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Figure 7.4 Edge detection by derivative operators: (a) light stripe on a dark background;
(b) dark stripe on a light background. Note that the second derivative has a zero crossing at
the location of each edge.




10.10 Laplace-Based Edge Detecuon —

-10.10.1 Laplace Filter

i ' IC linear opera-
With second derivatives, we can easily form an IS-DHGDESTE?E wep o
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- filter mask
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discrete approximation for
An interesting possibility is the use of binomial
masks. With (10.23) we can approximate all hinomig] masks for suffi-
Cclently small wavye numbers by

(10.97)



2.3.6 Laplacian Operators

The laplacian operators described here are similar to the ones used for prepro-
cessing as described in Section 2.2.3. The three laplacian masks that follow represent
different approximations of the laplacian operator. Unlike compass masks, the lapla-
cian masks are rotationally symmetric, which means edges at all orientations contrib-
ute to'the result. They are applied by selecting one mask and convolving it with the
image. The sign of the result (positive or negative) from two adjacent pixel locations
provides directional information, and tells us which side of the edge is brighter.

LAPLACIAN MASKS
0 -1 0 1 -2-1 [ .1 -1 -1
¢ @ - 2 4 -2 18 -1
0 -1 0 13 =2 1 -1 -1 -1

These masks differ from the laplacian type previously described in that the center
coefficients have been decreased by one. With these masks we are trying to find edges
and are not interested in the image itself. An easy way to picture the difference is to
consider the effect each mask would have when applied to an area of constant value.
The preceding convolution masks would return a value of zero. If we increase the cen-
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Figure 4.24 A basic highpass spatial filter.

Jerivative filters

\veraging of pixels over a region tends to blur detail in an image. As averaging
; analogous to integration, differentiation can be expected to have the opposite
ffect and thus sharpen an image.
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“igure 4.26 Mask used for high-boost spatial filtering. The value of the center weight is w
=04 — I, withd = 1.
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same properties in all directions and is therefore invariant to rotation in the image. It is

defined as . _
g(z,y) i & g(zx,y)
dx? 2

V2 g(a,y) = (4.39)

Image sharpening [Rosenfeld and Kak 82| has the objective of making edges steeper—
the sharpened image is intended to be observed by a human. The sharpened output-image f
is obtained from the input image g as

f(i,3) = 9(i,3) — CS(z, ) (4.40)

where C is a positive coefficient which gives the strength of sharpening and S(i, j) is a measure
of the image function sheerness, calculated using a gradient operator. The Laplacian is very
often used for this purpose. Figure 4.18 gives an example of image sharpening using a
Laplacian.

Image sharpening can be interpreted in the frequency domain as well. We already know
that the result of the Fourier transform is a combination of harmonic functions. The derivative
of the harmonic function sin{nx) is n cos(nz); thus the higher the frequency, the higher the
magnitude of its derivative. This is another explanation of why gradient operators enhance
edges.

A similar image sharpening technique to that given in equation (4.40). called unsharp
masking, is often used in printing industry applications [Jain 89]. A signal proportional
to an unsharp image (e.g., heavily blurred by a smoothing operator) is subtracted from the
original image.

Figure 4.18: Laplace gradient operator: (a) Laplace edge image using the 8-connectivity mask;
(b) sharpening using the Laplace operator [equation (4.40), C = 0.7]. Compare the sharpening
effect with the original image in Figure 4.10a.

A digital image is discrete in nature and so equations (4.37) and (4.38), containing deriva-
tives, must be approximated by differences. The first differences of the image ¢ in the vertical
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(a) First and second derivatives for edge detection

Figure 9.10 Edge detection via zero-
(b} An image and its zero-crossings. crossings.

Table 9.4 gives three different discrete approximations of this operator. Figure 9.8d
shows the edge extraction ability of the Laplace mask (2). Because of the second-
order derivatives, this gradient operator is more sensitive to noise than those pre-
viously defined. Also, the thresholded magnitude of V*f produces double edges.
For these reasons, together with its inability to detect the edge direction, the
Laplacian as such is not a good edge detection operator. A better utilization of the
Laplacian is to use its zero-crossings tc detect the edge locations (Fig. 9.10). A
generalized Laplacian operator, which approximates the Laplacian of Gaussian
functions, is a powerful zero-crossing detector [13]. It is defined as

h(m, n) 4. [1 - .{-m_zézn—z)} e:xp(— %j) (9.21)

where o controls the width of the Gaussian kernel and ¢ normalizes the sum of the
elements of a given size mask to unity. Zero-crossings of a given image convolved
with h(m, n) give its edge locations. On a two-dimensional grid, a zero-crossing 15
said to occur wherever there is a zero-crossing in at least one direction.
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LAPLACIAN

Find the zeros of the Laplacian

This gives sharp edges

The edges are closed loops

It doesn't give the magnitude of the edge

Hence, a jump from —¢ to ¢ is found to be an edge

A —k? So the Laplacian is more sensitive to noise than
the gradient

Possible fix: Use the gradient or variance to eliminate
false edges
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of V3f(n,, ny), any small perturbation of f(n,, n,) is likely to cause false edge
contours. One method to remove many of these false contours is to require that
the local variance is sufficiently large at an edge point, as shown in Figure 8.34.
The local variance o%(n,, n,) can be estimated by

1 ny+ M nz+ M

> > flky, k) = mpky, ky)]? (8.16a)

TR, ) =
I( LR (Zﬂff T 1)4 ki=ni~M ka=n2-M

1 n1+ M m2 +_1,-‘;1f .
where me(ny, ny) = m . __E_M k*s=%—M flky, k) (8.16b)

with M typically chosen around 2. Since o7(n,, 1) is compared with a threshold,
the scaling factor 1/(2M + 1)?in (8.16a) can be eliminated. In addition, the local
variance o7 needs to be computed only for (11, np) which are zero-crossing points
of V2f(n,, n,). Figure 8.35 shows the result of applying the system in Figure 8.34
to the image in Figure 8.33(a). Comparison of Figures 8.33(b) and 8.35 shows
considerable reduction in the “false’” edge contours.

The system in Figure 8.34 can be interpreted as a gradient-based method.
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Figure 8.33 Edge map obtained by a Laplacian-based edge detector. (a) Image of. 512 X
512 pixels; (b) result of convolving the image in (a) with k(n,, n,) in Figure 8.32(a) and then
finding zero-crossing points.
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Figure 2.3-5 (Continued)

e L i. Kirsch operatar,

m

placian operator,

g. Roberts operator. k. Robinson operator.

As previously mentioned, the objective metrics are often of limited use in pra
applications, so we will take a subjective look at the results of the edge detectors
human visual system is still superior, by far, to any computer vision system that hz
been devised and is often used as the final judge in application development. Figur:
5 shows the results of the edge detection operators. Here we see similar results fro
the operators but the laplacian. This occurs because the laplacian returns positive
negative numbers that get linearly remapped to 0 to 255 (for 8-bit display), w
means that the background value of 0 is mapped to some intermediate gray leve!



