

Histogram equalization (2)

Adam

Histograms (cont.)

The histogram of an image contains valuable information concerning the distribution of gray levels

It does not contain any spatial information

All the following images have exactly the same histograms!

Dr. Yoram Tal

Histograms as Voting

A histogram is a result of voting it counts the number of supporters (i.,e., pixels) of each candidate (graylevel)

In the simple case of a binary image there are only two candidates: Mr zero and Ms one.

Voting has many useful applications in image processing (as well as in democracy).

Dr. Yoram Tal

Image global deformations (2)

(d)

Histogram stretching

I Histogram of I

Histogram stretching (cont)

J
Histogram of J

Stretching limitations

The minimum is 0 and the maximum is 255

Histogram adjustment

Histogram of I $\quad \mathrm{K}=\operatorname{imadjust}(\mathrm{I},[0.30 .67],[])$;

$\mathrm{K}=\left\{\begin{array}{lll}255 & \text { if } \mathrm{I}_{\mathrm{i}}>=\mathrm{b} & \begin{array}{l}\text { This is a non-linear } \\ \text { operation }\end{array} \\ 255^{*}(\mathrm{I}-\mathrm{a}) /(\mathrm{b}-\mathrm{a}) & \text { if } \mathrm{a}<=\mathrm{I}_{\mathrm{i}}<\mathrm{b} \\ 0 & \text { if } \mathrm{I}_{\mathrm{i}}<\mathrm{a} & \end{array}\right.$

Histogram equalization (3)
Pout

Dr. Yoram Tal
Histogram equalization (4) Determining the grayscale precision of a scanner
paper
Histogram of paper

Histogram Manipulation

Why? - Correct illumination problems
 - Correct contrast problems

- Use histogram information to create
a Look-Up Table (LUT)
- Apply LUT to the image

Dr. Yoram Tal

Gamma Correction

(point operation)

(gamma + stretching)

$$
\left.I_{\text {out }}=\operatorname{LUT}(I+1) ; \quad \text { (if } I_{\text {min }} \text { is } 0\right)
$$

Dr. Yoram Tal

Histogram Equalization - Lemma

- Let I be an image having N pixels and and $G+1$ graylevels such that g is a graylevel of I iff

$$
g \varepsilon\{0,1,2, \ldots, G\}
$$

- Let h be the histogram of I where $h(g)$ is the number of pixels in I having graylevel g.
- Let H be the cumulative histogram of $\mathrm{I}: \mathrm{H}(x)=\sum_{g=0}^{g=x} h(g)$
- Then $L(x)=(G / N) H(x)$ is a lookup table which transforms I into a histogram equalized image.

Dr. Yoram Tal

Histogram Equalization problem: a narrow histogram

Dr. Yoram Tal

CLAHE

Contrast Limited Adaptive Histogram equalization
Problem: a big illumination difference between the two sides of the image (High Dynamic Range).

