NolSE

What is noise? Noise is any undesired information that contaminates an image. Noise
appears.in images from a variety of sources. The digital image acquisition process,
which converts an optical image into a continuous electrical signal that is then sam-
pled, is the primary process by which noise appears in digital images. At every step in
the process there are fluctuations caused by natural phenomena that add a random
value to the exact brightness value for a given pixel. In typical images the noise can be
modeled with either a gaussian (“normal”), uniform, or salt-and-pepper (“impulse”)
distribution. The shape of the distribution of these noise types as a function of gray
level can be modeled as a histogram and can be seen in Figure 3.2-1. In Figure 3.2-1a
we see the bell-shaped curve of the gaussian noise distribution, which can be analyti-

cally described by

HISTOGRAM = ¢ ~(g-myno’

Gaussian 5
21mo”
where g = gray level
m = mean (average)

o = standard deviation (0° = variance)

About 70% of all the values fall within the range from one standard deviation (o)
below the mean (m) to one above, and about 95% fall within two standard deviations.
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Theoretically, this equation defines values from —o to +e, but because the actual gray
levels are only defined over a finite range, the number of pixels at the lower and upper
values will be higher than this equation predicts. This is a result of the fact that all
the noise values below the minimum will be clipped to the minimum, and those above
the maximum will be clipped at the maximum value. This is a factor that must be con-
sidered with all theoretical noise models, when applied to a fixed, discrete range such
as with digital images (e.g., 0 to 255). In Figure 3.2-1b is the uniform distribution:

1

fora<gs<h
HISTOGRAM ;¢ . =+<h-a
0 elsewhere
a+b
mean =
2
variance = u
12

With the uniform distribution, the gray-level values of the noise are evenly distributed
across a specific range, which may be the entire range (0 to 255 for 8-bits), or a smaller
portion of the entire range. In Figure 3.2-1c is the salt-and-pepper distribution:

0

a (“pepper”)
b (“salt”)

A for g
B for g

I—HSTOGR‘AI\/[S:AII & Pepper = {

In the salt-and-pepper noise model there are only two possible values, @ and b, and the
probability of each is typically less than 0.1—with numbers greater than this, the
noise will dominate the image. For an 8-bit image, the typical value for pepper noise is
0 and for salt-noise, 255.

The gaussian model is most often used to model natural noise processes, such as
those occurring from electronic noise in the image acquisition system. The salt-and-
pepper type noise is typically caused by malfunctioning pixel elements in the camera
sensors, faulty memory locations, or timing errors in the digitization process. Uniform
noise is useful because it can be used to generate any other type of noise distribution
and is often used to degrade images for the evaluation of image restoration algorithms
because it provides the most unbiased or neutral noise model. In Figure 3.2-2, we see
examples of these three types of noise, and how they appear in images. Visually, the
- gaussian and uniform noisy images appear similar, but the image with added salt-
and-pepper noise is very distinctive.

In addition to the gaussian, other noise models based on exponent1a1 distribu-
tions are useful for modeling noise in certain types of digital images. Radar range and
velocity images typically contain noise that can be modeled by the Rayleigh distribu-

tion, defined by

_ 28 -
HISTOGRAM g, = ~o¢ ¢
T
where mean = | —
4
Variance = _“«.4—4—11_)
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gure 3.2-1 Noise Distribution
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ire 3.2-2 (Continued) !

f. Salt-and-pepper noise—probability of salt = g. Original image with added salt-and-pepper
.05; probability of pepper = .05. noise.

The equation for gamma noise:

a-1 -£
a

g
e .

(¢-Dla®

-
a~o

HISTOGRAM

il

Gamma

where variance

t

The histograms (distributions) for these can be seen in Figure 3.2-3. Note that negative
: exponential noise is actually gamma noise with the peak moved to the origin (o = 1).




First, read in the image and add noise to it.

! imread('eight.tif’);

J imnoise (I, 'salt & pepper',0.02);
imshow(1I)

figure, imshow(J)

Now filter the noisy image and display the results. Notice that medfilt2 does
a better job of removing noise, with less blurring of edges.

K filter2(fspecial('average',3),d)/255;
L medfilt2(J,[3 3]1);

imshow (K)

figure, imshow(L)

Median filtering is a specific case of order-statistic filtering. For information
about order-statistic filtering, see the reference entry for the ordfilt2 functiol

in Chapter 11.



Definition: A function f(x,y) is invariantif f(x,y)= f(x-y)
Definition: Transfer function H
Let f(x,y) = picture

h(x,y) = linear invariant operator

H(u,v) = Fourier transform of h(x,y)

Then the outputis g=h=x*f and G=H-F

Definition: Impulse Response function:
h(x,y) is the response when the picture is a delta function
Definition: Point Spread function

Fourier transform of the Impulse Response function

Definition: Finite Impulse Response Filter (FIR)
Delta function — finite number of points
Definition: Infinite Impulse Response Filter (IIR)
Delta function — infinite number of points

Example: Recursive filter
9,=01-a)g,,+ag,
Definition: Casual filter

Depend only on previous data
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Image filtering

linear 'scale-space
(Witkin 1983, Koenderink 1984)
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) Image Enhancement

Lowpass

Highpass

0 \]o\/ \J

(2)

(b)

Bandpass

)

o

(c)

rure 4.19 Top: cross sections of basic shapes for circularly symmetric frequency domain
2rs. Bottom: cross sections of corresponding spatial domain filters.
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“igure 2.5-18 ldeal Lowpass Filters

Passband Stopband
/\ K——A—ﬁ

black =0
white = 1

S5 — o @

fo
Frequency >

a. 1-D lowpass ideal filter.

b. 2-D lowpass ideal filter shown as an
image.

c. 2-D lowpass ideal filter for Walsh-Had-
“amard and cosine functions.

