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2.2.3 Spatial Filters

Spatial filtering is typically done for noise removal or to perform some type of
image enhancement. These operators are called spatial filters to distinguish them
from frequency domain filters, which are discussed in Section 2.5. The three types of
filters discussed here include: 1) mean filters, 2) median filters, and 3) enhancement

igure 2.2-8 Image Masking

Criginal image. b. Square for AND mask. c. Resulting image, (a) AND (b).

e. Resulting image, (a) OR (d).

Square for OR mask.




2.4 Some Basic Relationships Between Pixels

NOT

L

AND

XOR

NOT—
AND

L

NOT (4) .

(4) AND (B)

(4) OR (B)

(4) XOR (B)

[NOT (4)]AND (B)
—————
g .
i i
I |

49

Figure 2.14 Some examples of logic operations on binary images.
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Image subtraction

f moving
i difference.

image and a series of images of the same scene containing motion, the subtra-
hends contain only that information that moves — static information is reduced
to zero (or near zero) grey levels by the operation.

A classic (non-computer) example is mask mode radiography. Here X-ray
images are obtained from an image intensifier which is viewing an area of blood
vessels after an X-ray opaque substance has been injected into the bloodstream.



sample: Figure 4.17(a) shows an x-ray image oOf the top of a patient's neac
101 to injection of an iodine dye into the bloodstream. The camera yielding
is image was positioned above the patient’s head. looking down. As a ref-
ence point, the bright spot in the lower one-third of the image is the core of
ie spinal column. Figure 4.17(b) shows the difference between the mask (Fig.
17a) and an 1mage taken sometime after the dye was introduced 1nto the
loodstream. The bright arterial paths carrying the dye are unmistakably en-
anced in Fig. 4.17(b). These arteries appear quite bright because they are no:
ibtracted out (that is, they are not part of the mask image). The overal
ackground i1s much darker than that in Fig. 4.17(a) because differences be-
veen areas of little change yield low values. which in turn appear as dark

(a)

‘igure 4.17 Enhancement by image subtraction: (a) mask image, (b) image (after injectic
f dye into the bloodstream) with mask subtracted out.



45411

255

intensity

Figure 5-1 Animage and its gray-level histogram
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Histogram (Rormal)

[count, bin]

Gray level

x — image matrix (intensity)

imhist (x) — diSplay histogram

imhist (x) ;
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Figure 4.10 Histograms corresponding to four basic image types.
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Figure 4.4 Obtaining the negative of an image: (a) gray-level transformation function; (b)
an image; and (c) its negative. In (a), r and s denote tne input and output gray levels,

respectively.



ray-Level Image Processing

3000 | , , . , -
2000 ]
1000 | ]

FIGURE 2 The digital image “students” (left) and its histogram (right). The gray levels of this image are skewed
toward the left, and the image appears slightly underexposed.

3000 : :
i 2000 } B
{ 1000 |
3
A
O e
- 50 100

FIGURE.11 Example of an image negative with the resulting reversed histogram.
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Figure 8.8: Presentation of an image with different gamma values: a 0.5, b 0.7,
¢ 1.0, and d 2.0 (exercise 8.3).

Range Compression. In comparison to the human visual system, a dig-
ital image has a considerably smaller dynamical range. If a minimum
resolution of 10% is demanded, the gray values must not be lower than
10. Therefore, the maximum dynamical range in an 8-bit image is only
255/10 = 25. The low contrast range of digital images makes them ap-
pear of low quality when high-contrast scenes are encountered. Either
the bright parts are bleached or no details can be recognized in the dark
parts.

The dynamical range can be increased by a transform that was intro-
duced in Sect. 2.2.6 as the gamma transform. This nonlinear homoge-
neous point operation has the form

‘ 2255; Q. (8.10)

The factors in (8.10) are chosen such that a range of [0, 255] is mapped
onto itself. This transformation allows a larger dynamic range to be
recognized at the cost of resolution in the bright parts of the image.