Figure 10.20: Detection of e‘dges by derivative filters (exercise 10.7): a Original
image, b Laplacian operator £, ¢ horizontal derivative Day, d vertical derivative
D>y, e magnitude of the gradient (Day - Dax + Dax - D2x) Y2, and f sum of the
magnitudes of ¢ and d after (10.70).



(e} Stochastic 5x 5 id) Laplacian

Figure 9.8 Edge detection examples. In each case, gradient images (left), edge
maps (right).

that 5 to 10% of pixels with largest gradients are declared as edges. Figure 9.82

is,hows the gradients and edge maps using the Sobel operator on two different
images.



Figure 27. Edge enbancement of the image in Figure 26:
) laplacian operator;

b) Roberts” Cross aperator;

o) borizontal derivative, scaled to full grey scale range;

) absolute value of image ¢;

¢) vertical derivative, scaled to full grey scale range;

) absolute value of image e;

&) sum of absolute values from images d and f:

b) maximum of values in images d and f, pixel by pixel;
I Sobel aperator (square root of sum of squares of values);
il Kirsch operator.
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Figure 8.34 Laplacian-based edge detection system that does not produce many false edge
contours.

The local variance o7(n,, n,) is closely related to the gradient magnitude. Com
paring o%(n,, n,) with a threshold is similar to comparing the gradient magnitude
with a threshold. Requiring that V3f(n,, n,) crosses zero at an edge can be inter
preted as edge thinning. With this.interpretation, we can implement the systen
in Figure 8.34 by computing o%(n,, n,) first and then by detecting the zero-crossing
points of V3f(n,, n,) only at those points where o%(n,, n,) is above the chosen
threshold.

8.3.3 Edge Detection by Marr and Hildreth’s Method

In the previous two sections, we discussed edge detection algorithms that produce
one edge map from an input image. Marr and Hildreth [Marr and Hildreth; Marr]
observed that significant intensity changes occur at different scales (resolution) in
an image. For example, blurry shadow regions and sharply focused fine-detail

Figure 8.35 Edge map obtained bY
applying the system in Figure 8.34 10
the image in Figure 8.33(a).
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FIGURE 8 Zero crossings of f * V2 ¢ for several values of &, with (d) also thresholded: (a) o = 1.0, (b) o = 1.5, (c)
g=20(d)o=20and T = 20.



Gaussian Filter

_X2+y2 N y2
g:=¢€ 202 —@ 202.@ 202

Taking the Fourler transform we get

We now consier the Laplacian of the Gaussian (LOG)

24 \2
24 y2_252 -X*Y
h.=Ag.= {74 e 2
The Gaussian is a separable function

The Laplacian of the Gaussian is a sum of two separable functions

0. hasan infinite stencil
One can approximate g, on afinite stencil

If the stencil is small use convolutions
If the stencil islarge use FFTs

A(G* I)=G*A(I)=(AG)*I
Where we find the Laplacian of G analytically



Example: Consider Fig. 7.9(a), which is a simple image of resolution 320 x
320 pixels. Figure 7.9(b) shows the result of convolving this image with the
function V*h. The value of o in this case is 4. In this result black represents
the most negative values, and white represents the most positive values; thus
mid grays represent zeros. Figure 7.9(c) shows a binary image created by setting
all negative values in Fig. 7.9(b) to black and all positive values to white. From

Figure 7.7 Mask used to compute the Laplacian.
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Figure 7.8 (a) Cross section of V'h; (b) V:h shown as an intensity function ( image). (From
g :
Ve TTORDT )



it and Laplacian-Tvpe Edge Detection

FIGURE 9 Plots of the LoG and its frequency response for o =

0.8

0.6

rf#;?
i "" ’f; 'l"ln 1,1 “\l\u“

X t-**«' 5

0.4
0.2

_ ! & .
0. / Fiﬂr “’r " 1‘ 1\1\1\1\$§*

.5'5"

-3 s
.Q_f ﬂx
(b)
1: (a) —V?g.(x, y), the negative of Eq. (18);

(b) F{V%g.(x, y}}, the bandpass-shaped frequency response of Eq. (18).

; goals: low rate of detection errors, good edge lo-
d only a single detection response per edge. Canny
- false-positive and false-negative detection errors
ndesirable and so gave them equal weight. He fur-
| that each edge has nearly constant cross section
on, but his general method includes a way to ef-
with the cases of curved edges and corners. With
ints, Canny determined the optimal 1-D edge de-
step edge and showed that its impulse response can
ited fairly well by the derivative of a Gaussian.

ant action of Canny’s edge detector is to prevent
»onses per true edge. Without this criterion, the
-edge detector would have an impulse response in
truncated signum function. (The signum function
for any positive argument and —1 for any negative
it this type of filter has high bandwidth, allowing
1re to produce several local maxima in the vicinity
edge. The effect of the derivative of Gaussian is to
iple responses by smoothing the truncated signum
Tmit only one response peak in the edge neighbor-
10ice of variance for the Gaussian kernel controls
th and the amount of smoothing. This defines the
neighborhood in which only a single peak is to
he variance selected shanld be nronartinnal to the

Canny’s approach begins by smoothing the image -
Gaussian filter:

gc{x: J"} =

202

U‘\;Z_'i;‘ EXP(FM)'

One may sample and truncate Eq. (19) to produce a finite-
filter, g(n;, m3). At each pixel, Eq. (8) is used to estim:
gradient direction. From a set of prepared edge detectio:
masks having various orientations, the one oriented nea
the gradient direction for the targeted pixel is then chosen.
applied to the Gaussian-smoothed image, this filter prodt
estimate of gradient magnitude at that pixel. Next, the

to suppress non-maxima of the gradient magnitude by

a 3 x 3 neighborhood, comparing the magnitude at the
pixel with those at interpolated positions to either side alc
gradient direction.

The pixels that survive to this point are candidates 1
edge map. To produce an edge map from these candida
els, Canny applies thresholding by gradient magnitude
adaptive manner with hysteresis. An estimate of the noise
image determines the values of a pair of thresholds, w:
upper threshold typically two or three times that of the

A randidats adea smmeas e’ T 1 12 L 1
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Figure 8.36 Sketch of (a) V*h(x, y) and (b) — F[V*h(x, ¥)] in Equation (8.19) for
a =1
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fspecial

h = fspecial('prewitt') returns this 3-by-3 horizontal edge-finding and
y-derivative approximation filter:

(4 4 4
0 0 0
1 <1 <1 j

To find vertical edges, or for x-derivatives, use —h'.

h = fspecial('laplacian',alpha) returns a 3-by-3 filter approximating the
two-dimensional Laplacian operator. The parameter alpha controls the shape
of the Laplacian and must be in the range 0 to 1.0. fspecial uses the default
value of 0.2 if you do not specify alpha.

h = fspecial('log',n,sigma) returns a rotationally symmetric Laplacian of
Gaussian filter with standard deviation sigma (in pixels). n is a 1-by-2 vector
specifying the number of rows and columns in h. (n can also be a sealar, in
which case h is n-by-n.) If you do not specify the parameters, fspecial uses the
default values of [5 5] for n and 0.5 for sigma.

h = fspecial('average',n) returns an averaging filter. n is a 1-by-2 vector
specifying the number of rows and columns in h. (n can also be a scalar, in
which case h is n-by-n.) If you do not specify n, fspecial uses the default value
of [3 3].

h = fspecial('unsharp',alpha) returns a 3-by-3 unsharp contrast enhance-
ment filter. fspecial creates the unsharp filter from the negative of the Lapla-

cian filter with parameter alpha. alpha controls the shape of the Laplacian and -

must be in the range 0 to 1.0. fspecial uses the default value of 0.2 if you do
not specify alpha.