Note that for ideal filters in Figure 2.5-18 the H(x, v) matrix will contain only 1’s
and 0’s, but, as in the preceding example, the matrix can contain any numbers.

The ideal filter is called ideal because the transition from the passband to the
stopband in the filter is perfect—it goes from 0 to 1 instantly. Although this type of fil-
ter is not realizable in physical systems, such as with electronic filters, it is a reality
for digital image processing applications because all we are doing is multiplying num-:
bers in software. However, the ideal filter leaves undesirable artifacts in images. This,
artifact appears in the lowpass filtered image in Figure 2.5-17c as ripples, or waves,;
wherever there is a boundary in the image. This problem can be avoided by using a

“nonideal” filter that does not have perfect transition, as is shown in Figure 2.5-19.;
The image created in Figure 2.5-17b was generated using a nonideal filter of a type
called a Butterworth filter.

’



—2 0 2| is not a matrix

It corresponds to Uz = @41 j4+1+2%i41,j+Tit1,j—1—(Tim1,j411 + 2@i—1,j + Tiz1,5-1)

Taking the Fourier transform
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1ge Enhancement
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.21 Spatial lowpass filters of various sizes.




Averaging

N—-1
_ 2mikn
= E xne N
n=0

N-1 N-2 N-1
_ 2mikn _ 2mik(n—1) 2mik _ 2mikn
= E xn+le N = E mn_,'_le N = e N E Tne N =
n=0 n=—1 n=0
Therefore,

— ~ ~ 2mik _ 2mik
Tpt1 +Tp—1 Thy1 +Tp-1 €N +e N 2k \ . ~
= = I — COS T = OkTk

2 2 - 2
Example:
Highest frequency: k=% then oy = cos(r) = —1
half way : k=% then o=cos(3)=0 ,
low frequency : &£ <1 then o =cos(%E)~1-1 (%)
Other possibilities:
Tha1 + Tp + T N L1+ 14 2cos (%)A N
= T = T = OkT
3 3 3
Now
1
_ .1
oN = +3
-~ 1 (2mk)\2
Ok =l—3 (%)

— 2mik 2mik
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4 4 2
Now
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2 1
~ 1 1 (21k)?
‘7%<<1f1 4(N)



hoise variations in uniform regions and the sharpness of bound-
':H‘ivs between different structures. Applying smoothing with the
X3 kernel corresponding to a Gaussian shape with a standard
deviation of 0.6253 pixels produces the improvement in quality
“hown in Figure 5 (for two applications of the kernel). Using a
lrger kernel (the 9x9 kernel with standard deviation of 1.0 pix-
s Capplied once) produces the result shown.

ll’f::\illylll):)(l)i ;1?ic’1';1gixlg can reduce visiblﬁ? noise in the image,
o il ‘m ) m's cd.ges, displaces boundaries, and redLlllces con-
tdneven introduce an artefact often called “pseudo-

" \\.;:(\.’Isl‘;([\l\’l‘lg}’l »tw\*o nearby structures are averaged togiether
6 i )“; UL ates an upp;.u‘ent fea.ture between them. Figure
e h‘\- [}L)\‘nnpk in wlnc.h the ‘hnes of thg test patte.rn are
Y e TIXT averaging window causing false lines to

IR ERY
LR Sy

SR between them.
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Gibbs Phenomena

Given a discontinuity (j'vuijm? q+xn) the Fourier series converges
but not uniformly

Thus, there is a constant overshoot of about 8% but the width
narrows as we take more terms in the series

http://cnx.org/content/m10092/latest/

http://gaussianwaves.blogspot.com/2010/04/gibbs-phenomena-
demonstration.html

o Affects filters
e Affects Fourier transform of pictures since the edges are not
periodic
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. 7.9. The amplitude of the idealized low-pass filter in the frequency domain (top) and
time domain (bottom) are shown in this figure. Observe that in the frequency domain the
r values at the cut-off frequencies are 1/2, satisfying the AVED condition.

raightforward fashion. It is given by

1 if k| < ke,
Hy =X & if |kl=k .
0 if  ke<lk|<E

re k. is the index associated with the desired cut-off frequency. Note that the
1es of Hig, = % must be used since they are the average values at the discontinuity
'ED).

It is a direct calculation (problem 156 or a fact from The Table of DFTs) to show
t the time domain representation of the discrete filter is given by

s (35 5 (37
2 sin? (33)

hn =

ure 7.9 displays a low-pass filter in both the time and frequency domains. The
r is generated using N = 64 and a time sample rate At = 1/128, so that the total
rth of the filter is T = NAt = 0.5 seconds and the frequency sample rate (by the
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Figure 10-2 The similarity theorem



(c) 3 x 3 filter (d) 7 x 7 filter

Figure 7.18 Spatial averaging filters for smoothing images containing Gat
noise.
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Figure 10.7: Suppression of noise with smoothing filters (exercise 10.2): a image
from Fig. 10.6a with Gaussian noise; b image with binary noise; ¢ image a and d
image b filtered with a 9 x 9 binomial filter (B®); e image a and f image b filtered
with a 3 x 3 median filter (Sect. 10.6.1).



