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Initial condition:

u(x, 1) = h(x)
u(x1, x2, ..., xn−1,+1) = h(x1, x2, ..., xn−1)
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The solution is
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Then ∂u
∂s = αu along the characteristic has the solution

u = eαsh(t1, t2, ...tn−1)

or

u(x, y) = eαsh(
x
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x1

xn
,
x2

xn
, ...,

xn−1

xn
)

This has the property that

u(λx1, λx2, ...λxn) = λu(x1, x2, ...xn)

i.e. homogenous of degree α . Note if α < 0 then the solution is singular at
the origin.
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