Figure 34 shows an example at a very different scale. The spec-
men is a polished aluminum metal. The individual grains exhibit
different brightnesses because their crystallographic lattices are
undomly oriented in space so that the etching procedure used
darkens some grains more than others. It is the grain boundaries
that are usually important in studying metal structures, since the
configuration of grain boundaries results from prior heat treat-
ment and controls many mechanical properties. The human
visual process detects the grain boundaries using its sensitivity
8 boundaries and edges. Most image analysis systems use a gra-
dient operation, such as a Sobel, to perform a similar enhance-
1INt prior to measuring the grain boundaries.

] ¥ AN - b -
1 the example in Figure 34, another method has been
"Mployed. This is a variance operator, which calculates the sum

-f—sigma = 0.3
sigma = 1.0
difference

W




Figure 36. Application of
Laplacian difference
operations to the same
image as in Figure 35:

a) sharpening (addition of the
3 x3 Laplacian to the original
grey scale image);

b) 5x5 Laplacian;

c) 7x7 Laplacian;

d) 9x9 Laplacian.

Figure 37. Difference of
Gaussians applied to the
same image as Figure 35:

a) original image minus 3 x3
Gaussian smooth;

b) difference between smoothing
withc = 0.625andc = 1.0
Dpixels;

¢) difference between smoothing
witho = 1.6 andc =1.0
Dpixels;

d) difference between smoothing
witho =4.1andc = 2.6
Dpixels.
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the upper left, if LoG/DoG image values of both polarities occur in the 2 x 2 window; no edge
label would be given if values within the window are either all positive or all negative. Another
post-processing step to avoid detection of zero-crossings corresponding to nonsignificant edges
in regions of almost constant gray-level would admit only those zero-crossings for which there
is sufficient edge evidence from a first-derivative edge detector. Figure 4.21 provides several
examples of edge detection using zero crossings of the second derivative.

Many other approaches improving zero-crossing performance can be found in the literature
[Qian and Huang 94, Mehrotra and Shiming 96]; some of them are used in pre-processing
[Hardie and Boncelet 95] or post-processing steps [Alparone et al. 96].

© Q)

Figure 4.21: Zero-crossings of the second derivative, see Figure 4.10a for the original tmage:
(a) DoG image (o, = 0.10,05 = 0.09), dark pizels correspond to negative DoG values, bright
pizels represent positive DoG values; (b) zero-crossings of the DoG image; (c) DoG zero-
crossing edges after removing edges lacking first-deriative support; (d) LoG zero-crossing
edges (o = 0.20) after removing edges lacking first-derivative support—note different scale of
edges due to different Gaussian smoothing parameters.




Marr-Hildreth

This is based on a biological model.

1. convolve picture with a Gaussian
2. take the Laplacian of (1

A(G* fj:A(G)* f
l.e. take LOG convolved with the image

3. Find the zeros of (2)
Note the Gaussian depends on o

Instead of the Laplacian of the Gaussian one can use
the difference of Gaussians with different o

A large o = alarge stencil and coarse features
A small o= a small stencil and fine features
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? EDGE MODELS: MARR-HILDRETH EDGE DETECTION

Marr studied the literature on mammalian visual systems and summarized these
in five major points:

1. In natural images, features of interest occur at a variety of scales. No single
operator can function at all of these scales, so the result of operators at each
of many scales should be combined.

2. A natural scene does not appear to consist of diffraction patterns or other
wavelike effects, and so some form of local averaging (smoothing) must
take place.

3. The optimal smoothing filter that matches the observed requirements of bi-
ological vision (smooth and localized in the spatial domain and smooth and
band-limited in the frequency domain) is the Gaussian.

4. When a change in intensity (an edge) cccurs, there is an extreme value in
the first derivative or intensity. This coiresponds to a zero crossing in the
second derivative.

5. The orientation-independent differential operator of lowest order 1s the La-
placian. "
Each of these points is either supported by the observation of vision systems

or derived mathematically, but the overall grounding of the resulting edge detector

15 still a little loose. However, based on the five points above, an edge-detection

algorithm can be stated as follows:

1. Convolve the image I with a two-dimensional Gaussian function.
2. Complete the Laplacian of the convolved image; call this L.
3. Edges pixels are those for which there is a zero crossing in L.

The results of convolutions with Gaussians having a variety of standard devi-
ations are combined to form a single edge image. The standard deviation is a
measure of scale 1n this instance.

The algorithm is not difficult to implement, although it is more difficult than
the methods seen so far. A convolution in two dimensions can be expressed as:

PGS = > D Hnm)Gl - ng — m) (EQ 1.13)
The function G being convolved with the image is a two-dimensional Gaussian,
which is:
' , —(x2Z+y%)
Gylx,y) = 07¢ a2 (EQ 1.14)

To perform the convolution on a digital image, the Gaussian must be sampled
to create a small two-dimensional image: After the convolution, the Laplacian
operator can be applied. This is:




TeoaLwL al BUE LIBL CUEE THRADS 0L ginierent scaies contaln impartant
-w:a1afion about physma]}y significant parameters. The visual world is made of
elements’such as contours, scratches, and shadows, which are highly localized at
their own scale. This localization is also reflected in such physically important
changes as reflectance change znd illumination change. If the same edge is present
in a set of edge maps of different scale, it represents the presence of an image
intensity change due to a single physical phenomenon. If an edge is present in
only one edge map, one reason may be that two independent physical phenomena
are operating to produce intensity changes in the same region of the image.
To bandlimit an image at dlfferent cutoff frequencies, the impulse response
h(x, v) and frequency response H((1_, Q Q) of the lowpass filter proposed [Marr
and Hildreth; Canny] is Gaussian-shaped and is given by

h(x, y) = e~ (ryiimed (8.17a)
H{Q,, Q) = 2uiglemwi0ir o2 (8.17b)

*xo

where o determines the cutoff frequency with larger o corresponding to lower
cutoff frequency. The choice of Gaussian shape is motivated by the fact that it is
smooth and locaiized in both the spatial and frequency domains. A smooth A(x, ¥)
1s less likely to introduce any changes that ars not present in the onginal shape.
A more localized A(x, y) is less likely to shift the locazion of edges.