Ideal low Pass Filter

1 VU2 L V2 2
A S
0  otherwise
or
HU,V) = 1|U|< Rm. and |V]| < R,
0 otherwise
Then
h(m,n) = Ry Rysinc(2rUm)sinc(2nVn)

Butterworth low Pass Filter

1

HUv) =
R

Gaussian low Pass Filter

H(U,V) = ¢ 27 0 WSVE)
1 m24n?

h(m,n) = 5 se 202
o
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Buiterworth filter
The transfer function of the Butterworth lowpass filter (BLPF) of order »n and

with cutoff frequency locus at a distance D, from the origin is defined by the
relation

e 1 .
Dy o) = R+ H(u,v) = (e VD (4.4-4)

where D{(u, v) is given by Eq. (4.4-3). A perspective plot and cross section of
the BLPF function are shown in Fig-4.34. nole: D« ) =D

= Hu)= s

H{u, v)

(®)

Figure 4.34 (a) A Burterworth lowpass filter; (b) radial cross section forn = 1.
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120 Image Analysis

Figure 2.5-20 Lowpass Butterworth Filters

a. Filtér order = 1.

c. Filter order = 6. d. Filter order = 8

Figure 2.5-21 Highpass Filter Functions

G 1 G 4
0 0

Frequency — > Frequency —

- a. 1-D ideal highpass filter. b. 1-D nonideal highpass filter.
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1

Figure 4.22 (a) Original image,; (b)—(f) results of spatial lowpass filtering with a mask of
sizen X n,n=23,5 7,15, 25.

193




(b) ()

Figure 4.43 (a) Original image; (b) blurred image obtained with a Butterworth lowpass filter
of or‘der 1 in the frequency domain; (c) image blurred spatially by a 9 X 9 convolution mask
obtained using Eq. (4.5-12). (From Meyer and Gonzalez [1983].)
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10.6.2 Weighted Averaging
' pixels, just like any other ex-

v individual errors that have to
AS an introduction, we first

In Sect. 3.1, we saw that gray Valges at
perimental data, may be chara_ctenzed b

be considered In any further processing. . e iations
discuss the averaging of a set of N data gn with stan

] veraging
o.,. From elementary statistics, it is known that applropnateo? - iﬂ_
renq'ujres the weighting of each data point g» with the inverse

—— — e e e
o m—— — - .
e e e

% e local f;ighborho()d_ Results are acceptable if the noise is smaller in size than the smallest
; objects of interest in the image, but blurring of edges is a serious disadvantage. In the case
of smoothing within a single image, one has to assume that there are no changes in the gray-
levels of the underlying image data. This assumption is clearly violated at locations of image
edges, and edge blurring is a direct consequence of violating the assumptions. Averaging
is a special case of discrete convolution [equation (4.24)]. For a 3 x 3 neighborhood, the

convolution mask h is

1
1
9 1
1

pod e e

1
! (4.28)
1

The significance of the pixel in the center of the convolution mask A or its 4-neighbors
is sometimes increased, as it better approximates the properties of noise with a Gaussian
probability distribution (Gaussian noise, see Section 2.3.5).

!
16

BEEE
ST B (4.29)
11 1

N e
RN

1

Larger convolution masks for averaging are created analogously according to the Gaussian
distribution formula [equation (4.52)] and the mask coefficients are normalized to have a unit
sum.

An ekample will illustrate the effect of this noise suppression. Images with low resolution
(256 x 256) were chosen deliberately to show the discrete nature of the process. Figure 4.10a
shows an original image of Prague castle with 256 brightnesses; Figure 4.10b shows the same
image with superimposed additive noise with Gaussian distribution; Figure 4.10c shows the
result of averaging with a 3 x 3 convolution mask (4.29)—noise is significantly reduced and
the image is slightly blurred. Averaging with a larger mask (7 x 7) is demonstrated in
Figure 4.10d, where the blurring is much more serious.

Alternative techniques, which are mostly non-linear, will now be discussed. These attempt
not to blur sharp edges by avoiding averaging across edges.



e condition is that the filter masks should gradually approach zero.
Here we will introduce a class of smoothing filters that meets this
terion and can be calculated very efficiently. Furthermore these filtérs
+ an excellent example of how more complex filters can be built from
1ple components. The simplest and most elementary smoothing mask
can think of is |

B=-[11]. (10.15)

[NSIRE

werages the gray values of two neighboring pixels. We can use this
sk p times in a row on the same image. This corresponds to the filter

sk

_21551 175 [11] % ... % [11], (10.16)

p times

written as an operator equation,

BP = BB...B. (10.17)

p times

me examples of the resulting filter masks are:

B® = 1/4[121]
B> = 1/8[1331]
B* = 1/16[14641] 10.18)

B® = 1/256[18285670562881].