IMAGE PROCESSING FOR ENHANCEMENT OR BASIC PROCESSING IN IMAGE SPACE

oy

R

9.5 ation based on the shape of the histogram. The first stage gives us global knov

s with ‘unsatisfactory’”  edge about the nature of the image as far as its intensity levels a

ram_s' concerned and enables a suitahle transfarmation to he derived



Figure 3. Manipulation of the grey scale transfer function:

a) an original, moderately low-contrast transmission light microscope image (prepared slide of a beucd
louse);

b) expanded linear transfer function adjusted to the minimum and maximum brightness valiues in ihe
image;

c) positive gamma (log) function;

d) negative gamma (log) function;

‘e) negative linear transfer function;

J) nonlinear transfer function (high slope linear contrast over central portion of brightness reaige, with
negative slope or solarization for dark vnd bright portions).

Any of these functions may be used in addition to contr
expansion, which stretches the original scale to the full range
the display. Curves or tables of values for these transfer fu:
tions are typically precalculated and stored, so that they can
loaded quickly to modify the display LUT. Many systems all
quite a few different tables to be kept on hand for use when
image requires it, just as a series of color LUTs may be availa
on disk for pseudo-color displays. Figure 3 illustrates the usc
several transfer functions to enhance the visibility of structures
an image.



Figure 1. An original image with a full range of brightness values and several examples of arbitrary ba
drawn display transfer functions which expand or alter the contrast in various parts of the range. T
plot with each image shows the stored pixel brightness values on the borizontal axis and the display
brightness on the vertical axis. Image a) has a transfer function that is the identity function, so iha
actual stoved brightnesses are displayed. Images b) through f) illustrate various possibilities, iich
reversal and increased or decreased slope over parts of the brightness range.

smooth noise by kernel averaging or median filtering. Re¢
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Figure 4.2-8 Histogram Sliding

H ” ““"lunu.....ml{ L.

b. Histogram of original image.

i

c. Image after positive-value histogram sliding. d. Histogram of image after sliding.
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| 'slicing”.

Original image (Ponte Rio-Niteroi)

T(z
T(z

Thresholded Highlighting an intensity
band of interest




and high ends. Figure 4.2-1d illustrates a linear function to stretch the gray ileveis
between 50 and 200, while clipping any values below 50 to 0 and any values above 200
to 255. The original and modified images are shown in Figures 4.2-1e, f, where we see
the resulting enhanced image.

Figure 4.2-1 (Continued)

255 —
Modified
gray-level 128 ——
values
0 | L |

! 1 |
0 50 200 255
Original gray-level values

d. Gray-level stretching with clipping at ends.

e. Original image. f. Image after modification.




Figure 4.2-1 Gray-Scale Modification

255 ——

!
Streteh [
slope> 1/ |
[
!
{
Modified ]
gray-level 128 i
values |

ol | |

! !

0 28 75 255
Original gray-level values
N a. Gray-level stretching.

b. Original image-. ¢. Image after modification.



PIXEL PROCESSING @

2 (output)

T(2)

z (input)

Contrast stretched

breakpoints while viewing the processed image, or better still both images sid
by side.

Intensity level slicing

This simple technique selects a particular contiguous range of grey levels to dis
play. It is used in contexts where intensity variations of interest in an imag
are too slight to be seen well by the viewer. Providing these variations occup
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(Fy 55)

(rss)

(a) ) (b)

(c) (d)

Figured.5 Contraststretching: (a) form of transformation function; (b) alow-contrast image,
(c) result of contrast stretching; (d) result of thresholding.

an image on film. One of the classic illustrations of this problem is in the display
of the Fourier spectrum of an image, as discussed in Section 3.3. An effective
way to compress the dynamic range of pixel values is to perform the following
intensity transformation: ‘

s = clog(l + |r]) (4.2-1) .

where c is a scaling constant, and the logarithm function performs the desired .

s e



4.2 GRAY-SCALE MODIFICATION 2

The mapping function for a histogram stretch can be found by the followiz
equation:

]<r7 C) - [<r> C)MIN

Stretch -
tretc (](}‘, C)) ](7‘, C)MAX - [(7‘, C)MTN

[MAX - MIN] + MIN

where

I(r, c)yax 1s the largest gray-level value in the image I(r, ¢)
I(r, ¢y is the smallest gray-level value in I(r, ¢)

MAX and MIN correspond to the maximum and minimum gray-level Values pc
sible (for an 8-bit image these are 0 and 255) __

Figure 4.2-5 Histogram Stretching

"

a. Low-contrast image. b. Histogram of low-contrast image.

