a decomposition of Consists in computing a decomposition of 
the domain of the image the domain of the image g(x,yg(x,y))

1.1. gg varies varies smootlysmootly and/or slowly within and/or slowly within RRii
2.2. gg varies discontinuously and/or rapidly varies discontinuously and/or rapidly 

across most of the boundary across most of the boundary ΓΓ between between 
regions regions RRii

U
n

i

iRR
1=

=
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Optimal approximationOptimal approximation

!! Segmentation problem may be restated as Segmentation problem may be restated as 
!! finding optimal approximations of a general function finding optimal approximations of a general function gg
!! by pieceby piece--wise smooth functions wise smooth functions ff,  whose restrictions ,  whose restrictions ffii

to the regions to the regions RRii are are differentiabledifferentiable
!! Many other applications:Many other applications:

!! Speech recognitionSpeech recognition
!! Sonar, radar or laser range dataSonar, radar or laser range data
!! CAT scansCAT scans
!! etcetc……



Mumford-Shah

The basic premise of Mumford-Shah is that images can be approximated
by piecewise constant/smooth functions with each piece corresponding to an
object.

This uses a energy-based variational optimization.

Definition 6 H1 norm of u

‖ u ‖2H1=

∫ [
u2 +

(
∂u

∂x

)2
]
dx

Definition 7 E[u,Γ] = α ‖ u ‖H1 +β
∫

Ω\Γ | ∇u |
2 dx where Γ is an edge set.

Definition 8 Assume the given image is u0 = n+K[u] K=blur
Assume additive noise n with variance σ2 = 1

|Ω|
∫

Ω
(u0 −K[u])2dx

The Mumford-Shah segmentation estimator is to minimize E[u,Γ] subject
to the given σ2 .

Introducing a Lagrange multiplier λ this is equivalent to minimizing

α

∫ [
u2 +

(
∂u

∂x

)2
]
dx+ β

∫
Ω\Γ
| ∇u |2 dx + λ

∫
Ω

(u0 −K[u])2dx

8



Segmentation 

Mumford-Shah 

Segmenting an image means finding its homogeneous regions and their edges. 

We shall do this by minimizing a segmentation energy. Mumford-Shah defines 

the segmentation problem as a joint smoothing/edge-detection problem. 

Given the image we seek to find a piecewise smoothed image and a set of 

discontinuities. So we minimize the functional 

 
 2

\K

2( , ) | ( ) | ( ) ( )E u k u x u g dx length K


    
 

The first term requires that the image is smooth not in K (the edges). The 

second term says that u approximates the image g. The third term says the 

edges should be as small as possible, though one needs to define length of a 

curve for general curves. This will yield a cartoon version of the image. It has 

not been proven yet that a minimal segmentation exists though weaker 

versions have been proven. 

Consider the one-dimensional case 

    
2'( , ) ( ) ( ) ( )

I

E u K u u x g x dx Card K    
   

K denotes the jumps in g(x) and u(x) is piecewise smooth. 

To discretize consider points i=1,2, ...,n in I 

Define: 

 

2

0
if 1

( )
1 if 1

t t
g t

t


 


 

Then we discretize E by  

  
2

0

1
1

( ) ( )
n

i i i i
i

E u u g g u u




     

K is the set of points where 
1

| | 1
i i

u u


  . 



Problem: This is non-convex and has many minima. 

So we make the functional more convex. Define 

 

 

2

2

1
if | |

| | 1
( ) 1 if < | | 4 1 

4

1 if | |  

p

t t
r

t r
g t t r r p

p r

t r








    

 



 

and the new discretization is 

  
2

1
1

( ) ( )
n

p p

i i i i
i

E u u g g u u




     

If 1p   then 
pE  is convex and there is only one minimum. 

An alternative is 

1. Initialize the segmentation using some edge detector 

2. Move the edges so that the energy decreases 
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Optimal segmentationOptimal segmentation

!! MumfordMumford and Shah studied 3 and Shah studied 3 functionalsfunctionals which which 
measure the degree of match between an image measure the degree of match between an image 
g(x,yg(x,y)) and a segmentation.and a segmentation.

!! First, they defined a general functional First, they defined a general functional EE (the (the 
famous famous MumfordMumford--Shah functional):Shah functional):
!! RRii will be disjoint connected open subsets of the planar will be disjoint connected open subsets of the planar 

domain domain RR, each one with a piece, each one with a piece--wise smooth boundarywise smooth boundary
!! ΓΓ will be the union of the boundaries.will be the union of the boundaries.

CC Γ=
=

n

i

iRR
1
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MumfordMumford--Shah functionalShah functional

!! Let Let ff differentiable on differentiable on ∪∪RRii and allowed to and allowed to 
be discontinuous across be discontinuous across ΓΓ..