Figure 10.4: Test of the smoothing with a B* and B6 binomial filter using a test
Image with concentric sinusoidal rings. '

Because of symmetry, only the odd-sized filter masks are of interest.
In order to perform a convolution with the asymmetric mask 1/2[1 1]
correctly, we store the result in the right and left pixel alternately.

The masks contain the values of the discrete binomial distribution.
Actually, the iterative composition of the mask by consecutive convolu-
tion with the 1/2 [1 1] mask is equivalent to the computation scheme of
Pastal’s triangle:

p f o

0 1 1 5

1 12 11 1 /4

2 14 121 1/2

3 1/8 1331 3/4

4 1/16 14641 1 (10.19)
5 1/32 1510105 1 5 /4

6 1/64 1615201561 3/2

7 1/128 172135352171  7/4

8§ 1/256 18285670562881 2

where p denotes the order of the binomial, f the scaling factor 277, and
o2 the variance, i. e., effective width, of the mask.



The problem of slow large-scale averaging originates IrOiil it siuail uio-
tance between the pixels averaged in the elementary B = 1/2[1 1] mask.
In order to overcome this problem, we may use the same elementary
averaging process but with more-distant pixels and increase the stan-
dard deviation for smoothing correspondingly. In two dimensions, the
following masks could be applied along diagonals (o - V2):

1 0 O . 0 0 1
Bxﬂ,:% 0 2 0}, Bx_y:Z o 2 0 1, (10.27)
0 0 1 1 0 O
or, with double step width along axes (o - 2),
B
0
Box=2([10201], Bay==+| 2 (10.28)
-4 4
0
1

In three dimensions, the multistep masks with double step width
along the axes are:

1 1
Box ==[10201], Boy=-
4 74 (10.29)

— O N O

B>z = £ (11,103, 21, (01,1111,

The subscripts in these masks denote the number of steps along the
coordinate axes between two pixels to be averaged. By., averages the
- gray values at two neighboring pixels in the direction of the main di-
agonal. Bz, computes the mean of two pixels at a distance of 2 in the
x direction. The standard deviation of these filters is proportional to
the distance between the pixels. The most efficient implementations are
multistep masks along the axes. They have the additional advantage that
because of separability, the algorithms can be applied to image data of
arbitrary dimensions.

The problem with these filters is that they perform a subsampling.
Consequently, they are no longer filters for larger wave numbers. If we
take, for example, the symmetric 2-D B3, B3, filter, we effectively work
on a grid with a doubled grid constant in the spatial domain. Hence, the
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Figure 10.6: Application of smoothing filters (exercise 10.1): a original image;
b 5 x5 box filter; ¢ 9 x 9 box filter; d 17 x 17 binomial filter (B'5); a set of recursive
filters (10.37) running in horizontal and vertical directions; ep =2; fp = 16.
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Figure 10.7: Suppression of noise with smoothing filters (exercise 10.2): a irr
from Fig. 10.6a with Gaussian noise; b image with binary noise; ¢ image a di
image b filtered with a 9 x 9 binomial filter (BS); e image a and f image b filt:
with a 3 x 3 median filter (Sect. 10.6.1).
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(a) (b)

(c) (d)

®

Figure 4.32 (a) Original image; (b)—(f) results of ideal lowpass filtering with the ct
frequency set at the radii shown in Fig. 4.31(b).



(b

(d)

(e)

Figure 4.35 (a) Original image; (b)—(f) results of Butterworth lowpass filtering with the
cutoff point set at the radii shown in Fig. 4.31(b).

o
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Inhomogeneous filtering

In image processing we identify the concentration with the
gray value & a cetain location.

If the diffusion tensor is constant over the whole image
domain, one spe&ks of homogeneous diffusion.

If the diffusion tensor is gpace-dependent, it is called an
inhamogeneous diffusion.

105
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Inhomogeneous filtering

The ideaisto define adiffusivity function
D = g(|Of )
Where |OJf| isafuzz edge detector:
1
JL+ [0 132
or g(|0f ) = exp(— Of |2/x2)

g(0f ) =

106
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See

Inhomogeneous filtering @

The resulting equation is no longer homogeneous (though it
may still be linear):

9,u = div(g(|Df ) M)

B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.),
Secale-8pace Theory in Computer Vision, Lecture Nobtes in Computer Science,
Vol. 1252, Springer, Berlin, pp. 3-28, 1997, Invited paper.

A Review of Nonlinear Diffusion Filtering

Joachim Weickert*

Image Bciences Inatifute,

Utrecht University Hoapital,

E.01.334, Heidelberglaan 100,

3584 CX Utrecht, The Netherlands, 107
E-mail: Joachim. Weickertdlev.run.nl

Dr.Yoram Td
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First column:
homogeneous

Seoond column:
inhamogeneous
& linear

Third column:
inhamogeneous
& nontlinear

Inhomogeneous filtering &
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Adaptive filtering

ALY
Click l I 2 Ak

Seealso Wiener filter (wiener2)

b Dr. Yoran Td u
Image Enhancement
&
Restoration
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Enhancement: Speckle Noise

Lenna

S = sprandn (512,512,0.01)*50;
Y= Lenna +S;
imagesc (Y); colormap gray

111

@ Dr. Yoram Td
Solution 1: Gaussian smoothing
L enna + noise

Removes the noise
- but smearsthe
image

112
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Solution 2: Median filtering