From the smoothed images, edges can be detected by using the edge detection
algorithms discussed in the previous two sections. Depending on which method
is used, the lowpass filtering operation in (3.17) and, the partial derivative operation
used for edge detection may be combined. For example, noting that V*[-] and
convelution * are linear, we obtain

VA(fCx, ) * (s, ) = fx, ) = [Fhx, )] G

&*h(x,
- s [P 2]

For the Gaussian function A{x, y) in (8.17), V*h(x, y) and its Fourier transform
are given by

e {x? +y )/ 2era)
{mg?y? -
F{7%h(x, y)} = —2ulc2emee0d2(2 + 02). (3.15b)

Vih(x, vy} = (xF 4+ v* — 2mg?) (8.19a)

Marr and Hildreth chose, for simplicity, to detect edges by looking for zero-crossing
points of V3f(x, y). Baadlimiting f(x, y} tends to reduce noise, thus reducing the
noise sensitivity problem associated with detecting zero-crossing points. The func-

Mré

tions V2h{x, y) and — F[V?h(x, y)] in (8.19) are sketched in Figure 8.36. Clearly
computing f(x, y) * Vh(x, y) is equivalent to bandpass f11te:rmg Flx, ¥) where 02
in (8.19) ixa parameter that controls the bandwidth of the bandpass filter. For g -
. sequence f(n,, n1,), one approach is to simply replace x and y in (8.19} with n, and
.

Figure 8.37 shows an example of the approach under discussion. Figures
8.37(a), (b), and (¢) show three images obtained by blurring the original image in
Figure 8.33(a) with h{n,, n,) obtained by replacing x and y of A(x, y) in (8.17) with
n, and 1, with o® = 4, 16, and 36, respectively. Figures 8.37(d), (2), and (f) show
the images obtained by detecting zero crossings of f{n,, #2) * V2h(x, ¥)| o myom
with V2A(x, y) given by (8.19a) for g7 = 4, 16, and 36, respectively. Marr anc
Hildreth used the edge maps of different scales, such as those in Figures 8.37(d)
(e), and (f) for object representation in their image understanding work.




V2= — + — EQ 1.15

x> 9y (EQ )
and could be computed using differences. However, because order does not matter
in this case, we could compute the Laplacian of the Gaussian analytically and
sample that function, creating a convolution mask that can be applied to the image
to yield the same result. The Laplacian of a Gaussian (LoG) is:

2 _ 9.2 _,
V3G, = (#)e = (EQ 1.16)
g

where r = Vx? + y%. This latter approach is the one taken in the C code imple-
menting this operator, which appears at the end of this chapter.

This program first creates a two-dimensional, sampled version of the Laplacian
of the Gaussian (called lgau in the function marr) and convolves this in the obvious
way with the input image (function convolution). Then the zero crossings are
identified, and pixels at those positions are marked.

A zero crossing at a pixel P implies that the values of the two opposing neigh-
boring pixels in some direction have different signs. For example, if the edge
through P is vertical, then the pixel to the left of P will have a different sign than
the one to the right of P. There are four cases to test: up/down, left/right, and the
two diagonals. This test is performed for each pixel in the Laplacian of the Gaus-
sian by the function zero_cross.

In order to ensure that a variety of scales are used, the program uses two dif-
ferent Gaussians, and selects the pixels that have zero crossings in both scales as
output edge pixels. More than two Gaussians could be used, of course. The pro-
gram accepts a standard deviation value o as a parameter, either from the com-
mand line or from the parameter file marr.par. It then uses both o + 0.8 and o —
0.8 as standard deviation values, does two convolutions, locates two sets of zero

Figure 1.11 Steps in the computation of the Marr-Hildreth edge
detector. (a) Convolution of the original image with the Laplacian
of a Gaussian having o = 1.2. (b) Convolution of the image with
the Laplacian of a Gaussian having o = 2.8. (c) Zero crossings
found in (a). (d) Zero crossings found in (b). (e) Result, found by
using zero crossings common to both.
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Figure 8.37 Edge maps obtained from lowpass filtered image. Blurred image with (a) o = 4;
(b) o = 16; (c) o* = 36. Result of applying Laplacian-based algorithm to the blurred image;
(d) o® = 4; (e) 02 = 16; (f) o* = 36. '

tinuous and has elliptical cross sections. The elliptical shape is chosen because of
the small number of parameters involved in its characterization and because of
some empirical evidence that it leads to a good estimate of percentage of stenosis.
The 1-D cross section of v(n,, n,), which consists of one blood vessel, is totally
specified by three parameters, two representing the blood vessel boundaries and
one related to the x-ray attenuation coefficient of iodine. The continuity of the
vessel is guaranteed by fitting a cubic spline function to the vessel boundaries.
The background p(n,, n,) is modeled by a 2-D low-order polynomial. Low-order
polynomials are very smooth functions, and their choice is motivated by the ob-
servation that objects in the background, such as tissue and bone, are much bigger
than the blood vessels. The blurring function g(n,, n,) is modeled by a known
2-D Gaussian function that takes into account the blurring introduced at various
stages of the imaging process. The noise w(n;, n,) is random background noisé
and is assumed to be white. The parameters in the model of f(n,, n,) are the

492 ) Image Enhancement  Chap- 8
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4.3.5 Canny edge detection

Canny proposed a new approach to edge detection {Canny 83, Brady 84, Canny 86] that is
optimal for step edges corrupted by white noise. The optimality of the detector is related to
three criteria.

s The detection criterion expresses the fact that important edges should not be missed

and that there should be no spurious responses.

The localization criterion says that the distance between the actual and located posi-
tion of the edge should be minimal.

The one response criterion minimizes multiple respenses to a single edge. This is
partly covered by the first criterion, since when there are two responses to a single
edge, one of them should be considered as false. This third criterion solves the problem
of an edge corrupted by noise and works against non-smooth edge operators [Rosenfeld
and Thurston 71].

Canny’s derivation of a new edge detector is based on several ideas.

1.

[

The edge detector was expressed for a 1D signal and the first two optimality criteria.
A closed-form solution was found using the calculus of variations.

If the third criterion {multiple responses) is added, the best solution may be found
by numerical optimization. The resulting filter can be approximated effectively with
error less than 20% oy the first derivative of a Gaussian smoothing filter with standard
deviation ¢ [Canny 86]; the reason for doing this is the existence of an effective imple-
mentation. There is a strong similarity here to the Marr-Hildreth edge detector {Marr
and Hildreth 80], which is based on the Laplacian of a Gaussian—see Section 4.3.3.

The detector is then generalized to two dimensions. A step edge Is given by its position,
orientation, and possibly magnitude {strength). It can be shown that convolving an
image with a symmetric 2D Gaussian and then differentiating in the direction of the
gradient (perpendicular to the edge direction) forms a simple and effective directional
operator (recall that the Marr-Hildreth zero-crossing operator does not give information
about edge direction, as it uses a Laplacian filter).

Suppose G is a 2D Gaussian [equation {4.52)] and assume we wish to convolve the image
with an operator (7, which is a first derivative of &G in the direction n.
4G
Gp=—=n-VG (4.62)
dn
The direction n should be oriented perpendicular to the edge. Although this direction is
not known in advance, a robust estimate of it based on the smoothed gradient direction
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Figure 6.15). Then the synthesized edge response is compared with the actual edge
response for larger o. Additional edges are marked only if they have a significantly
stronger response than that predicted from synthetic output.

