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Introduction 

• Our goal: to apply the variational Framework set by L. Bar, N. 

Sochen, N. Kiryati to handle Poisson noise as well. 

 

• Incorporating the tasks of Poisson noise removal,         

semi/non blind deblurring and edge detection into a unified 

stochastic/ variational model. 

 

• Problem: the data-driven nature of Poisson noise poses a 

major obstacle to the data-invariant Gaussian denoising 

models.   



The Gaussian Fidelity Term is inadequate 

for Poisson noise 



The Poisson Noise Model 

For the case of additive Gaussian noise the following 

corruption model is considered: 

This Model is inadequate for the data-dependant nature of Poisson 

noise. 

Recall the density function for Poisson noise, 

gives the probability from 0 to 1 for the arrival of 'k' objects in a 

single time unit- given a mean of λ arrivals of objects per time 

unit.  
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From the image processing point of view: the above objects 

represent light particles called photons.  

 

Application: image recording devices which constructs an image 

based on the number of photons it was able to collect for each pixel 

within a limited timeslot (e.g. the time the shutter was open). 

- Bright areas are expected to omit a large amount of photons. 

- Darker areas have the opposite expectation.  

 

in terms of a single pixel  

we have, 
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The Poisson Noise Model 



where     is the image domain. 

For the whole image I, 
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We have the problem of maximum likelihood (ML) parameter estimation for 

the restoration I: 

Instead of pursuing how the restored image can be produced, we start  

from the final result, specifying, via a probability function, what makes a 

restoration candidate  I to be considered a good one.  

-Given the restoration candidate I, we actually determine the probability 

that the application of the Poisson corruption process on I will result in the 

corrupted input data. 

-This MLE term is also known as the fidelity component. 

The Poisson Noise Model 



Recall that in Poisson noise the mean=variance. Therefore,  
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Substituting  ,i jI

we conclude that in order to achieve a high level of SNR for 

our restoration I, we must collect as many of photons as 

possible.  

- The effect of the noise will then be minimized. 

The Poisson Noise Model 



Original Image 



Generating a MAP Estimation Model 

The fidelity term by itself is insufficient for our restoration 

quest. 

-Problem is ill posed, i.e. the maximizing image is not 

unique. 

- In addition, our restoration problem is an inverse one: 

- Given a noisy image, determine the probability that the 

current candidate image is the restoration we are 

seeking. 

- Therefore, we seek the conditional probability of                  . 

Let us recall the Bayes equation: 
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The term,         , 

is usually referred to as the prior or the regularization component. 

-Defines the probability the an image I is in fact a ‘legitimate’ image. 

-This can be considered as an attempt to narrow down the solution 

space for the estimation candidates:  

- ill-posed  better-posed.  

-This definition is usually elusive and application dependant, i.e. 

requires a-priori knowledge of the class of target image we might 

encounter. 

-To be discussed later on… 

 

 

 

   ,

,

def

i j

i j

p I p I


 

Generating a MAP Estimation Model 



Generating a MAP Estimation Model 

After omitting the constant normalizing value of            ,  

We are left with the maximization problem of             . 

Rearranging the nominator of the Bays equation yields a MAP estimation 

problem:  
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Generating a MAP Estimation Model 

Omitting the constant term                        yields  
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The negative exponential form will enable use to transform the task of 

maximizing a probability function with the much simpler one of minimizing 

a functional. 



The Case of a Blurred Image with Poisson 

Noise 

We wish to incorporate together the tasks of image deblurring coupled with Poisson 

noise removal.  

 

The acquired data can be seen as an image which was blurred using a Gaussian 

kernel and after that, underwent a Poisson  (photon) noising process. mainly due to 

inaccuracies in the acquiring device which is based upon photon counting. 

  

The revised MAP equation now takes the form 
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Remove noise from the 

blurred image 

Seek the unblurred 

image! 



Constructing the Regularization 

Component  

When the problem is ill-posed, some of the data in the original image 

can never be restored. 

 

Therefore, we must use as much a-priori knowledge as we can. 

-Landscape images are expected to exhibit smoothness within their 

connected components. Moreover, the discontinuity hyper planes 

between these components should themselves be smooth.  

-In astronomical imaging, on the other hand, we might encounter 

isolated discontinuities (e.g. remote stars) that would be considered 

as noise within the class of landscape images.  

 

In this paper we will consider gradient based regularization components 

in which noise is described as a redundant gradient.  



Total Variation (TV) Regularization  

The main principle is to prefer images with the least total sum of gradient 

values.  

 

Nevertheless, since this probability is multiplied by the fidelity term's 

probability function, the restoration candidate image still has to exhibit fidelity 

to the acquired noisy (and possibly blurred) input data. 

 

This will narrow the solution space of high fidelity restorations to include only 

images with a minimal amount of gradients. 

 

This approach does not discriminate between true edges and noise. 