Lenna + ni$ Fl|tel’ed

o d

A 4

Removes the noise
- but loosesimage
details

113

c Solution 3: Selective filtering T

S = sprandn (512,512,0.01)*50;

Y = Lenna +S;
h= fspecial (‘gauss',7,1);

Ys = filter2  (h,Y , same );

k= find (abs(Y-Ys)>20);
Z =Y,
Z(K) = Ys(k);

114
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Selective filtering - ROI

ROIFILT 2 apply filter2 to a polygonal area
of theimage

y = roifilt2  (ones(9) , x, bw);

®e
®e
X == bw =) Yy

115
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Image Deblurring
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Examples
(see MATLAB's help)

I= inread('flowers.tif ');
I= 1 (10+ 1:256],222+[1:256],:); %cropt hei nmage
figure;imshowl );tit le('Original Image');

LEN =3 1;

THETA=11 ;

PSF = fspecial (' noti on', LEN, THETA);

Blurr ed= infil ter(l ,PSF,'circular','conv');
figure; imshow(Blurr ed);titl e('Blurred!| nage');

Original image Blurred image

119
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Deblurring with Wiener

wnrl = deconvwnr (Blurred,PS F);
figure;

imshow (wnrl);

title('Restored, True PSF') ;

3 \ \ bl /| AR
Original image Blurred image Image restored by Wiener filter

120




High Pass Filters
Fourier

Ideal

I _Jo Vu2 +12 < R?
(w,0) = 1 Vu2+02> R?

or

H(u,v) 0 Ju] <wupand |v| <wvp
u,v) = )
1 otherwise

Butterworth

R2 2K
1+ (7)

or

1+(\ﬂ2)71).<%)2K



Design Factors

NSFORMS

(Continued)

{
black=0 __
O e

2-D ideal highpass filter shown d. 2-D nonideal highpass filter
1S an image. shown as an image.
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Butterworth filter
The transfer function
with cutoff frequency
relation

pass filter (BHPF) of order n and

of the Butterworth high
from the origin is defined by the

locus at a distance Ds

’ 1
H(u, v) = m (4.4-7)

where D(u, v) is given by Eq. (4.4-3). Figure 4.38 shows 2 perspective plot

and cross section of the BHPF function.
Note that when D(u, v) = Do, H(u, v)1s down to ¥z of its maximum value.

As in the case of the Butterworth lowpass filter, common practice is to select

the cutoff frequency locus at points for which H(u, v) is down o 1V2 of its
maximum value. Equation (4.4-7) 1s easily modified t0 satisfy this constraint

by using the following scaling:

L
H(u,v) = 7% V2 - 1][Do/D (1, V) (4.4-8)
: 1
o
1 + 0.414[Do/D(x, P
H{u, v}
1
D(u, )
0 Do

(®)

u

(a)
lot and radial cross section of ideal highpass filter.

Figure 4.37 Perspective p
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Figure 4.38 Perspecti ; W =
r pective plot and radial cross section of Buwerworth highpass filter for n
(=]

Example: Fig

Fig. 4%9@;) sifssiff 52 shows a chest x-ray that was poorly developed, and
ot e T Oy T s Bt I this ngs Butterworth
low-frequency COmpoXents; ges are predominant in this image because the
smooth) gray-level regions a;;e;zerv:srseégt?;?;tsted’ thus making different (but

A techniqu . : ¢ Same.

stant to a hjogpzsgfgigrﬁzd th allevgte ths problem consists of adding a con-
componentsc This additi nsfer function in order to preserve the low-frequency
) . o adaition, of course, amplifies the high-frequency components

et e e e 4 o 4w
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ure 4.26  Mask used for high-boost spatial filtering. The value of the c
IA — 1, with A = 1.
W= ?A-—( A 2l
D W=g



4.24. '

Figure 4.27 ginal i ; ]
4:25'6} 427, f)]?]rzg}zr}c;l zgr}z;zge}, 7(b)—(d) re;ult of high-boost filtering using the mask in Fig.
b , 1.15, .2, respectively. Compare these results with those shown i




'3 Highpass Filtering

b. Butterworth filter—Order = 2: c. Ideal filter—Cutoff = 32.
Cutoff = 32. '

d. High-frequency emphasis e. High-frequency emphasis
filter—Offset = 0.5; Order = 2; filter—Offset = 1.5; Order = 2;
Cutoff = 32. Cutoff = 32.
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fasi

R

R

Figure 4.39 Example of highpass filtering: (a) original image; (b) image processed with a
highpass Butterworth filter; (c) result of high-frequency emphasis; (d) high-frequency emphasis
and histogram egualization. (From Hall et al. [1971].)




Figure 7.26 Spatial filtering €
Top row: original, high-pass, low-pass and band-pass filtered images.