This procedure may be repeated for a sequence of scales. a cumulative edge map being
built by adding those edges that were not identified at smaller scales.

Algorithm 4.4: Canny edge detector

1.

2.

~1

Convolve an image f with a Gaussian of scale o.

Estimate local edge normal directions i using equation (4.63) for each pixel in the
mage.

. Find the location of the edges using equation {1.65) (non-maximal suppression).

Compute the magnitude of the edge using equation {4.66).

Threshold edges in the imzge with hvsteresis to eliminate spurious responses.

. Repeat steps (1) through (35) for ascending values of the standard deviation o.

Aggregate the final information about edges at multiple scale using the ‘feature synthe-

sls  approach.

%%ﬂ aﬂ &%7 | kﬁ?

Figure 4.23: Canny edge detection at two different scales.

Figure 4.23a shows the edges of Figure 4.10a detected by a Canny operator with o = 1.0.
Figure 4.23b shows the edge detector response for o = 2.8 (feature synthesis has not been
applied here).
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to be solved analytically, an efficient approximation turns out to be the first de-
rivative of a Gaussian function. Recall that a Gaussian has the form:

2

G(x) = e 202 (EQ 1.21)

The dertvative with respect to x 1s therefore:

G'(x) = (— é)e_<2:2> (EQ 1.22)
In two dimensions, a Gaussian is given by:
Glry) = oe- (232 ~ (EQ 1.23)

and G has derivatives in both the x and y directions. The approximation to Canny’s
optimal filter for edge detection is G', and so by convolving the input image with
G’ we obtain an image E that has enhanced edges, even in the presence of noise,
which has been incorporated into the model of the edge image.

A convolution is fairly simple to implement, but is expensive computationally,
espectally a two-dimensional convolution. This was seen in the Marr edge detec-
tor. However, a convolution with a two-dimensional Gaussian can be separated
into two convolutions with one-dimensional Gaussians, and the differentiation can
be done afterwards. Indeed, the differentiation can also be done by convolutions
in one dimension, giving two images: one is the x component of the convolution
with G’ and the other is the y component.

Thus, the Canny edge detection algorithm to this point is:

1. Read in the image to be processed, 1.

2. Create a 1D Gaussian mask G to convolve with 1. The standard deviation s
of this Gaussian is a parameter to the edge detector.

3. Create a 1D mask for the first derivative of the Gaussian in the x and y
directions; call these G, and G,. The same s value is used as in step 2 above.

4. Convolve the image I with G along the rows to give the x component image
I, and down the columns to give the y component image I,.

5. Convolve I, with G, to give I/, the x component of I convolved with the
derivative of the Gaussian, and convolve 1, with G, to give I,

6. If you want to view the result at this point the x and y components must be
combined. The magnitude of the result is computed at each pixel (x,y) as:

M(xy) = VI (xy)* + T (xy)

The magnitude is computed in the same manner as it was for the gradient, which
1s in fact what is being computed.
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A complete C program for a Canny edge detector is given at the end of this
chapter, but some explanation is relevant at this point. The main program opens
the image file and reads it, and also reads in the parameters (such as o). It then
calls the function canny, which does most of the actual work. The first thing canny
does is to compute the Gaussian filter mask (called gau in the program) and the
derivative of a Gaussian filter mask (called dgau). The size of the mask to be used
depends on o; for small o the Gaussian will quickly become zero, resulting in a
small mask. The program determines the needed mask size automatically.

Next, the function computes the convolution as in step 4 above. The C function
separable_convolution does this, being given the input image and the mask, and
returning the x and y parts of the convolution (called smx and smy in the program;
these are floating point 2D arrays). The convolution of step 5 above is then cal-
culated by calling the C function dxy_separable_convolution twice, once for x
and once for y. The resulting real images (called dx and dy in the program) are
the x and y components of the image convolved with G'. The function norm will
calculate the magnitude given any pair of x and y components.

The final step in the edge detector is a little curious at first, and needs some
explanation. The value of the pixels in M is large if they are edge pixels and
smaller if not, so thresholding could be used to show the edge pixel as white and
the background as black. This does not give very good results; what must be done
is to threshold the image based partly on the direction of the gradient at each pixel.
The basic idea i1s that edge pixels have a direction associated with them; the
magnitude of the gradient at an edge pixel should be greater than the magnitude
of the gradient of the pixels on each side of the edge. The final step in the Canny
edge detector is a nonmaximum suppression step, where pixels that are not local
maxima are removed.

Figure 1.13 attempts to shed light on this process by using geometry. Part a of
this figure shows a 3 X 3 region centered on an edge pixel, which in this case is
vertical. The arrows indicate the direction of the gradient at each pixel, and the
length of the arrows is proportional to the magnitude of the gradient. Here, non-

“maximal suppression means that the center pixel, the one under consideration,
must have a larger gradient magnitude than its neighbors in the gradient direction,
these are the two pixels marked with an ‘“x.”” That is: From the center pixel, travel
in the direction of the gradient until another pixel is encountered; this is the first
neighbor. Now, again starting at the center pixel, travel in the direction opposite
to that of the gradient until another pixel is encountered; this is the second neigh-
bor. Moving from one of these to the other passes though the edge pixel in a
direction that crosses the edge, so the gradient magnitude should be largest at the
edge pixel.

In this specific case, the situation is clear. The direction of the gradient is
horizontal, and the neighboring pixels used in the comparison are exactly the left
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Figure 1.13 Nonmaximum suppression. (a) Simple case, where the
gradient direction is horizontal. (b) Most cases have gradient
directions that are not horizontal or vertical, so there is
no exact gradient at the desired point. (¢} Gradients
at pixels neighboring A are used to estimate the gradient
at the location marked with +.

- and right neighbors. Unfortunately this does not happen very often. If the gradient
direction is arbitrary, then following that direction will usually take you to a point
in between two pixels. What is the gradient there? Its value cannot be known for
certain, but it can be estimated from the gradients of the neighboring pixels. It is
assumed that the gradient changes continuously as a function of position, and that
the gradient at the pixel coordinates are simply sampled from the continuous case.
If it is further assumed that the change in the gradient between any two pixels is
a linear function, then the gradient at any point between the pixels can be ap-
proximated by a linear interpolation.

A more general case is shown in Figure 1.13b. Here the gradients all point in
different directions, and following the gradient from the center pixel now takes
us in between the pixels marked x. Following the direction opposite to the gradient
takes us between the pixels marked y. Let’s consider only the case involving the
“‘x’7 pixels as shown in Figure 1.13c¢, since the other case is really the same. The
pixel named A is the one under consideration, and pixels B and C are the neighbors
in the direction of the positive gradient. The vector components of the gradient at
A are A, and A, and the same naming convention will be used for B and C.

Each pixel lies on a grid line having an integer x and y coordinate. This means
that pixels A and B differ by one distance unit in the x direction. It must be
determined which grid line will be crossed first when moving from A in the
gradient direction. Then the gradient magnitude will be linearly interpolated using
the two pixels on that grid line and on opposite sides of the crossing point, which




is at location (P, P,). In Figure 1.13c the crossing point is marked with a *‘+,”’
and is in between B and C. The gradient magnitude at this point is estimated as

G = (P, — C,)Norm(C) + (B, — P,)Norm(B) (EQ 1.24)

where the norm function computes the gradient magnitude.

