Segmentation

1. Edge detection + Hough transform
2. Histogram + thresholding
3. Region growing — seeds, merge and split

4. Watershed



Distance Measures

Definition 1 a distance metric satisfies
(a) D(p,q) 20  D(p,q) =0 iff p=q
(b) D(p.q) = D(q,p)

(¢) D(p,z) < D(p,q) + D(q, 2)

examples

1. Euclidean distance

If p= (x,y) and ¢ = (s,t) then

D(p.q) =/(z — )2+ (y — )2

advantage: isotropic
disadvantage: non-integer, non-local

Going from pixel p to z to q does not give the same distance
as going from p to q

2. Dy or city-block distance
D(p,q) = |z —s| + |y 1|
3. Dg or chessboard distance
D(p, q) = max (|z — s[, [y —t[)

Note: D4 and Dg are path independent that involve only pixels.

4. other masks: e.g. nearest 4 neighbors have distance 3 and corners have dis-
tance 4 one can normalize at the end if necessary approximation to Euclidean
with integers

Definition 2 Chamfering: find distance of pizels to an image subset
The distance is 0 for pixels in the subset, small for pixels near the subset.

and large for pixels far from the subset.
Note: The results changes a binary image to a gray level image



Chamfer algorithm:
1. set D = 0 for pixels in the subset S and D = oo for pixels not in S

2. pass through the image from top to bottom and left to right (i.e. points
denoted by AL)

set
F(p) = min [F(p), D(p.q) + F(g)]

3. pass through the image from bottom to top and right to left (i.e. points
denoted by BR)

set
F(p) = min [F(p), D(p.q) + F(q)]
4. I contains the chamfer of the subset S.

AL AL BR
AL AL&BR BR
AL BR BR

We can define erosion by a ball of radius n as
e(X)={z e X|D(z) >n}
and then thresholding

Definition 3 The Hausdorff distance between two sets X and Y is the minimum
of the radius \ of disks By such that X dilated by By contains Y, and Y dilated by
B, contains X.

dp(X,Y)=min A | X Cép,(YV), Y Cép, (X)
Caution: The Hausdorff function is very sensitive to noise.
Definition 4 B is a maximal disk in X if there are no other disks that contain B

Theorem 5 B is a maximal disk in X iff B is tangent to at least 2 distinct points
on the boundary.

Definition 6 The skeleton SK(X) of a set X is defined by the centers of the max-
imal centers

x € SK(z) iff
Jy1,y2 € 0X |y1 # yo and d(x,0X) = d(z,y1) = d(x,y2)



18.7.5 The Distance Transformation

Another related operation that can be performed
mation. It results, however, not in another bin
level at each pixel is the distance from that p

An approximate distance transformati
tion wherein, on each pass, pixels are label
eliminated from the object. The so-called ¢
mation in only two passes over the image [51,52].

1 - -

A i ion in one
Figure 18-26 illustrates the concept of the two-pass dllstance transff)rfnatlon 11’; one
dimension. Figure 18-26(a) is a one-dimensional binary image cont}zimfl.ngt 2(1;1 owird)
‘ i i the first (forwa
’ ’s. Figure 18-26(b) is the result of
denoted by 1’s on a background of (’s . | e
i I, background points are
ich i d from left to right. At each pixel, .
e o naee i teps have been taken smce
interi i th a count of how many steps ha
zeros, but interior points are replaced wi e
the last zero was encountered. In Figure 18-26(c), wg see the r;su'lt (;f ;l;:;zﬁzgc; (ith -
ichi ight to left. In this pass, each pixel i
ward) pass, which is conducted from rig . RN
ini i ber of steps taken since a zero was
minimum of (a) what it was or (b) the num : .
tered. The result is an image in which gray level reflects distance to the pcarest bounldzg.ign
-In the two-dimensional distance transformation, a mask resefn?lmg a ;0;1\/(:: Ounvo_
kernel (see Figure 18-27) is passed over the image in a process rem1n1scent ‘0 tf emaﬁoﬂ,
lution operation. (Recall Sec. 9.3.4.) As with the one-dimensional distance transfor

