
 

 
 

 

CHAPTER 3 

 

 

EDGE DETECTION USING CLASICAL EDGE DETECTORS 

 

 

Edge detection is one of the most important operations in image analysis. An edge 

is a set of connected pixels that lie on the boundary between two regions. The 

classification of edge detectors discussed in this chapter is based on the behavioral study 

of these edges with respect to the following operators: 

 

• Gradient edge detectors 

• Laplacian of Gaussian 

• Gaussian edge detectors 

 

3.1 GRADIENT EDGE DETECTORS 

 

The first derivative assumes a local maximum at an edge. For a gradient image 

f(x, y), at location (x, y), where x and y are the row and column coordinates respectively, 

we typically consider the two directional derivatives. The two functions that can be 

expressed in terms of the directional derivatives are the gradient magnitude and the 

gradient orientation. 
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The gradient magnitude is defined by  
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This quantity give the maximum rate of increase of f(x,y) per unit distance in the 

gradient orientation of f∇ . The gradient orientation is also an important quantity. The 

gradient orientation is given by 
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where the angle is measured with respect to the x- axis. The direction of the edge at (x, y) 

is perpendicular to the direction of the gradient vector at that point. The other method of 

calculating the gradient is given by estimating the finite difference. 

 

h
yxfyhxf

x
f

h

),(),(lim
0

−+
=

∂
∂

→
   (3.3) 

 

h
yxfhyxf

y
f

h

),(),(lim
0

−+
=

∂
∂

→
 

therefore we can approximate this finite difference as  
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Using the pixel coordinate notation and considering that j corresponds to the 

direction of x and i corresponds to the y direction  

          

),()1,( jifyif
x
f

−+=
∂
∂     (3.6) 

),(),1( jifyif
y
f

−−=
∂
∂  or ),1(),( jifjif

y
f

+−=
∂
∂  (3.7)  

The most popular classical gradient-based edge detectors are Roberts cross gradient 

operator, Sobel operator and the Prewitt operator. 

 

3.1.1 ROBERTS EDGE DETECTOR 

 

The calculation of the gradient magnitude and gradient magnitude of an image is 

obtained by the partial derivatives 
x
f

∂
∂ and 

y
f

∂
∂  at every pixel location. The simplest way 

to implement the first order partial derivative is by using the Roberts cross gradient 

operator. 
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The above partial derivatives can be implemented by approximating them to two 2x2 

masks. The Roberts operator masks are  
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These filters have the shortest support, thus the position of the edges is more 

accurate, but the problem with the short support of the filters is its vulnerability to noise. 

It also produces very weak responses to genuine edges unless they are very sharp. 

 

3.1.2 PREWITT EDGE DETECTOR 

 

The Prewitt edge detector is a much better operator than the Roberts operator. 

This operator having a 3x3 masks deals better with the effect of noise. 

An approach using the masks of size 3x3 is given by considering the below arrangement 

of pixels about the pixel [i, j]  
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The partial derivatives of the Prewitt operator are calculated as  
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The constant c implies the emphasis given to pixels closer to the center of the mask.  

and  are the approximations at [i, j]. 

xG

yG

 

Setting c = 1, the Prewitt operator is obtained. Therefore the Prewitt masks are as follows 
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These masks have longer support. They differentiate in one direction and average in the 

other direction, so the edge detector is less vulnerable to noise. 

 

3.1.3 SOBEL EDGE DETECTOR 

 

The Sobel edge detector is very much similar to the Prewitt edge detector. The 

difference between the both is that the weight of the center coefficient is 2 in the Sobel 

operator. The partial derivatives of the Sobel operator are calculated as 
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Therefore the Sobel masks are  
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Although the Prewitt masks are easier to implement than the Sobel masks, the later has 

better noise suppression characteristics. 

 

3.1.4 FREI-CHEN EDGE DETECTOR 

 

The Frei-Chen edge detector is also a first order operation like the previously 

discussed operators. Edge detection using the Frei-Chen masks is implemented by 

mapping the intensity vector using a linear transformation and then detecting edges based 

on the edges based on the angle between the intensity vector and its projection onto the 

edge subspace. Frei-Chen edge detection is realized with the normalized weights.  

 

Frei-Chen masks are unique masks, which contain all of the basis vectors. This 

implies that a 3x3 image area is represented with the weighted sum of nine Frei-Chen 

masks. Primarily the image is convolved with each of the nine masks. Then an inner 

product of the convolution results of each mask is performed.  

 

The Frei-Chen are  
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The first four Frei-Chen masks above are used for edges and the next four are 

used for lines and the last mask is used to compute averages. For edge detection, 

appropriate masks are chosen and the image is projected onto it. The projection equations 

are given by 
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3.2 LAPLACIAN OF GAUSSIAN (LOG) 

 

The principle used in the Laplacian of Gaussian method is, the second derivative 

of a signal is zero when the magnitude of the derivative is maximum. The Laplacian of a 

2-D function f(x, y) is defined as  
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3.2.1 THE LOG OPERATOR 

 

The two partial derivative approximations for the Laplacian for a 3x3 region are given as 
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The masks for implementing these two equations are as follows  
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The above partial derivative equations are isotropic for rotation increments of 900 

and 450, respectively.  Edge detection is done by convolving an image with the Laplacian 

at a given scale and then mark the points where the result have zero value, which is called 

the zero-crossings. These points should be checked to ensure that the gradient magnitude 

is large. Marr and Hildreth develop this method.  

 

Marr and Hildreth method 

The edge pixels in an image are determined by a single convolution operation. 

The basic principle of this method is to find the position in an image where the second 

derivatives become zero. These positions correspond to edge positions. The Gaussian 

function firstly smoothens or blurs any edge as shown in the figure 3.1. Blurring is 
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advantageous here because Laplacian would be infinity at unsmoothed edge and therefore 

edge position is still preserved. LOG operator is still susceptible to noise, but by ignoring 

zero-crossings produced by small changes in image intensity can reduce the effects of 

noise. 

 

                   

(a) f(x)      (b) Gaussian smoothing function of f(x) 

 

 

(c) Laplacian of Gaussian of f(x) 

Figure 3.1:  The smoothing of a signal with a Gaussian function 
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LOG operator gives edge direction information as well as edge points, determined from 

the direction of the zero-crossing. Hence the purpose of the Gaussian function in the 

LOG formulation is to smooth the image and the purpose of the Laplacian operator is to 

provide an image with zero crossings used to establish the location of edges. Some of the 

disadvantages of LOG are, the LOG being a second derivative operator the influence of 

noise is considerable. It always generates closed contours, which is not realistic. The 

Marr-Hildreth operator will mark edges at some locations that are not edges.     
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