Every pixel in the filtered image is processed in this way; the gradient magni-
tude is estimated for two locations, one on each side of the pixel, and the mag-
nitude at the pixel must be greater than its neighbors’. In the general case there
are eight major cases to check for, and some shortcuts that can be made for
efficiency’s sake, but the above method is essentially what is used in most imple-
mentations of the Canny edge detector. The function nonmax_suppress in the C
source at the end of the chapter computes a value for the magnitude at each pixel
based on this method, and sets the value to zero unless the pixel is a local maxi-
mum. '

It would be possible to stop at this point, and use the method to enhance edges.
Figure 1.14 shows the various stages in processing the chessboard test image of

@ | ®) ©

Figure 1.14 Intermediate results from the Canny edge detector.
(a) X component of the convolution with a Gaussian. (b) Y
component of the convolution with a Gaussian. (¢) X component
of the image convolved with the derivative of a Gaussian.

(d) Y component of the image convolved with the
derivative of a Gaussian. (e) Resulting magnitude image.

(f) After nonmaximum suppression.
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FIGURE 10 Canny edge detector of Eq. (20) applied after Gaussian smoothing over a range of o: (a) ¢ = 0.5,
(b)o =1, (c) o = 2, (d) o = 4. The thresholds are fixed in each case at Ty = 10 and Tr = 4.
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FIGURE 11 Canny edge detector of Eq. (20) applied after Gaussian smoothing with o = 2: {(a) Ty = 10, Ty = 1; (b)
Ty = T = 10, {c) Ty == 20, Ty = 11{d) Ty = Tp = 20. As T1 is changed, notice the effect on the results of hysteresis

thresholding.
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was assumed to be a convolution filter f that would smooth the noise and locate
the edge. The problem is to identify the one filter that optimizes the three edge

detection criteria.
In one dimension, the response of the filter f to an edge G is given by a con-

volution integral:

W

H= j G(—x)f(x)dx (B 1.17)

—-W

The filter is assumed to be zero outside of the region [—W,W]. Mathematically,
the three criteria are expressed as:

SNR = (EQ 1.18)
Localization = AIJ:EH)I (EQ 1.19)
2

M _J;V f bk
-
f f2(x)dx
e e (EQ 1.20)
[ pma

The value of SNR is the output signal to noise ratio (error rate), and should be
as large as possible: we need lots of signal and little noise. The localization value
represents the reciprocal of the distance of the located edge from the true edge,
and should also be as large as possible, which means that the distance would be
as small as possible. The value x_, is a constraint; it represents the mean distance
between zero crossings of f' and is essentially a statement that the edge detector
f will not have too many responses to the same edge in a small region.

Canny attempts to find the filter f that maximizes the product SNR X localiza-
tion subject to the multiple-response constraint, and while the result is too complex



One possible way to evaluate an edge detector, based on the above discussion
was proposed by Pratt (1978), who suggested the following function: ‘

Ia
1
IZ] (1 + cx:z’(f}z)

o (EQ 1.8)

where I, is the number of edge pixels found by the edge detector, I, is the actual
number of edge pixels in the test image, and the function d(i) is the distance

- —_ e e ——

between the actual izh pixel and the one found by the edge detector. The value o
is used for scaling, and should be kept constant for any set of trials. A value of
Yo will be used here, as it was in Pratt’s work. This metric is, as discussed pre-
viously, a function of the distance between correct and measured edge positions,

but is only indirectly related to the false positives and negatives.

Kitchen and Rosenfeld (1981) also present an evaluation scheme, this one based
on local edge coherence. It does not concern itself with the actual position of an
edge, and so is a supplement to Pratt’s metric. Instead, it measures how well the
edge pixel fits into the local neighborhood of edge pixels. The first step is the
definition of a function that measures how well an edge pixel is continued on

the left; this function is:
r

4
0 Otherwise

' ke
L(k) = < a{d,dk)a(-—, d+ g) if neighbor k is an edge pixel

where d is the edge direction at the pixel being tested, d, is the edge direction at

its neighbor to the right, d, is the direction of the upper-right neighbor, and so on
counterclockwise about the pixel involved. The function a is a measure of the

angular difference between any two angles:
m = lo — B

ala, B) = (EQ 1.10)

i

A similar function measures directional continuity on the right of the pixel being

‘evaluated:

-

k : . :
R(k) = < a(d,dk)a(f, d - %T) if neighbor k is an edge pixel

0 Otherwise

“

The overall continuity measure is taken to be the average of the best (largest)

value of L(k) and the best value of R(k); this measure is called C.

Then a measure of thinness is applied. An edge should be a thin line, one pixel
wide. Lines of a greater width imply that false positives exist, probably because
the edge detector has responded more than once to the same edge. The thinness
measure T is the fraction of the six pixels in the 3 X 3 region centered at the pixel
being measured, not counting the center and the two pixels found by L(k) and

R(k), that are edge pixels. The overall evaluation of the edge detector is:

Ey =40+ (1.— I (EQ 1.12)

where <y is a constant: we will use the value 0.8 here.
We are now prepared to evaluate the two gradient operators. Each of the op-

Thee hath tha Dentt and tha TR

(EQ 1.9)

(EQ 1.11)
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I; =the number of edge points found by the edge detector
¢ = a scaling constant that can be adjusted to adjust the penalty for offset edge

d = the distance of a found edge point to an ideal edge point

For this metric, B will be 1 for a perfect edge. Normalizing to the maximum of th

ideal and found edge points guarantees a penalty for smeared edges or missing edg
points. In general, this metric assigns a better rating to smeared edges than to offse
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{b)

Fig. 3. (a) Test image; (b) declared ideal edge map of the test image.

"ideal edge points and detected edge points are given by Ny and
1, respectively.

The Pratt figure of ment is used with a simple 8 b grey scale image
evaluate the performance of the prefilters. The test image is shown
Fig. 3(a) and the declared ideal edge points are shown in Fig. 3(b).
The test image has been blurred with a Gaussian point spread func-
an and has been processed using each of the nonlinear sharpeners.
he Pratt figure of merit for the Sobel edge detector with each of
e prefilters is shown in Fig. 4 for all threshold values. A Tx T
indow is used for each of the filters and & =1 = 1 for the LUM
iter (maximum sharpening) and 7 = 1 for the CS filter (maximuom
vaenaninal Mate that the Renre of merit is sienificantly higher and is

Pratt Figure of Merit
o
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Threshald

Fig. 4. Pratt figure of merit for the Sobel edge detector with prefilter
operating on the blurred test image.