ary image, butin a gray-level image. The gray
ixel to the nearest background pixel,

ed with the iteration number rather than being

N

o{ojoltj1|tjiitiojoloiol {a

ool ® Figure 18-26 One-dimensional

distance transformation: (a) binary

image; (b) result of first (L—R) pass:
_ {c) result of second (R—L) pass

on binary images is the distance transfor-

On can be computed by an erosion-like opera-

hamfer algorithm computes a distance transfor-
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Distance Transforms I

Let P be a binary picture (defined on grid G) in which
(PY\={p:peG A P(p)=1}=P1(1),and
(P)={p:p€G A P(p)=0}=P"(0)

are proper subsets of G. For any grid metric d,, the d,, distance
transform of P associates with every pixel p of (P) the d,

distance from p to (P).

L1t LIT111
1212|2121 11112]12]2]1
111]2/313|3]2]1 11]1]2]2]3]2]1
112(3/414|3]2]1 112]21213]2]2]1
1121314|3|3]2]2]1 L[112]3|121212]1]1
112|3/4/312|12]1]1 1111212]12]12]1]1]1
111]2]314|3]2]1]1 LI[|21202)1]1]1
1121213/4|312]1 11]2]212]3]2]1
112/1314(4|3|2]1 112121313321
11213/4/5]413]2]1]1 111]2]213|3/12]1]1]1
112(3/4|5|4|3]2]1 11]2]313]2]2]1]1
112341321 11213/13[3]2]1
112/13|13|3]2]1 1121213]2]2]1
1121212121211 1111212]2]1]1
LiTj11)1 LITj11]1

Left: Picture. Center: d, distance transform. Right: dg distance
transform. — Distance transforms are frequently used when
analyzing regions or patterns in pictures.

We assume that pixels of the background component (i.e.,
containing all pixels outside of the rectangular region G) all
have value 0.
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Two-Pass Algorithm I

The d, or dg distance transform of P (and others — see later) can
be computed by performing a series of local operations while
scanning G twice.

(A local operation gives each pixel p a new value that depends
only on the old values of the neighbors of p.)

For any p € G let B(p) (“before”) be the set of pixels (4- or 8-)
adjacent to p that precede p when G is scanned in standard
order:

if p has coordinates (x,y), B contains (z,y + 1) and
(x — 1,y), and if we use 8-adjacency it also contains
(x—Ly+1)and (z+ 1,y + 1).

Let A(p) (“after”) be the remaining (4- or 8-) neighbors of p.

First Scan I

0 if p € (P)
min{f1 (¢) +1:q€ B(p)} ifpe(P)

Compute f;(p) for all p € G in a single standard scan of G; for

fl(p)Z{

each p, f1 has already been computed for all of the ¢s in B(p)

(If p is on the top row or in the left column of G, some of these
gs are outside G with f; = 0.)
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LI1[T[1]1 T[T ][1[I
1[2[2]2]2]2 1[1]2[2]2[1
1/1(2|3[3/3(3|3 111]1(2]2|3]2]1
1]2[3]4]4]4]4]4 1]2]2]2[3[3[21
1]2[3]4[5[5[5[5]5 1[1[2[3[3[3[3]2]1
1]2[3]4[5]6/6/6]6 1[1]2]2[3]4]4]3]2
1[1]2[3]4]5]6(7]7 1[1[1]2]2[3[3]4]4
1]2]2[3]4[5]6]7 1[1]2[2]2[3[3]4
1]2[3]4[5]6]7]8 1]2]2[3[3[3]4[1
12[3]4[5]6/7[8]111 1[2[3[3[4[4[2]1]1]1
1[2[3]4[5[6[7]2]2 1]2[3]4[3[2[2]2]1
1]2]3]4[5]6[3 1[2]3[3[3[3]2
1]2]3]4[5]6]4 1]2[3]4[4[3]1
1]2]3]4[5]65 1]2[3]4[4]2]1
1]2[3]4]5 1]3]4[3]2

After the first scan. Left: d4 transform. Right: dg transform.