~igure 4.2-5 (Continued)

LA h lll, ”u“}”li’(”ﬂ“lih

d. Histogram of image after stretching.

¢. Image after hlstogram stretching.



Figure 4.2-6 Histogram Stretching with Clipping

a. Original image.

S o e e 28

Figure 4.2-6 (Continued)

c. Image éﬁer histogram stretching without
clipping.

e. Image after histogram stretching with clipping

S AR— s L e el e e o

b. Histogram of original image.

B T

d. Histogram of image (c).

Hmuunlm”!

|

f. Histogram of image (e).
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Shrinky, \ ~ Shrinkxm
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Shrink(/(r, ¢)) = {[(’V ¢y - I(r. C).\n.\'] + Shrinkyy

where
I(r, c)yax 1s the largest gray-level value in the image [(r, ¢)

I(r, ¢)ypy 1s the smallest gray-level value in I(r, ¢)

gure 4.2-7 Histogram Shrinking

a. Original image. ' b. Histogram of image (a).

. c.Image after éhrinking the histogram to the d. Histogram of image (c).
range [75,175].

Raafiihiend o



Histogram Equalization

A=input B=output
gray level change
D,=f(D,) D,=f"Dg)
Assume f is monotonic and 0< f <1 when 0<D<1

Conserving "gray levels" we have

DB+ADB DA+ADA
[ Hg(D)dD= J H ,(D)dD
Dg A

So Hg(Dg)ADg=H ,(D,)AD,

and
H,(Dy)
Hy(Dg)= 12 | HADY) ~ 7

ADy 7 7dDg  df(Dy)
AD,  dD, dD,

or

H,(D
1102

Dropping the subscript we get

Hg(f (D))= I_:A(([I;))) = constant fég—é




If we indeed we have a constant then we get

f(D) =% H(D) A ,=areaofimage D, = maximum gray level

integrate

f(D Z&Dtht:D-CDF
(D) Aj! (t)dt=D,

Sometimes use logarithmic transformation as being closer to what
the eye sees



Discrete Equalization
Let h(x;) =# pixels with gray level x;
Normalize

p(x)= L_q(xi) i=0..L-1 L=#gray levels
IZ(;h(Xi)
Define discrete CDF

vi=|Z=|(; p(x)
V.= INT HVL‘:—W}(L—”%]

min

v is approximately uniformly distributed

Note: Discretization will destroy exact equalization
Randomization

e randomly move gray levels between pixels to give
equalization
e add random small numbers to given gray levels

Local histogram modification

improvement use mean and variance

g(X’ y) — A[ f (X, y) _m(X’ y)}+m(x, y)

A= chosen constant
m(X,y)= mean inside windown centered at (X,y)

o(x,y) = variance inside the window
choose A= KM i constant and M the global average

a(Xy)
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.pproximation of the continuous pixel brightness transformation from equation (4.7) is

0~ 0 —
g=T(p) =22 S H(i) +qo (4.8)

1=pg

Formally, the algorithm to perform equalization is as follows.

Algorithm 4.1: Histogram equalization

1. For an N x M image of G gray-levels (often 256), create an array H of length G
initialized with 0 values.

2. Form the image histogram: Scan every pixel and increment the relevant member of
H—if pixel p has intensity g, perform

Higy] = Hlgp] +1

3. Form the cumulative image histogram H.:

H[0] = H[(]
H.p] = H./p-1]+ H[p] p=12,...,G-1
4. Set

T'(p] = round <i1[1 HC[P}>

(This step obviously lends itself to more efficient implementation by constructing a
look-up table of the multiples of N/, and making comparisons with the values in H,,
which are monotonic increasing).

5. Rescan the image and write an output image with gray-levels g,. setting

94 = Tgp]

(This presentation assumes that the intensity range of source and destination images is [0,G-
1}—the adjustment if this is not the case is trivial.)

These results can be demonstrated on an image of a lung. An input image and its
equalization are shown in Figure 4.3; their respective histograms are shown in Figure 4.4.