Bottom row: original and high-

xamples.

pass filtered images.
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Figure 2.5-24 Bandpass, Bandreject, and Notch Filters

G G 1
a 1 a
i Low High j Low High
n cutoff cutoft n cutoff cutoff
Frequency — > Frequency ——
a.1-D ideal bandpass filter. b. 1-D ideal bandreject filter.
c. 2-D ideal bandpass filter shown as d. 2-D ideal bandreject filter shown as
an image. an image.
e. 2-D ideal bandpass filter for Walsh- f. 2-D ideal bandreject filter for Walsh-
Hadamard and cosine functions. Hadamard and cosine functions.
L J L
g.2-D ideal notch filter for rejecting spe- h. 2-D ideal notch filter for passing spe-

cific frequencies. cific frequencies.
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(b) ()

Figure 6.11 Example of structured noise removal. (a) Face
image with an imposed sinusoidal pattern. (b) Fourier transform
of the noisy image, showing the two spikes responsible for the

pattern (Circled in white in the above image). (c) Restored
image; the spikes were set to zero and then the inverse Fourier

transform was computed (has been contrast enhanced).

As a simple example, Figure 6.11a shows the face image with high-frequency
sinusoidal interference imposed on it. The Fourier transform of this image (Figure
6.11b) shows a number of bright spots (spikes). A matching pair of spikes appear
in the upper left and lower right quarters of the image, and these correspond to
the periodic signal causing the pattern of diagonal lines. To correct this, edit the
Fourier domain image and set the two spikes to zero: then apply an inverse FFT
to obtain the space domain image. The result, after some contrast improvement,
appears in Figure 6.11c.

There are a number of questions still to be addressed. First among these con-
cerns exactly which spikes to remove. and unfortunately there is no good answer.
Experience with the appearance of Fourier domain images will help, and for this
purpose the fftlib.c procedures will be very useful. In particular, it will be quickly
learned that the peak in the center of the image contains much of the interesting
information in the image, and must not be removed. Periodic signals cause sym-
metrical spikes on each side of the central peak, and though there can be many of
these, they can be removed in pairs to see what happens. When the correct spikes
are found, the image will be improved by their removal. Depending on the type
of noise there could be more than one pair of spikes to be removed.

The restoration in this figure was performed by the program snr.c (Structured
Noise Removal). This program computes the Fourier transform of the input image,
and then interactively asks for the coordinates of small regions to be set to zero.
After clearing the specified regions the image is back-transformed and saved. The
restored image in Figure 6.11c was created by the following interactive session:
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(a)

(d)

Figure 6.12 Removal of grid lines using a notch filter.
(a) Original scanned image. (b) Fourier transform of scanned
image. (c) Notches along the center lines, removing both the
vertical and horizontal lines. (d) The restored image.

6.6 MOTION BLUR—A SPECIAL CASE

If an image has been blurred due to the motion of either the camera or the object,
the point spread function will be an extended blob with the long axis indicating
the direction of motion. While it is possible to use an inverse or Wiener filter
restoration in these cases, there is a special solution that should not be as suscep-
tible to noise.

If the motion can be assumed to be uniform and in the x (horizontal) direction,
a very nice expression (Gonzalez 1992; Sondhi 1972) can be used to remove most
of the blur without resorting to a Fourier transform:



11.4 HIGH-FREQUENCY ENHANCEMENT FILTERS

The term high-frequency enhancement filter, or h
describe a transfer function that is unity at 2ero freque
quency. Such a wransfer function may either level off at some value great
more commonly, fall back toward zero at higher frequencies. In the latte
frequency enhancement filter is actually a type of
unity gain at zero frequency.

In practice, it is sometimes desired to

as to reduce the contrast of large, slowly varyi
function passes through the origin, it may be called a Laplacian filter.

11.4.1 The Difference-of-Gaussians Filter

We can produce a high-frequency enhancement transfer function by expressi
ference of two Gaussians of different widths:

. na -5t
Gs) = Ae™ P9 B " A2B o>
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This 1s shown in Figure 11-8. The impulse response of such a filter is

g(t) = A et _ B e—z'/za; o = [
J2no? /27rc7§ ' 2o, (13)

and 1S graphed n I 1guIe 1 1—‘9 NOtl‘CB that the broad GauSSiarl in the flequenCy dOmaln pl’O-
(iuCES a narTow GaUSSiaIl 1'11 the tl‘”le dO [laill a i i p p
X nd VICE versa. The m ulbe response ShOW]l 1‘“
Iauf 11—' l yplC l fb n S an hi S ving a po. 1ve pu
F o [+ 9 St ai 0 a dpaS a d g a i iti i i
; ] ‘ - Pt p S ﬁlterS, ha lnb p S1t p ISC Sltuated mn

Figure 11-8 The Gaussian high-frequency enhancement transfer function

o igl ;vue;i:t ;xr; da;t)é)rc;alch ir};ﬁnity, the narrow Gaussian in the time domain narrows further
, e filter has the form shown in Figure 11-10. Noti i
between a filter that rolls off (r h e o
eturns toward zero) at high fre 1
: : . ( gh frequencies and one that does not
is the width of the central pulse in the time domain. In fact, the broader that central pulse, th
faster the transfer function rolls off. P

11.4.2 Rules of Thumb for Highpass Filter Design

In this section, w i
o freque?) C,y ei szvelop tw? 1rules that hold approximately for estimating the behavior of
gh- ncement filters. Suppose the impulse respon i
: se of the filterise
as a narrow pulse minus a broad rnlea 2 F ? Xpressed

ighpass filter, is generally taken 10
ncy and increases with increasing fre-
er than unity of
r case, the high-

bandpass filter with the restriction of

tave less than unity gain at zero frequencys $0
ng components of the image. If the transfer

ngitasthe dif-

(12)