Second Scan I

fa(p) =min{fi(p), f2(q) +1: ¢ € A(p)} .

Compute f3(p) for all p € G in a single reverse standard (i.e.,
right-to-left, bottom-to-top) scan of G (note: each p, f> has
already been computed for all of the ¢s in A(p) or is known
because they are outside of G).

Theorem 1 f5(p) = d(p, (P)) forall p € G where d = dy for the
4-adjacency version of the algorithm and d = dg for the 8-adjacency
version.

Thus, the obtained values after the second scan are as shown on
page 1.
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2D Approximations to Euclidean Metric I

Set of points within a given d, or dg distance from a given point
is a square (and not a digitized disk).

These distances depend on direction; their “disks” are not good
approximations to Euclidean disks.

If we restrict dy and dg to Z? the set of grid points ¢ such that
d4(p, q) < k is a diagonally oriented square (a diamond) of odd
diagonal length 2k + 1 centered at p, and the set of grid points ¢
such that dg(p, ¢) < k is an upright square of odd side length

2k + 1 centered at p.

Example of a better approximation of the Euclidean metric:

d(p,q) = max{ds(p,q), % - ds(p,q)}

The set of grid points such that d(p, q¢) < k is the intersection of
an upright square of side length k£ with a diamond of diagonal
length 3k /2; this intersection is an upright octagon.

Best approximation of the Euclidean metric:
|d.] is the integer-valued metric that best approximates d..

“Incremental” algorithms for distance computation on a grid
normally use local neighborhoods; this makes it easy to
compute metrics such as dy4, or dg or octagonal metrics, but not
(in the same straightforward way) [d. |.
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2D Chamfer Metrics I

A general method of defining approximations to Euclidean
distance: count moves in different directions (e.g., isothetic
moves, diagonal moves) and use different weights for these
moves (e.g., 1 and v/2).

Let p, ¢ € Z? and p a sequence of king’s moves from p to q.

m = number of isothetic moves; n = number of diagonal moves

lap(p) = ma+nb

da,b(pa Q) — minp la,b(p)

dap is the (a, b) chamfer distance (or weighted distance) from p to g
(G. Borgefors, 1984).

Theorem 2 If0 < a < b < 2a (called the Montanari condition),
then the (a, b) chamfer distance d, ;, is a metric.

The chamfer distance d; ; that best approximates d. has
b= (1/v2) + V2 — 1= 1351; for this d; ;, we have a
maximum error

|de — dip| < ((1/V2) —\/ V2 — 1)k =~ 0-06k

onan (k+ 1) x (k4 1) grid G. This optimal b is close to 4/3; we
therefore get a good approximation to 3d. by using a = 3 and
b=4.
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Sec. 18.7 Binary Image Processing 477

there are two passes. The forward pass moves from left to right. working down the image
from the top, while the backward pass moves from right to left, working up the image from
the bottom. At each position, a set of two-term sums is formed by adding each element in the
mask to the underlying pixel value. Where the mask is blank, nothing is done. The pixel
under the center of the mask is replaced by the minimum of the sums.

4 13 1 4
3]0 (a) 0| 3
4 13 | 4
—» <+
11 11
11 7 5 7 11
510 (o) 0| s
11 7 5 7 11 )
Figure 18-27 Mask pairs for two-
1 1 dimensional distance transformation
using the chamfer algorithm: (a) 3 x 3,

The three-by-three masks in Figure 18-27 yield a distance image in which the gray
levels are three times the Euclidian distance to the boundary. The maximum deviation from
true Euclidian distance is 8 percent. The five-by-five masks yield a distance image that is
scaled up by a factor of five, and their maximum error is only 2 percent [52].