The logarithmic gray-scale transformation function is another frequently used technique.
vIt simulates the logarithmic sensitivity of the human eye to the light intensity.

Also belonging to the group of pixel brightness transformations are adaptive neighbor-
hood histogram modification and adaptive neighborhood contrast enhancement.
These methods are discussed later in Section 4.3.9 in the context of other adaptive neighbor-
hood pre-processing approaches.

?Seudo—color is yet another kind of gray-scale transform. The individual brightnesses in
the nput monochromatic image are coded to some color. Since the human eye is much more
;y"?ensltive to change in color than to change in brightness, much more detail can be perceived
- pseudo-colored images.




IIna tne running sum oI tne nistogram vaiues, Z) normalize the valjues irom step 1 by
dividing by the total number of pixels, 3) multiply the values from step 2 by the maxi-
mum gray level value and round, and 4) map the gray-level values to the results from
step 3 using a one-to-one correspondence. An example will help to clarify this process:

EXAMPLE 4 -1

We have an image with 3 bits/pixel, so the possible range of values is 0 to 7. We have an image
with the following histogram:

Gray-Level Value Number of Pixels (Histogram values)
0 10 Y
) ‘
2
3
4 14
5
6
7

STEP 1: Create a running sum of the histogram values. This means that the first value is 10, the
second is 10 + 8 = 18, next is 10 + 8 + 9 = 27, and so on. Here we get 10, 18, 27, 29, 43, 44, 49, 51.

STEP 2: Normalize by dividing by the total number of pixels. The total number of pixels is 10 +
3+9+2+14+1+5+0=51 (note this is the last number from step 1), so we get 10/51, 18/51,
27/51, 29/51, 43/51, 44/51, 49/51, 51/51.

STEP 3: Multiply these values by the maximum gray-level values, in this case 7, and then round
‘he result to the closest integer. After this is done we obtain 1, 2,4, 4, 6,6, 7, 7.

STEP 4: Map the original values to the results from step 3 by a one- -to-one correspondence. This
s done as follows:

Original Gray-Level Value Histogram Equalized Values
0 1
1 2
2 4
3 4
4 6
5 6
6 7
7 | 7

All pixels in the original image with gray level 0 are set to 1, values of 1 are set to 2, 2 set to 4, 3
set to 4, and so on. In Figure 4.2-9 we see the original histogram and the resulting histogram-

xqualized histogram. Although the result is not flat, it is closer to being flat than the original
1stogram.




4.2 GRAY-SCALE MODIFICATION

Figure 4.2-9 Histogram Equalization
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Histogram Matching

Key idea: Equalize input and output and solve a discrete

inverse problem

Algorithm:
1. geta histogram of the input
K n.
b _
2.8 S = T(n, )— Z pr(r )= T k=01,.,L-1

= J—
3. Given p,(z) define G

k
=0(z)= ZO p.(z;)=s, k=01..,L-1
J:

4. Given S, with G(zkj:sk

discretely:

start z=0 increase z until G(z)>s, k=1

continue for each k but start search at Zk—l
precompute #2 and #4

5. Given any gray level 1 in the input

r—s, (2)
s, —>Z, (4) precomputed
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The M column for this table is obtained by mapping the value in H to the closest value in S and
then using the corresponding row in O for the entry in M. For example, the first entry in H is 1.
We find the closest value in S, which is 1. This 1 from S appears in row 1, so we write a 1 for that
entry in M. Another example, the third entry in H is 4. We find the closest value in S, which is 4.
This 4 from S appears in row 3, so we write a 3 for that entry in M. If we consider the fifth entry
in H, we see that 6 must map to 7 (the closest value), but the 7 appears on rows 4, 5, 6, 7. Which
one do we select? It depends on what we want; picking the largest value will provide maximum
contrast, but picking the smallest (closest) value will produce a more gradually changing image.
Typically, the smallest is chosen because we can always perform a histogram stretch or equal-
ization on the output image, if we desire to maximize contrast.

