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LAPLACIAN 
 

Find the zeros of the Laplacian 

This gives sharp edges 

The edges are closed loops 

It doesn't give the magnitude of the edge 

Hence, a jump from ε−  to ε  is found to be an edge 

 

2k∆→   So the Laplacian is more sensitive to noise than 
the gradient 

 

Possible fix: Use the gradient or variance to eliminate 
false edges 

 

 

 

 

 

 

 

 

 

 



















Gaussian Filter 
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Taking the Fourier transform we get
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We now consier the Laplacian of the Gaussian (LOG)
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unction
The Laplacian of the Gaussian is a sum of two separable functions

  has an infinite stencil
One can approximate  on a finite stencil

If the stencil is small use convolutions
If the stencil is l

c

c

g
g

( )
arge use FFTs

(G*I)=G* (I)= G *I
Where we find the Laplacian of G analytically
∆ ∆ ∆

 

 

 

 

 

 

 

 

















Marr-Hildreth 
This is based on a biological model. 

1.  convolve picture with a Gaussian 
2. take the Laplacian of (1 

( )G f G f 
 
 

∆ ∗ =∆ ∗  

i.e. take LOG convolved with the image 
  

3.  Find the zeros of (2) 
Note the Gaussian depends on σ  
 
Instead of the Laplacian of the Gaussian one can use 
the difference of Gaussians with different σ  
 
A large  σ ⇒  a large stencil and coarse features 
A small  σ ⇒  a small stencil and fine features 
 

  

 

 

 

 

 

 

 

 

 















Canny 
1.  Preliminary edge detection and non-maximum 
suppression 

• Use derivative of Gaussian convolved with the 
image 

• Check the gradients at neighboring points 
 
       or else 
 

• Take second derivative normal to the edge using a 
preliminary guess for the location of the edge 

 Find the zeros of the second derivative 
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2.  Use hysteresis with two thresholds  and L HT T  

 

If  edge
not anedge

   use connectivity to decide
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3. Thinning the gradient 

  



Thinning 
Directional derivative 
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Calculating a square root is expensive. Instead replace by  

1.                      | | max ,f ff x y
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are not isotropic. The error is largest at 45  
  

 
 

 
 




















