-This will be done implicitly via the fidelity term… 



Tikhonov Regularization 

Tichonov has offered to consider the following term 
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Penalizes images whose gradients possess a high quadratic L2 

norm. 

 

Although removing most of the noise, due to the global quest 

for an image exhibiting small BV value, we might falsely prefer 

a restoration candidate with smoother edges over a better 

reconstruction with sharper edges. 



ROF Regularization 

When                 Tichonov’s regularization belongs to the Sobolev space   

       . 

-This space does not allow any discontinuities along the image’s hyper 

surface. 

-This is critical in the case of image analysis since these discontinuities 

are expected to appear in the boundaries between the Image’s objects. 

Rudin-Osher-Fetami (ROF) offered to consider a L1 regularization 

component:   
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It has been shown that when                    , then there is a unique 

maximizer for the MAP estimation models. 

- Exhibits better edge preservation.  
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The Mumford-Shah (MS) Regularization  

ROF regularization stills fails to discriminate isolated discontinuities (noise) 

over smooth sets of discontinuities (edges). 

A-priori knowledge: 

• images in our world are piecewise smooth. 

•The set of edges separating objects in an image are smooth  themselves. 

•The overall number of edges should be minimal 

•Edges contaminated by noise could become entangled and so longer… 

How can we mathematically differentiate real edges 

from  noise? 

 



The Mumford-Shah (MS) Regularization 

Let  

K=closed edge set 

Ω=open image domain 

Then the Mumford-Shah (MS) regularization component is defined by   
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The Mumford-Shah (MS) Regularization 

Remarks: 

1. We may use the better smoothing L2 norm since there are no 

discontinuity jumps within the connected components. 

2. Since the set of edges consists of closed points, 
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Therefore, to receive contribution from the edge set, we must 

approximate it with a continuous function, mask the image, and sum 

over the whole domain Ω.  



From Robust Statistics to Variational Calculus 

We transform our problem from a probability function maximization 

problem to the one of minimizing a functional: 
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Or, for the case of denoising only, 
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A Γ-Convergent Approximation for the MS 

Regularization Component 

The main difficulty arises from the use of Hausdorff  measure of the closed 

set of edge points K. 

 

Ambrosio and Tortorelli suggested an approximation for the MS prior which 

better suits numerical computations: 

Let  
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The unknown closed edge set is replaced by a complimentary characteristic 

function of K,  
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A Γ-Convergent Approximation for the MS 

Regularization Component 

Using V, AT introduced a series of parameter dependant functionals  
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Although non-convex, these elliptic functionals are defined on a 

space of smooth functions of the same dimension which obeys the 

following two conditions:  

   
0

lim , ,I v I K


 1. 

 

2.    
0

limarg min , arg min ,I v I K


  

in terms of Γ-convergence. 



Semi-Blind Deblurring 

So far, we have conveniently assumed that the blur kernel is fully known. 

 

However, we might encounter a task of deconvolution where the kernel 

type is known (e.g. Gaussian, pill box) but the kernel’s standard deviation 

is unknown semi-blind deblurring. 

 

•Ambiguity problem arises: 

 - was the contamination a result of subsequent blur kernels or of  

    one, smoother kernel? 

 - yielding an infinity amount of restoration candidates minimizing  

   the fidelity term  
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Semi-Blind Deblurring 

In ill-posed inverse problems we should always strive to incorporate as much 

a-priori knowledge as possible: 

Since our application is aimed at ordinary imaging, we expect our restoration to 

be piecewise smooth. 

 

Hence, out of all the minimizing candidates, we shall favor the smoothest. 

 

Assume our blur kernel is a Gaussian LPF: 

 

The kernel smoothness component to be appended to our model is: 
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Semi-Blind Deblurring 

the choice of the L2 norm of the kernel's gradient will further penalize narrow 

Gaussian kernels.  

 -Since there are no discontinuity jumps in the Gaussian kernel, its 

   use is justified.  

Our final objective functional is therefore, 
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Handcraft the functional according to the chosen inverse problem! 

Omit if only 
segmentation is desired 

Omit is the 
blur kernel 
is fully 
known 



Minimizing the Objective Functional  

After showing existence and uniqueness of a minimizer to         

We may perform an Euler-Lagrange variation on the functional with 

respect to the restoration I, 
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and with respect of the estimated edge map V: 
Data dependent! 



Minimizing the Objective Functional 

Minimizing with respect of the scalar kernel parameter variable  differentiation 
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Convex and bounded from below with respect of I or V. 

 

Not convex with respect of σ: 

 - convergence to a local minimum is therefore possible. 

General solution framework: Alternate minimization. 



Numerical Solution 

General Solution 

Algorithm  Initialize:  

 
•MaxIterationsNum 

 

•Tolerance_for_convergence 

 

•α, β, γ 

 

•start_sigma 

 

•sigma=start_sigma 

 

•sigma_convergence_flag=0 

 

•I=I0 

 

•V=ones(M,N)  assume fully smooth at initialization! 

