Distributions

Returning to the Green’s function.
Consider the ODE

Ly = —f(x)

Define the Green’s functions as the solution to

LG(z,8) = —6(x =)

Then the solution to the ODE is given by

y(z) = / G, €)£(€)de

Since

Problem: How to we properly define 6(z)
Also not all practical functions have derivatives or Fourier transforms. Point
forces are very useful

We wish to extend the definition of a function and its derivative.

Fear: Extending allows for existence but endangers uniqueness
Notation 1 support (f(z)) = suppf(x)= {z|f(x) # 0}
Definition 2 C§° = functions with compact support in C*°(R)
Definition 3 D(R)= space of test functions with the following properties
e peD = peCyr
e topology: ¢, — ¢ in D if

— {p,,} have support in the same compact set K
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Then ¢(x) € C§° but is not analytic

Definition 4 A linear function ¢ on D(R) is a distribution if for every compact
set K 3Ck > 0 and nonegative integer m such that
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i.e. q 18 a continuous linear functional on D

application: For D’Alembart’s formula to be a solution of the wave equation we
require that v € C2.

If the initial condition is smooth except for a finite number of points then the
solution has discontinuities along the characteristics.

Definition 5 Given linear spaces U and V' the space of all continuous linear
operations U — V is a linear space L(U,V).
Dual Space: U' = L(I, R) We denote q(¢) =< q,¢ >.

Definition 6 ¢, — q in the weak topology * if
lim < gn, ¢ >=<gq,¢0> all ¢ € D(R)
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Definition 7 Dirac delta function
| s@)ete)ds = o(0)

and we see that the distribution 6(z) is the weak limit of classical functions
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note: pointwise
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so d(x) is not a classical function
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Definition 8 fis locally integrable if f; |f(z)|dx < oo for every [a,b]

if F(¢) is a distribution and f(z) is a classical function then

o) - [ h F(@)o(e)de < sup o) /K f(z)dz

Definition 9 F' is a regular distribution if it corresponds to a locally integrable
Sfunction
Otherwise F is a singular distribution

Note: If f and g are distributions fg is not necessarily a distribution.
If g € C*° then fg is a distribution.
Assume f’ is locally integrable. Then

<fio>= [ " P@)é(ayds = — / " f@)d (@)de

Definition 10 p is the distributional derivative of q if

<p,¢p>=-—<q,¢' > forall ¢ in D(R)



Note: If {gn} — {q} then {q;,} — {g/}
Proof. < qil,go >=— < gy, >
S0 <, >o< g >=—<q,p> m

Hence, we can derivatives of functions that don’t have derivatives in the classical
sense.
Definition 11 Dipole distribution

<&, p>=—<6,¢ >=—¢(0)

Lemma 12 If f is an integrable function and we know the functional [ fodz
for all test functions p(x) then we know f(x)

Proof. Assume [ pdz =1 (normalization)

Define 1
T . n
o, () = tTL(p(z) in R

Then

li [ f(s)eo— s)ds = f(a)
[
Let 1 2

S x’t = e_m t > 0
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Then

lim [ S(z, t)p()dz = ¢(0)

or S(x,t) — 6(x)
Similarly for the Dirichlet kernel

N . 1
Kn(0) =1+2) cos(nf) = W N9 9ns(x)
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Derivatives

Definition 13 The derivative f' is defined by

(f/ﬂ 90) = _(fa (10/)
Note: If f,, — f then f/, — f’ weakly

example

So  H'(z)=d(z)

Theorem 14 Every distribution has derivatives of all orders

example
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|x|:g7;2ﬁcos(nx) —T<r<T
then

/OO |z|p(z)dx = g/jo o(x)dx — % n12 h cos(nx)p(x)dx

So this is a distribution. So if we formally differentiate we get in the distribu-

tional sense
1 4 1 O<ax<m
x| =~ —sin(nz) =
=] wzn (nz) {—1 —nr<x<0
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formally differentiate a second time

|z|" = é Z cos(nz) = 6(z)

n odd

ie. Z / ) cos(nx)dx = ggo(O)

n odd



differential equations

Consider
du _ 0

TrT— =
dz
The classical solution is u is constant
The distributional solution is
u(z) =c1H(z) + ¢

Theorem 15 FEhrenpreis:
Let P be a linear differential operator with constant coefficients.
Then Pu = 0 has a solution in terms of distributions

This solution is called the fundamental solution and w« is the Green’s function.

Laplace Equation

o= 130w

. 1 .
ie. A (_47r7“) =d(x) in 3D

Poisson Equation

Au=f in D
=0 on 0D

then
u(xg) = ///5(x — zo)u(x)dx
D
= // AG(x, zo)u(z)dr
D
but 1
G(z,z9) + ——— is harmonic in D including
4|z — x|
So



Wave Equation

Consider the Riemann function
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Let ¢(x) be a test function and (consider for simplicity 1D)

u(w,t) = /S(fc —y,t)p(y)dy

then

—— =c%Au —oo< T <0

In 1D we have D’Alambert’s formula. So
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and so the solution is discontinuous along the characteristics
Define H(oet)— H (ot
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0 t<0
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In three dimensions

1
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Diffusion equation
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