11.3.3 The General Bandpass Filter

We now consider a class of bandpass filters constructed in the following way: We select a
nonnegative unimodal function XK(s) and convolve it with an even impulse pair at frequency

so. This yields a.bandpass transfer function, as shown in Figure 1 1-6. That transfer function

is given by
Gls) = K(s)* [8(s=s0) + 8(s5 +59)] ®)

and the impulse response by
g(1) = 2k(r) cos (2rsyt) )

S

Figure 11-6 The general bandpass filter
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This impulse response is a cosine of frequency sq in an envelope that is the inverse Fourier

transform of K (s).
Suppose, for example, that X (s) is a Gaussian

G(s) = Ae™ 2% [§(5-50) + 8(s + 5] (10)
Then the impulse response becomes
o=-L =24 e o5 (2 72541) 11
27T 27‘702

This impulse response, a cosine in a Gaussian envelope, is graphed in Figure 11-7. Notice
that we could easily generate a class of bandstop filters as well by this technique.

Figure 11~7 The Gaussian bandpass filter

11.4 HIGH-FREQUENCY ENHANCEMENT FILTERS

The term high-frequency enhancement filter, or highpass filter, is generally taken to
describe a transfer function that is unity at zero frequency and increases with increasing fre-
quency. Such a transfer function may either leve] off at some value greater than unity or,
more commonly, fall back toward zero at higher frequencies. In the latter case, the high:
frequency enhancement filter is actuallv a rune nf handnann ©1enn io o C



4.3.3 Homomorphic Filtering

The digital images we process are created from optical images. Optical ima
consist of two primary components, the lighting component and the reflectance com
nent. The lighting component results from the lighting conditions present when

Figure 4.3-1 High Boost Spatial Filter

a. Ori_gina! image. b. High boost filter, 3 x 3 mask. A small center
' value, x = 5, results in a negative of the original.

c. High boost filter, 3 x 3 mask. A center value of d. High boost filter, 3 x 3 mask. A large center
X = 8 results in enhanced details. . value, x = 15, retains more of the original
image.



Figure 2.8 Example of simultaneous contrast. All the small squares have exactly the same
intensity, but they appear progressively darker as the background becomes lighter.

the intensity (brightness) of the imaée at that point. Aslightis a form of energy,
f(x, y) must be nonzero and finite, that is,

0 <flx,y) <= (2.2-1)

The images people perceive in everyday visual activities normally consist
of light reflected from objects. The basic nature of f(x, y) may be characterized
by two components: (1) the amount of source light incident on the scene being
viewed and (2) the amount of light reflected by the objects in the scene. Ap-
propriately, they are called the illumination and reflectance components, and
are denoted by i(x, y) and r(x, y), respectively. The functions i(x, y) and
r(x, y) combine as a product to form f(x, y):

flx, y) = i(x, y)r(x, y) (2.2-2)
where
0 < i(x,y) <= (2.2-3)
and
0 <rix,y) <1. (2.2-4)

Equation (2.2-4) indicates that reflectance is bounded by 0 (total absorption)



transform of the product of two functions is not separable; in other words,
S{fCe, vy # Flilx, y)YFr(x, y))
Suppose, however, that we define

z(x, y) = In f(x, y) (4.4-10)
=Ini(x,y) + Inr(x, y).

Then, |
Slz(x, y)b = §{ln f(x, »)} | (4.4-11)
= F{ni(x, y)} + F{ln r(x, y)}
or

Z(u, v) = I(u, v) + R(u, v) : (4.4-12)

where [(u, v) and R(u, v) are the Fourier transforms of In i(x, y) and
In r(x, y), respectively.

If we process Z(u, v) by means of a filter function H(u, v) then, from Eq.
(4.1-4),

-~

S(u, v) = H(u, v)Z(u, v) (4.4-13)
= H(u, v)I(u, v) + H(u, v)R(u, v)

where S(u, v) is the Fourier transform of the result. In the spatial domain,

s(x, y) = &7YS(u, v)} (4.4-14)
o= §TH{H(w, v)I(u, v)} + FTH{Hu, v)R(u, v}
}_ By; letting
I(x, y) = 8§ {H(u, v)I(u, v)} (4.4-15)
and
r'(x,y) = § Y{H(u, v)R(u, v)} (4.4-16)

Eq. (4.4-14) can be expressed in the form
s(x,y) = i'(x,y) + r'(x, y). (4.4-17)

Finally, as z(x, y) was formed by taking the logarithm of the original image -
f(x, y), the inverse operation yields the desired enhanced image g(x, y); that
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is,

g(x, y) = exp[s(x, y)]
= exp[i'(x, y)]-exp[r'(x, y)] (4.4-18)
= iy(x, y)re(x, y)

where
io(x, y) = expli'(x, y)] (4.4-19)
and

ro(x, y) = exp[r'(x, y)] (4.4-20)

are the illumination and reflectance components of the output image.