The distance transform 1s useful, for example, in segmenting clusters of objects that
are in contact. Each object in the cluster produces a local maximum (located roughly at its
center) in the distance 1mage. The watershed algorithm (decreasing from an initially high
threshold) can then segment the distance image into the individual component objects, as
shown in Figure 18-28. Using the watershed algorithm on the distance transformed image
(Figure 18-28(b)) effectively breaks apart circular objects that are touching (Figure
18-28(c)).

18.7.6 Boundary Curvature Analysis

The curvature at a point on a curve is defined as the rate of change of the tangent angle at that
point, as one traverses the curve. The curvature of an object’s boundary is positive in
regions where the object is convex and negative where it is concave.

In Figure 18-29, for example, a plot of the curvature of the boundary shown reveals
two sharp negative peaks corresponding to the two concavities. If the objects are expected
to be convex, this signals a segmentation error. A cutting line, drawn between the two points
a and b, separates the two objects. Thus, the boundary curvature function can assist in the
automatic detection and correction of segmentation errors.




(a) Dinary image of cells. (b} Rounded Euclidean distance fune-
tion on fal.

{c) Distance function modulo 4. {d) Topographic representation of (b).

Fig. 2.32. Distance function on a binary imnage of cells. Note that the high values
of the distance function correspond to the centre of the cells.

pixels. Once the two scans have been performed, the input binary image f
holds the distance function:

1. Forward scam of all pixels p& Dy
2. if f(p) =1

3. fp) — L+ min{f(g) | ¢ € N5 (p}};
4. Backward scan of all pixels & T




1 gﬂ Algorithms
= ©¥ for Picture Analysis Lecture 08: Special Metrics

3D Chamfer Metrics I

dq b, Where a, b, and c correspond to moves in which

only one coordinate changes (isothetic moves),
two coordinates change,

and all three coordinates change,

and we can obtain good approximations to Euclidean distance
by appropriately choosing a, b, and c.

Generalization I

Generalized chamfer distances can be defined using additional

types of moves that are not necessarily moves between
8-neighbors or 26-neighbors.

Conclusion I

The two-scan algorithm can be used for any chamfer-metric

distance transform, and this allows to “approximate the
Euclidean case”.
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Hausdorff Distance Between Sets I

Any metric d on a set S can be extended to a Hausdorff metric on
the family of all nonempty subsets A, B of S:

d(A,B) = in d in d
(A, B) maX{rgleag min (p,q),apeag min (p,q)}

(Actually, in general we should use sup and inf in this
definition; but in our context we can stay with max and min.)

O O o
O O set A
O O

HONORENERNNENE
HORORNENENNNEN

a OO0OO L]
set B
o000 o

The Hausdorff distance between A and B is defined by the
maximum of the two indicated distances.
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Hausdorff Metric in Steps I

In general: closest distance fromp € Sto 1T C S
T)=inf d
dp,T) = inf d(p,q)
Let A,BC S, h,(B)=d(p,B)forallp € A, h,(A) =d(p, A) for
allp € B, and
ha(B) =sup hy(B); hp(A) =sup h,(A)

pEA pEB

Then we have the Hausdorff metric

d(A, B) = max{ha(B),hg(A)}

Figure on page 7: Assume d = d.. From h4(B) = h,(B) = /34
and hp(A) = hy(A) = /26 we have d(A, B) = ha(B).

Convergence in Hausdorff Metric

14 —q 4

The Hausdorff distance between diagonal pq (set A) and
“staircase arc” (set B) converges to zero as the grid resolution
increases (but the length of the staircase does not converges to
the length of the diagonal).
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Definition Based on Dilation I

An alternative way of defining the Hausdorff metric uses the
e-neighborhood of a set:

Us(A)={q: g€ S N hy(A) <e}

where h,, is defined by a metricdon S, ¢ > 0,and A C S.