In practice, the desired histogram is often specified by a continuous (possibly
nonlinear) function, for example, a sine or a log function. To obtain the numbers for
the specified histogram, the function is sampled, and the values are ‘normalized to 1
and then multiplied by the total number of pixels in the image. Using a hyperbohc
function for the specified histogram is-¢alled histogram hyperbolization and is based
on a mathematical model of the response of the cones in the human system.
Histogram hyperbolization is an attempt to make the perceived brightness levels
equally likely—sort of a “histogram equahzauoﬂwEased on a model of the visual sys-
tem.
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EXAMPLE 4 -2

STEP 1: For this we will use the data from the previous example, where the histogram-equaliza-
tion mapping table is given by:

Original Gray-Level Value—O Histogram Equalized Values—H
0 1
1 2
2 4
3 4
4 6
5 6
6 7
7 7

STEP 2: Specify the desired histogram:

Gray-Level Value Number of Pixels in Desired Histogram Sowa
0 1
1 5 ©
74

2 10
3 15 S
4 20 s
5 0
6 0
7 0

STEP 3: Find the histogram equalization mapping table for the desired histogram:

Gray-Level Value Histogram Equalized Values—S

0 round(1/51)*7 =0
1 round(6/51)*7 =1
2 round(16/51)*7 = 2
3 round(31/561)*7 = 4
4 round(51/561)*7 = 7
5 round(51/61)*7 = 7
6 round(51/61)*7 = 7

7 round(51/51)*7 = 7 “
STEP 4: Map the original values to values from step 3 by using the table from step 1. This is
done by setting up a table created by combining the tables from steps 1 and 3. We will denote O
for the original gray levels, H for the histogram-equalized levels, S for the specified and histo-
gram-equalized values, and M for our final mapping, which will provide the desired histogram.
The combined table consists of O and H from the step 1 table, S from the second column of the

step 3 table, and M, which provides the resulting gray-level values and will be generated in this
step. Here is the resulting table:



Histogram equalization
y = histeq(x,256);

34
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Histogram equalization of a digital image will not typically provide a histogra
that is perfectly flat, but it will make it as flat as possible. For the equalized histogra
to be completely flat, the pixels at a given gray level might need to be redistribute
across more than one gray level. This could be done but would greatly complicate t}
process, as some redistribution criteria would need to be defined. In most cases t}
visual gains achieved by doing this would be negligible and could in some cases 1
negative. In practice, it is not done.

Figure 4.2-10 shows the result of histogram equalizing two images W1th very po
contrast. In Figures 4.2-10a—d we see the results of applying histogram equalization
a dark image, and in Figures 4.2-10e~h we see results from a bright image. The resul
of this process are often very dramatic.

Figure 4.2-10 Histogram Equalization Example

[

a. Original dark image. b. Histogram of image (a).

I M

c. Dark image after histogram equalization. d. Histogram of image (c).
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4.2 GRAY-SCALE MODIFICATION

Figure 4.2-10 (Continued)

f. Histogram of image (e).

g. Light image after histogram equalization. h. Histogram of image (g).

Histogram equalization may not always provide the desired effect because
goal is fixed—to distribute the gray-level values as evenly as possible. To allow !
interactive histogram manipulation, the ability to specify the histogram is necessa
Histogram specification is the process of defining a histogram and modifying the his
gram of the original image to match the histogram as specified. This process can
implemented by: 1) finding the mapping table to histogram-equalize the image,
specifying the desired histogram, 3) finding the mapping table to histogram-equali
the values of the desired histogram, and 4) mapping the original values to the valc
from step 3, by using the table from step 1. This process is best illustrated by examp
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Figure 4.15 (a) Original image; (b) result of global histogram equalization, (c) result of = =
local histogram equalization using a 7 X 7 neighborhood about each pixel. “(me Fu, -

Gonzalez, and Lee [1987].)
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Figure 4.2-11 Local Histogram Equalization

¢. Image after local histogram equalization, win- d. Image after local histogram equalization, win-
dow =7 x7. dow =15 x 15,

modification techniques, which use only global parameters and result in fixed gr:
level transformations. The image is processed using the sliding window concept (;
Figure. 3.3-1), the local image statistics are found by considering only the current w
dow (subimage), and the global parameters are found by considering the entire ima
It is defined as follows:

M e
ACE = k| —— {[(r. c) —m(r. c)] = ky my(r.c)
ar.c) -



5 1 Basic Gray-Level Image Processing

along sudden changes in intensity, or “edges,” which may appear
.. ooed following nearest neighbor interpolation.
}30-—16 o o