Prati Flgure of Merit
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Fig. 5. Pratt figure of merit for the Sobel edge detector with prefilter
aperating on the blurred test image corrupted with impulsive noise (p = 0.02)

The Pratt figure of merit for the case where the test image is blurre:
and corrupted with p = 0.02 impulsive noise is shown in Fig. 5. Fo
the LUM filter, ¥ = I = 5 and for the CS filter, j = 5. Here
the median is useful for low threshold values but actually degrade
performance at higher threshold levels. The nonlinear sharpeners offe
improved performance for all threshold values and the LUM filte
generally gives the best results.

B. Natural Image Edge Detection

In this section, edge detection with a blurred natural image con
rupted with impulsive noise is considered. Fig. 6(a) shows the imag
“Boat” blurred with a 5 x5 mean filter and corrupted with impulsiv
noise having probability p = 0.02. The edge map of this image wit
no prefilter is shown in 6(b). In this image, the impulses dominate th
edge map, which clearly illustrates the need for some type of prefilte
Fig. 6(c) shows the edge map generated after 3 x 3 median prefiltering
The impulses have been removed, but the edges remain blurrer
Finally, the edge map generated after LUM prefiltering is show
in Fig. 6{d). A 5 % 5 window is used with parameters k =1 = 5. Tt
impulses have been suppressed and the edges have been enhance
resulting in a detailed edge map. All of the thresholds have been s
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Figure 1.8 Standard test images for edge detector evaluation. There are

three step edges and two stairs, plus a real sampled image; all have been

subjected to normally distributed zero-mean noise with known standard
deviations of 3, 9, and 18.
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edge pixel is quantized into eight possibilities here, and is w/4*i where i is the
number of the mask having the largest response.

Both of these edges detectors were evaluated using the test images of Figure
1.8. The results are outlined in Table 1.3.

The results for the Kirsch operator are found in Table 1.4.

Figure 1.10 shows the response of these templates applied to a selection of
the test images. Based ‘on the evaluations and the appearance of the test images,

Table 1.4 Evaluation of the Kirsch Edge Detector




Sobel

Kirsch

(a) (b) () (d) ,i
Figure 1.10 Sample results from the template edge detectors.
(a) Chess image, noise o = 3. (b) ET1, SNR=6. (c) ET3, SNR=2.

"~ (d) Chess image, noise o = 18.

the Kirsch operator appears to be the best of the two template operators, although
the two are very close. Both template operators are superior to the simple deriv-

ative operators, especially as the noise InCreases.

It should be pointed out that in all cases studied so far there are unspecified
aspects to the edge detection methods that will have an impact on their efficacy.
Principal among these is the thresholding method used, but sometimes simple
noise removal is done beforehand and edge thinning is done afterward. The model-
based methods that follow generally include these features, sometimes as part of

the edge model.
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crossings, and merges the resulting edge pixels into a single image. The program
is called marr, and can be invoked as

marr input.pgm 2.0

which would read in the image file named input.pgm and apply the Marr-Hildreth
edge-detection algorithm using 1.2 and 2.8 as standard deviations.

Figure 1.11 illustrates the steps in this process, using the chess image (no noise)
as an example. Figures 1.11a and b show the original image after being convolved
with the Laplacian of the Gaussians, having o values of 1.2 and 2.8 respectively.
Figures 1.11c and 1.11d are the responses from these two different values of o,
and Figure 1.11e shows the result of merging the edge pixels in these two images.

Figure 1.12 shows the result of the Marr-Hildreth edge detector applied to the
all of the test images of Figure 1.8. In addition, the evaluation of this operator is
shown in Table 1.5. '

The evaluations above tend to be low. Because of the width of the Gaussian
filter, the pixels that are a distance less than about 40 from the boundary of the
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Figure 1.12 Edges from the test images as found by the Marr-
Hildreth algorithm, using two resolution values.
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image are not processed; hence E1 thinks of these as missing edge pixels. When
this is taken into account, the evaluation using ET1 with no noise, as an example,
becomes 0.9727. Some of the other low evaluations are, on the other hand, the
fault of the method. Locality is not especially good, and the edges are not always
thin. Still, this edge detector is much better than the previous ones in cases of low

signal-to-noise ratio.

1.4 THE CANNY EDGE DETECTOR

In 1986, John Canny defined a set of goals for an edge detector and described an

optimal method for achieving them.
Canny specified three issues that an edge detector must address. In plain En-

glish, these are:

1. Error rate—The edge detector should respond only to edges, and should
find all of them; no edges should be missed.

2. Localization—The distance between the edge pixels as found by the edge
detector and the actual edge should be as small as possible.

3. Response—The edge detector should not identify multiple edge pixels
where only a single edge exists.

These seem reasonable enough, especially because the first two have already
been discussed and used to evaluate edge detectors. The response criterion seems

very similar to that of a false positive, at first glance.
Canny assumed a step edge subject to white Gaussian noise. The edge detector
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Table 1.6 Evaluation of Canny VS ISEF: E1

Image Algorithm No Noise SNR = 6 SNR =2 SNR =1
ET1 Canny 0.9651 (.9408 0.5968 0.1708
ISEF 0.9689 0.0285 0.7929 0.7036
ET2 Canny 0.9650 0.9155 0.6991 0.2530
ISEF 0.9650 0.9338 0.8269 0.7170
ET3 Canny 0.9726 0.9641 0.8856 0.4730
ISEF 0.8776 0.9015 0.7347 0.5238
ET4 Canny 0.5157 0.5092 0.3201 0.1103
ISEF 0.4686 0.4787 0.4599 0.4227
ET5 Canny 0.5024 0.4738 0.3008 0.0955
ISEF 0.4957 0.4831 0.4671 0.4074

Sobel, V,, and V|, in that order. The comparison between Canny and ISEF does
depend on the parameters selected in each case, and it is likely that evaluations
can be found that use a better choice of parameters. In some of these the Canny
edge detector will come out ahead, and in some the ISEF method will win. The
best set of parameters for a particular image is not known, and so ultimately the
user 1s left to judge the methods.

Table 1.7 Evaluation of Canny VS ISEF: E2

(Image  Algorithm  NoNose  SNR=6 NR =
FETL Canny - 1.0000 eIk . - 0.5687
ISEF L0000 0.9182 05756 0.5147
ET2 Canny 1.0000 0.6039 0.5518 0.5726
ISEF 1.0000 0.9462 0.6018 0.5209
ET3 Canny 0.9291 07541 0.6032 0.5899
ISEE 0.9965 0.9424 0.5204 0.4829
ET4 Canny 1.0000 0.7967 0.5396 0.5681
ISEF 1.0000 0.5382 0.5193 0.5096
ETS Canny + 1.0000 kg [ 0.5269 - 0.5706

ISEF 0.9900 0.6162 e 05243 0.5123




Figure 4.29: Restoration of motion blur using Wiener filtration. Courtesy P. Kohout, Crir
inalistic Institute, Prague.

4.5 Summary

¢ Image pre-processing

— Operations with images at the lowest level of abstraction—both input and outp
are intensity images—are called pre-processing.

— The aim of pre-processing is an improvement of the image data that suppress
unwilling distortions or enhances some image features important for further pr
cessing.