Let A and B be nonempty subsets of S:
ha(B) =inf{e: A CU.(B)}
(analogously for hp(A)) and

d(A, B) = max{ha(B),hg(A)}

sel A

set B

Left: B (a simple polygon) is completely contained in U, (A).
Right: A is not completely contained in U, (B), showing that
d(A, B ) > E9.
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An Algorithm for Hausdorff Distance I

Assume two finite sets A, B C G, ,, of grid points.

For any S C G,, ,, the distance field F'(S) is an array of size m x n
such that F'(5)(p) = h,(S); in particular, F'(S)(p) =0iffp € S.

Note: the distance field can be calculated (in O(mn)
computation steps) by a two-scan distance transform, assuming
that d is a chamfer metric.

1. Calculate a distance field F(A) in an array of size

m X n.

2. Calculate a distance field F(B) in an array of size

m X n.

3. Let a be the maximum value in F'(A) at all positions
belonging to B.

4. Let b be the maximum value in F(B) at all positions
belonging to A.

5. H(A, B) = max{a, b}.

Algorithm for calculating the Hausdorff distance between two
subsets A and B of an m x n grid.

Page 10 February 2005



1 !ﬁ! Algorithms
= ©¥ for Picture Analysis Lecture 08: Special Metrics

Metrics by Symmetric Difference I

Hausdorff metrics are based on maximum distances between

sets; a single point (an “outlier”) in a set can strongly influence
these distances.

Distances between sets defined by set-theoretic differences are
less sensitive to single points.

Symmetric difference between two subsets A, B of a set S:

AAB = (A\ B)U(B\ A)

S

The symmetric difference is shaded.

card(AAB)

dsym (A, B) = card(AAB) and d,.,(A,B) = card(AUD) 1 1

sym

Theorem 3 dy., and dy,, are metrics on the family of all finite
subsets of .S.

Here, we only have to calculate cardinalities card (M) of sets M
of pixels or voxels.
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Coursework I

Related material in textbook: Sections 3.4.2, 3.1.8, 3.2.3 (you may
skip dj), and 3.2.5. Do Exercises 11 and 17 on page 114.

A.8. [4 marks] Use a set of at least four different binary pictures
of similar objects. Implement a program which measures the
similarity of these based on calculated distances.

For example, at first center all objects at their origin (possibly
align them also in orientation) and then compare these objects
based on a chosen metric.
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18.3.7 The Watershed Algorithm

A velative of adaptive thresholding 1s the water \ha,d alporithm. Figure 18-8 iflustrates how
this approach works. We assume that the objects in the figure are of low gray fevel. on a
high-gray-level background. The figure shows the gray levels along one scan line that cuts
through two objects that are close together.

The image is initially thresholded ata low gray level, one thatsegments the image into
the proper number of objects, but with boundaries that are too small. Then the threshold 1s
raised gradually, one gray level at a time. The objects” bounduries will expand as the thresh-
old increuses. When they touch, however, the objects are not allowed to merge, Thus, these
points of first contact become the final boundaries between adjacent objects. The process is
terminated before the threshold reaches the gray level of the background—ithat is, at the
point when the boundaries of well-isolated objects are properly set.

[«— Object 1 —|«— Object 2 —»

Figure 18-8 The watershed
alvorithm

Rather than simply thresholding the image at the optimum eray level, then. the water-
shed approach begins with a threshold that is too low, but that properly 1solates the indivig-
tal objects. Then as the threshold is gradually raised to the optimum level, merg ging of
objects is not allowed. This can solve the problem posed by objects that are too close
together for global thresholding to work. The final segmentation will be correct (i.e.. there
will be one boundary per actual object in the image) if and only if the segmentation al the
inital threshold is correct.

Both the initial and final threshold gray levels must be well chosen. If the mitia}
threshold is too low, then low-contrast objects will be missed at first and then merged wilh
nearby objects as the threshold increases. If the initial threshold is too high, objects will be
merged from the start. The final threshold value determines how well the final boundaries
fit the objects. The threshold selection methods discussed in this chapter can be useful in
setting these two values.
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Figure 11.47: Particle segmentation by watersheds: (a) original binary image; (b) distance
Junetion visualized using contours; (c) regional mazima of the distance function used as par-
ticle markers; (d) dilated markers; (e) inverse of the distance function with the markers su-
perimposed; (f) resulting contours of particles obtained by watershed segmentation. Courtesy
P. Kodl, Rockwell Automation Research Center, Prague, Czech Republic.