 

1



General Solution 

Algorithm- continued 

Loop for MaxIterationsNum: 

 
1. solve linear system for V. 

 

2. solve nonlinear system for I. 

 

3. If sigma_convergence_flag=0: 

 

 a. old_sigma=sigma 

 

 b. sigma = find zero crossing of       

     

 c. if       

     then sigma_convergence_flag=1  

 

4. If            then exit 
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Discrete Equation for the 

Kernel’s Parameter 



The Iterative Approach 

Solve using highest resolution only 

nonlinear PDE for the restoration is solved via gradient descent: 
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•Slow though robust. 

• Requires careful choice of the Δt parameter 

 

Linear PDE for the edge map V is solved via GMRES. 

 



The Multigrid Framework 

most iterative approaches posses the following property: 

As they relax over the estimation, the high frequencies of the error will be 

smoothed, while the low frequencies remain virtually unchanged. 

Still, this property could be a ‘blessing in disguise’… 



The V-Cycle Scheme 

Fine grid’s smooth error components  coarse grid’s oscillatory error 

components! 



The V-Cycle Scheme 

Requires the following fundamental operations: 

•Restriction:  2
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Half weighting 

Bilinear 

interpolation 
•Relaxation/ smoothing scheme 

•Residual formula 



The V-Cycle Scheme- 
Linear Edge-Map PDE 

Algorithm V-cycleh(vh,fh): 

Initialize:  

pre- number of smoothing iterations performed on a grid before  
restricting the signal onto a coarser one. To be referred to as 
presmoothing. 

post- number of smoothing iterations performed on a grid after a 
correction has been interpolated from the coarser grid and added to 
the current signal. To be referred to as postsmoothing. 

 Vh≡V0  initial guess. 

 fh≡      initial right hand side. 
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Algorithm (continued): 

1. perform a pre number of relaxation steps thus obtaining a solution to  

h h hA u f
. 

2. If we have reached the coarsest grid, jump to step 4. Otherwise,  
   perform the following assignments:  

2

2

2 2 2 2

( )

0

( , )

h h h h

h

h h h h

f R f A v

v

v Vcycle v f

 





 3. After retrieving the approximation for the  error 
   perform a correction by  

2hv
2h h hv v Pv 

.4. If at the coarsest grid, solve ‘exactly’. Otherwise,  
    relax post times on     and return recursively.   

h h hA u f

The V-Cycle Scheme- 
Linear Edge-Map PDE 



The V-Cycle Scheme- 
Linear Edge-Map PDE 

Discrete Equations: 

Smoother: symmetric Gauss-Seidel (SGS) 
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Discrete Equations: 

Operator L=Av: 
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The V-Cycle Scheme- 
Linear Edge-Map PDE 



The V-Cycle Scheme- 
Nonlinear Restoration PDE 

When confronted by a nonlinear PDE the linear V-Cycle scheme cannot 

be used: 

( ) ( ) ( ) ( )r A u A v A u v A e    

Strategy: instead of approximating the error, we solve for the  full 

approximation of the exact(!!!) solution … 

Revised residual equation, 2 2 2 2 2 2( ) ( )h h h h h hA v e A v r  

Using the identity  2 ( ( ))h h h h hr Rr R f A v  

We obtain the final residual relaxation 

formula 

2
2

2 2 2( ) ( ) ( ( ))
h

hu r

h h h h h h h hA Rv e A Rv R f A v   



After the iterative solver converges,         is obtained by 2he

2 2h h he u Rv 

and interpolated back to the finer grid by 

2 2( )h h h h h hv v Pe v P u Rv    

Known as the full approximation scheme (FAS), it can be 

incorporated into any of the various multigrid frame works  

 - e.g. V-Cycle, full multigrid. 

Superior over other linearization schemes (e.g. Newton’s MG) since 

it solves the original nonlinear discrete problem… 

The V-Cycle Scheme- 
Nonlinear Restoration PDE 



Discrete Equations: 

Smoother: damped/weighted  Jacobi 
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Computational Results 
Poisson Denoising of an Unblurred Image  

Image with Gaussian Noise 
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Poisson Denoising of an Unblurred Image  



Non-Blind Deblurring In the Presence of 

Poisson Noise  
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Non-Blind Deblurring In the Presence of 

Poisson Noise  



Special Case: The Denoising and Deblurring 

as a Two Step Problem 

Outcome: 

we may assume that both the restoration 

systems share the fixed point property with 

respect to the tasks of denoising and 

deblurring. 



Semi-Blind Deblurring In the Presence of 

Poisson Noise  
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Semi-Blind Deblurring In the Presence of 

Poisson Noise  

Actual parameter: 2 

Estimated parameter: 1.913 

Initial parameter: 0.5 
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