!! The smaller The smaller EE, the better , the better (f, (f, ΓΓ)) segments segments gg
1.1. ff approximates approximates gg
2.2. f f (hence (hence gg) does not vary much on ) does not vary much on RRiiss
3.3. The boundary The boundary ΓΓ be as short as possible.be as short as possible.
!! Dropping any term would cause Dropping any term would cause infinf E=0E=0..

Γ+∇+−=Γ ∫∫∫∫ Γ−
νµ dxdyfdxdygffE

RR

222 )(),(



Piecewise Constant Mumford-Shah 

We consider the simplest version of Mumford-Shah which is piecewise 

constant. We now seek to minimize the energy 

28 ( )osc g


 

2

\K

( , ) ( ) ( )E u k u g dx length K


    

and u is piecewise constant in \K .   is a scale constant and measures the 

amount of boundary. If   is small then a lot of boundary is allowed and we get 

a fine segmentation. If  is large then the segmentation gets coarser. 

Define: ( ) sup( ) inf( )osc g g g   

Then we have the theorem: 

Let g be a measurable bounded function in  . Then the minimum of E(u,K) is 

attained for some K. Moreover, the minimal boundary sets have the following 

geometric property: either the points of K are regular, 
1C , and with curvature 

bounded by 
28 ( )osc g


, or else the singular points are of two types, either 

triple points where three branches meet at 120  angles and boundary points 

where K meets the boundary of   at a 90  angle. 
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Cartoon imageCartoon image

!! (f, (f, ΓΓ) ) is simply a cartoon of the original image is simply a cartoon of the original image gg..
!! Basically Basically ff is a new image with edges drawn sharply.is a new image with edges drawn sharply.
!! The objects are drawn The objects are drawn smootlysmootly without texturewithout texture
!! (f, (f, ΓΓ) ) is essentially an idealization of is essentially an idealization of gg by the sort of by the sort of 

image created by an artist.image created by an artist.
!! Such cartoons are perceived correctly as representing Such cartoons are perceived correctly as representing 

the same the same scanescane as as gg "" ff is a simplification of the scene is a simplification of the scene 
containing most of its essential features.containing most of its essential features.
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Cartoon image exampleCartoon image example
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Piecewise constant Piecewise constant 
approximationapproximation
!! A special case of A special case of EE where where f=f=aaii is constant is constant 

on each open set on each open set RRii..

!! Obviously, it is minimized in Obviously, it is minimized in aaii by setting by setting aaii
to the mean of to the mean of gg in in RRii::

Γ+−=Γ ∫∫∑−
2

22 )(),(
µ
νµ

iR i
i

dxdyagfE

)()(
i

R
Ri Rarea

gdxdy
gmeana i

i

∫∫==
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Piecewise constant Piecewise constant 
approximationapproximation

!! It can be proven that  minimizing It can be proven that  minimizing EE00 is well is well 
posed:posed:
!! For any continuous For any continuous gg, there exists a , there exists a ΓΓ made up made up 

of of finitfinit number of singular points joined by a number of singular points joined by a finitfinit
number of arcs on which number of arcs on which EE00 atteinsatteins a minimum.a minimum.

!! It can also be shown that It can also be shown that EE00 is the natural is the natural 
limit functional of limit functional of E E as as µµ##00

Γ+−=Γ ∫∫∑ 2
2

0 ))(()(
µ
ν

i
iR R

i
dxdygmeangE



Mumford Shah attempts to find partitions of the image. On the other hand level 

sets, snakes etc. try to automatically detect contours of objects. 

Kass-Witkin-Terzopolus 

j
j J

C


   is the set of image edges where 
j

C  is a piecewise smooth closed 

curve. 

Let g(x) be monotonic decreasing and (0) 1 lim ( ) 0
s

g g s


  . 

Then (| |)g I  is an edge detector, eg 
2

1
( )

1
g s

s



 

Define 

 
' 2 '' 2 2( ) | ( ) | | ( ) | (| ( ( )) |)

b b b

a a a

J c c q dq c q dq g I x q dq        

The first two terms are an internal energy and impose a smoothness constraint. 

The third term is an external energy attracts curves towards edges.. 

Unfortunately this energy is non-convex and so no uniqueness is possible. 

1.  ( )J c  depends on the parametrization. 

2. The model does not handle more than one convex body 

3. Numerical problems 

Setting 0   we get 

 
' 2 2

1
( ) | ( ) | (| ( ( )) |)

b b

a a

J c c q dq g I x q dq     

To make the energy not depend on the parameterization we instead consider 

 
'

2
( ) 2 (| ( ( )) |)| ( ) |

b

a

J c g I c q c q dq   

One can then prove 
1 2

inf ( ) inf ( )
c c

J c J c  



Level Sets 

 
' ''

0

i.e. the curve c(q,t) moves along its normal with a speed F(t,c,c ,c )

(0, ) ( )

c
F N

t

c q c q








 

The basic observation is that a curve can be seen as a zero-level of a function in 

higher dimensions. 
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