11.7.3 Gray-scale segmentation, watersheds

The markers and watersheds method can also be applied to gray-scale segmentation. Water-
sheds are also used as crest-line extractors in gray-scale images. The contour of a region in a
gray-level image corresponds to points in the image where gray-levels change most quickly—
this is analogous to edge-based segmentation considered in Chapter 5. The watershed trans-
formation is applied to the gradient magnitude image in this case (see Figure 11.48). There
Is a simple approximation to the gradient image used in mathematical morphology called
Beucher’s gradient [Serra 82, calculated as the algebraic difference of unit-size dilation and
un:t-size erosion of the input image X.

grad(X) ={X & B)— (X = B) (11.74)

The main problem with segmentation via gradient images without markers is overseg-
mentation, meaning that the image is partitioned iuto too many regions (Figure 11.47¢)-
Some techniques to limit oversegmentation in watershed segmentation are given in [Vincent
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+ Intensity

3
i

Gradient magnitude

X

Figure 11.48: Segmentation in gray-scale images using gradient magnitude.

93]. The watershed segmentation methods with markers do not suffer from oversegmentation,
of course.

An example from opthalmology will llustrate the application of watershed segmentation.
The input image shows a microscopic picture of part of a human retina, Figure 11.49a—
the task is to segment individual cells on the retina. The markers/watershed paradigm was
followed, with markers being found using a carefully tuned Gaussian filter {see Figure 11.49b).
The final result with the outlined contours of the cells is in Figure 11.49c.

11.8 Summary
e Mathematical morphology

— Mathematical morphology stresses the role of shape in image pre-processing, seg-
mentation, and object description. It constitutes a set of tools that have a solid
mathematical background and lead to fast algorithms. The basic entity is a point
set. Morphology operates using transformations that are described using operators
in a relatively simple non-linear algebra. Mathematical morphology constitutes
a counterpart to traditional signal processing based on linear operators (such as
convolution).

— Mathematical morphology is usually divided into binary mathematical mor-
phology which operates on binary images {2D point sets), and gray-level math-
ematical morphology which acts on gray-level images (3D point sets).

*» Morphological operations

— In images, morphological operations are relations of two sets. One is an image
and the second a small probe, called a structuring element, that systematically
traverses the image; its relation to the image in each position is stored in the
output image.

— Fundamental operations of mathematical morphology are dilation and erosion.
Dilation expands an object to the closest pixels of the neighborhood. Erosion




segmentation. An approach introduced in [Liow and Pavlidis 88, Pavlidis and Liow 90] solve
several quadtree-related region growing problems and incorporates two post-processing step:
First, boundary elimination removes some borders between adjacent regions according to the;
contrast properties and direction changes along the border, taking resulting topology int
consideration. Second, contours from the previous step are modified to be located precisel:
on appropriate image edges. Post-processing contour relaxation is suggested in [Aach e
al. 89]. A combination of independent region growing and edge-based detected borders 1
described in [Koivunen and Pietikainen 90]. Other approaches combining region growing anc
edge detection can be found in [Venturi et al. 92, Manos et al. 93, Gambotto 93, Wu 93, Cht

and Aggarwal 93, Vlachos and Constantinides 93, Lerner et al. 94, Falah et al. 94, Gever:
and Smeulders 97].

~m

‘.q.'i,) -‘_

Retea - o ne

(d)

F‘igm‘e 9.51: Watershed segmentation: (a) original: (b) gradient image, 3x 3 Sobel edge detec-
toon, histogram equalized: (c) raw watershed segmentation: (d) watershed segmentation using

"egion markers to control oversegmentation. Courtesy W. Higgins., Penn State University.