— Four basic types of pre-processing methods exist:

* Brightness transformations

* Geometric transformations

* Local neighborhood pre-processing
* Image restoration

e Pixel brightness transformations

— There are two classes of pixel brightness transformations:
+ Brightness corrections
+ Gray-scale transformations

— Brightness corrections modify pixel brightness taking into account its origin
brightness and its position in the image.

— Gray-scale transformations change brightness without regard to position in ¢
image.

— Frequently used brightness transformations include:
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Figure 4.30: Restoration of wrong focus blur using Wiener filtration. Courtesy P. Kohout,
Criminalistic Institute, Prague.

#*

Brightness thresholding

*

Histogram equalization

+*+

Logarithmic gray-scale transforms
* Look-up table transforms

*+ Pseudo-color transforms
— The goal of histogram equalization is to create an image with equally distributed
brightness levels over the whole brightness scale.

¢ Geometric transformations

— Geometric transforms permit the elimination of the geometric distortions that
occur when an image is captured.

— A geometric transform typically consists of two basic steps:
+ Pizel co-ordinate transformation
* Brightness interpolation

— Pixel co-ordinate transformations map the co-ordinates of the input image pixel
to a point in the output image; affine and bilinear transforms are frequently used.

— The output point co-ordinates do not usually match the digital grid after the
transform and interpolation is employed to determine brightnesses of output pixels;
nearest-neighbor, linear, and bi-cubic interpolations are frequently used.

* Local pre-processing

— Local pre-processing methods use a small neighborhood of a pixel in an input
image to produce a new brightness value in the output image.

— For the pre-processing goal, two groups are common: smoothing and edge detection.
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— Smoothing aims to suppress noise or other small fluctuations in the image; it is
equivalent to suppressing high frequencies in the Fourier transform domain.

— Smoothing approaches based on direct averaging blur image edges. More sophis-
ticated approaches reduce blurring by averaging in homogeneous local neighbor-
hoods.

— Median smoothing is a non-linear operation; it reduces the blurring of edges by
replacing the current point in the image by the median of the brightnesses in its
neighborhood.

— Gradient operators determine edges—locations in which the image function under-
goes rapid changes; they have a similar effect to suppressing low frequencies in the
Fourier transform domain.

— FEdge is a property attached to an individual pixel and has two components, mag-
nitude and direction.

— Most gradient operators can be expressed using convolution masks; examples in-
clude Roberts, Laplace, Prewitt, Sobel, Robinson, and Kirsch operators.

— The main disadvantage of convolution edge detectors is their scale dependence and
noise sensitivity. There is seldom a sound reason for choosing a particular size of
a local neighborhood operator.

— Zero-crossings of the second derivative are more robust than small-size gradient
detectors and can be calculated as a Laplacian of Gaussians (LoG) or as a difference
of Gaussians (DoG).

— The Canny edge detector is optimal for step edges corrupted by white noise. The
optimality criterion is based on requirements of detecting important edges, small
localization error, and single-edge response. Canny edge detection starts with con-
volving an image with a symmetric 2D Gaussian and then differentiating in the
direction of the gradient; further steps include non-mazimal edge suppression, hys-
teresis thresholding, and feature synthesis.

— Edges can also be detected in multi-spectral images.

— Other local pre-processing operations include line finding, line thinning, line filling,
and interest point detection.

— In adaptive neighborhood pre-processing, the neighborhood sizes and shapes are
dependent on characteristics of image data and on parameters defining measures

of homogeneity of a neighborhood.
e Image restoration

— Image restoration methods aim to suppress degradation using knowledge about
its nature. Most image restoration methods are based on deconvolution applied
globally to the entire image.

— Relative-constant-speed movement of the object with respect to the camera, wrong
lens focus, and atmospheric turbulence are three typical image degradations with
simple degradation functions.

— Inverse filtration assumes that degradation was caused by a linear function.



1age Analysis

Image analysis techniques return information about the structure of an image,
This section describes toolbox functions that you ean use for these image
analysis techniques:

* Edge detection

® Quadtree decomposition

The functions described in this section work only with grayscale intensity
images.

Edge Detection

You can use the edge function to detect edges, which are those places in an
image that correspond to object boundaries. To find edges, this function looks
for places in the image where the intensity changes rapidly, using one of these
two criteria:

¢ Places where the first derivative of the intensity is larger in magnitude than
some threshold

® Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements one
of the definitions above. For some of these estimators, you can specify whether
the operation should be sensitive to horizontal or vertical edges, or both. edge
returns a binarv image containing 1’s where edges are found and 0’s elsewhere.

The example below uses the Sobel method to detect the edges in an

— 2 image of
b:iﬂﬂd cells. By default, the operation is sensitive to both horizontal and vegrtical
edges.

I = imread('blood1.tif');
BW = edge(I, 'sobel');
imshow(I)

figure, imshow(BW)

For an interactive demonstration of edge detection, try running edgedemo.
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I imread('saturn.tif');

h fspecial('unsharp',0.5);
I2 = filter2(h,I)/255;
imshow(I)

figure, imshow(I2)

fspecial creates Gaussian filters using:

—(nd +n2)/(2nc”)
hg(nl,nz) =e

hg(”1=”2]

2. 2%

Iy ng

fspecial creates Laplacian filters using:

2 2
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Create predefined filters

h = fspecial(type)
h = fspecial(type,parameters)
h = fspecial(type) creates a two-dimensional filter h of the specified typ

(fspecial returns h as a computational molecule, which is the appropriate
form to use with filter2.) type is a string having one of these values:

® 'gaussian' for a Gaussian lowpass filter

® 'sobel' for a Sobel horizontal edge-emphasizing filter

* 'prewitt’' for a Prewitt horizontal edge-emphasizing filter

® 'laplacian' for a filter approximating the two-dimensional Laplacian or
ator

® 'log' for a Laplacian of Gaussian filter

® 'average’' for an averaging filter

® 'unsharp' for an unsharp contrast enhancement filter

Depending on type, fspecial may take additional parameters which you c
supply. These parameters all have default values.

h = fspecial('gaussian',n,sigma) returns a rotationally symmetric Gat
sian lowpass filter with standard deviation sigma (in pixels). nis a 1-by-2 vec
specifying the number of rows and columns in h. (n can also be a scalar, in
which case h is n-by-n.) If you do not specify the parameters, fspecial uses t
default values of [3 3] for n and 0.5 for sigma.

h = fspecial('sobel') returns this 3-by-3 horizontal edge-finding and
y-derivative approximation filter:

[

[ = o]

1
0
=

'
0
=

M

]

To find vertical edges, or for y-derivatives, use —h".
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fspecial creates Laplacian of Gaussian (LoG) filters using:

(n?+n)/(2ncY)
hg(nl, ng) = ' :

(n.l2 + nzz—ﬁnﬁz)hg(n 1 9)

TE2(542 Zhg

gy Ng

fspecial creates averaging filters using:
ones(n(1),n(2))/(n(1)*n(2))
fspecial creates unsharp filters using:
1 o o-1 -o

(oa+1) oa-1 o+ o-1
-0 oa-1 -

conv2, edge, filter2, fsamp2, fwind1, fwind2
del2 in the online MATLAB Function Reference