The enhancement approach using the foregoing concepts is summarized in
Fig. 4.40. This method is based on a special case of a class of systems known
as homomorphic systems. In this particular application, the key to the approach
is that separation of the illumination and reflectance components is achieved
in the form shown in Eq. (4.4-12). The homomorphic filter function H(u, v)
can then operate on these components separately, as indicated in Eq. (4.4-13).

The illumination component of an image 1s generally characterized by slow
spatial variations, while the reflectance component tends to vary abruptly,
particularly at the junctions of dissimilar objects. These characteristics lead to
associating the low frequencies of the Fourier transform of the logarithm of an
image with illumination and the high frequencies with reflectance. Although
these associations are rough approximations, they can be used to advantage in
image enhancement.

A good deal of control can be gained over the illumination and reflectance
components with a homomorphic filter. This control requires specification of
a filter function H(u, v) that affects the low- and high-frequency components
of the Fourier transform in different ways. Figure 4.41 shows a cross section
of such a function. A complete specification of H(u, v) is obtained by rotating
the cross section 360° about the vertical axis. If the parameters y, and vy are
chosen so that y, < 1 and yy > 1, the filter function shown in Fig. 4.41 tends

f(x:)’)c> In :> FFT :> H (u,v) :> (FFT)! "‘;1/"\ exp :>g(x,,\"

Figure 4.40 Homomorphic filtering approach for image enhancement.
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image is captured and can change as the lighting conditions change. The reflectance
component results from the way the objects in the image reflect light and are deter-
mined by the intrinsic properties of the object itself, which (normally) do not change. In
many applications it is useful to enhance the reflectance component, while reducing
the contribution from the lighting component. Homomorphic filtering is a frequency
domain filtering process that compresses the brightness (from th?ﬁg}@gmn\mn_s’)
while enhancing the contrast (from the reflectance properties of the objects).

" The image model for homomorphic filters is as follows:

[(r,c) = L(r, c)R(r, ¢)

where L(r, ¢) represents contribution of the lighting conditions
R(r, ¢) represents contribution of the reflectance properties of the objects

The homomorphic filtering process assumes that L(r, ¢) consists of primarily slow spa-
tial changes (low spatial frequencies) and is responsible for the overall range of the
brightness in the image. The assumptions for R(r, ¢) are that it consists primarily of
high spatial frequency information, which is especially true at object boundaries, and
that it is responsible for the local contrast (the spread within a small spatial area).
These simplifying assumptions are valid for many types of real images.

The homomorphic filtering process consists of five steps: 1) a natural log trans-
form (base e), 2) the Fourier transform, 3) filtering, 4) the inverse Fourier transform,
and 5) the inverse log function—the exponential. This process is illustrated in a block
diagram in Figure 4.3-2. The first step allows us to decouple the L(r, ¢) and R(r, ¢)
components because the logarithm function changes a product into a sum. Step 2 puts

‘igure 4.3-2 The Homomorphic Filtering Process

I(r, ¢)
|
(1) (4)
Natural fnverse
alura Fourier
g > Transform
2) (5)
. Inverse
Fourier
natural
Transform
; log.
L l
(3) | E(r, ¢)
Filter,
frequency
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Hu, v)

» D(u, }/)

Figure 4.41 Cross section of a circularly symmetric filter function for use in homomorphic
filtering. D(u, v) is the distance from the origin.

to decrease the low frequencies and amplify the high frequencies. The net result
is simultaneous dynamic range compression and contrast enhancement.

Example: Figure 4.42 is typical of the results that can be obtained with the
homomorphic filter function shown in Fig. 4.41. In the original image, Fig.
4.42(a), the details inside the room are obscured by the glare from the outside
walls. Figure 4.42(b) shows the result of processing this image by homomorphic

. i LA p

Figure 4.42 (a) Original image; (b) image processed by homomorphic filtering to achieve
simultaneous dynamic range compression and contrast enhancement. (From Stockham
[1972].)



Image Enhancement Chap. 4

4.3.4 Unsharp Masking

The unsharp masking enhancement algorithm is representative of practical
image sharpening methods. It combines many of the operations discussed, including
filtering and histogram modification. A flowchart for this process is shown in Figure
4.3-5. Here we see that the original image is lowpass filtered, followed by a histogram
shrink to the lowpass-filtered image. The resultant image from these two operations is

then subtracted from the original image, and the result of this operation undergoes ¢
histogram stretch to restore the image contrast. This process works because subtract
ing a slowly changing edge (the lowpass-filtered image) from faster changing edges (i1
the original) has the visual effect of causing overshoot and undershoot at the edges
which has the effect of emphasizing the edges. By scaling the lowpassed image with «
histogram shrink, we can control the amount of edge emphasis desired (see Imag:
Processing exercise #7 in Chapter 8). In Figure 4.3-6 are the results of applying th
unsharp masking algorithm with different ranges for the histogram shrink process
Here we see that as the range for the histogram shrink is increased, the resultin,

image has a greater edge emphasis.




Figure 4.3-5 Unsharp Masking Enhancement
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4.3-6 Unsharp Maskin'g
¢ o ‘"*';w ; % “‘, "@

¢. Unsharp masking with lower limit = 0, upper =
150, with 2% low and high clipping.

b. Unsharp masking with lower limit = 0, upper =
100, with 2% low and high clipping.
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d. Unsharp masking with lower limit = 0, upper =
200, with 2% low and high clipping.