7.2 Bilinear Interpolation

Bilinear interpolation produces a smoother interpolation
than does the nearest-neighbor approach. Given four neigh-
boring image coordinates f(rnig, #20), f(#11, #21), f (112, M22),
and f(n13, 123) —these can be the four nearest neighbors of
f[a(n)] — then the geometrically transformed image g(#n;, n,)
is computed as

g(ny, mp) = Ag + Arny + Ay + Asmymg, (47)
which is a bilinear function in the coordinates (n;, n,). The bi-
linear weights Ag, A;, Ay, and A; are found by solving

-1

Ay 1 mp mo  mongp f(nio, n20)
Al |1 nmn ony onpgny f(ny, na1) (48)
Ayl |1 nin ny npng f(n12, 122)
As 1 ms m3y  m3ngs f (s, m3)

Thus, g(n;, n;) is defined to be a linear combination of the
gray levels of its four nearest neighbors. The linear combination
defined by Eq. (48) is in fact the value assigned to g(n;, 1) when
the best (least-squares) planar fit is made to these four neighbors.
- This process of optimal averaging produces a visually smoother
‘result,

Regardless of the interpolation approach that is used, it is
possible that the mapping coordinates a;(n;, ny), ax(ny, n2) do
not fall within the pixel ranges

0<a(n,nm) < N-1

and/or (49)

0<ay(n,m)sM-1,

in which case it is not possible to define the geometrically trans-
formed image at these coordinates. Usually a nominal value is
assigned, such as g(n) = 0, at these locations.

7.3 Image Translation

The most basic geometric transformation is the image transla-
f1on, where

ai(ng, my) = n — by, ax(ny, my) = m — by, (50)
V\{here (b1, by) are integer constants. In this case g(ny, my) =
flny = by, ny, ~ by), which is a simple shift or translation of g
by an amount by in the vertical (row) direction and an amount

Yo iennd e imacae

it is also used in algorithms, such as image convolu
ter 2.3), where images are shifted relative to a refe
integer shifts can be defined in either direction, the
no need for the interpolation step.

7.4 Image Rotation

Rotation of the image g by an angle 8 relative to th
(r1y) axis is accomplished by the following transfor

ay(ny, ny) = nycosB — nosin B,

a(ny, ny) = nysinB + ny cosH.

Thesimplest casesare: 8 = 90°, where [a; (1, 12), a;
(—np,m);0 = 180°, where [a; (11, m2), ax(ny, m) ] =
and 6 = —90°, where [a;(n], 12), ax(ny, 13)] = (ns,
the rotation point is not defined here as the center
the arguments of Eq. (51) may fall outside of the im
This may be ameliorated by applying an image trane
before or after the rotation to obtain coordinate
nominal range.

7.5 Image Zoom

The image zoom either magnifies or minifies the
according to the mapping functions

a1(ny, m) = ni/c, ar(ny, ny) = m
where ¢ > 1 and d > 1 to achieve magnification, «
d <1 to achieve minification. If applied to the
then the image size is also changed by a factor ¢
vertical (horizontal) direction. If only a small p
age is to be zoomed, then a translation may be
corner of that region, the zoom applied, and tt
cropped.

The image zoom is a good example of a geome
for which the type of interpolation is important,
high magnifications. With nearest neighbor inter|
values in the zoomed image may be assigned the s
resulting in a severe “blotching” or “blocking” effe
interpolation usually supplies a much more viab

Figure 19 depicts a 4x zoom operation applit
in Fig. 13 (logarithmically transformed “studen
was first zoomed, creating a much larger imag
many pixels). The image was then translated toa;
(selected, e.g., by a mouse), and then it was cropg
256 pixels around this point. Both nearest-neigh!
interpolation were applied for the purpose of co
provide a nice close-up of the original, making
more identifiable. However, the bilinear resultis:
and it does not contain the blocking artifacts



~ Thresholding 2

separate objects from background

42




P el endlin T e e Ll

P S

Theesholding (2)

imagesc(t >

T)




Background separation

Problem: background is not uniform

imagesc(Letter > T)

T =100

THS. Askess

ks o 27 .

' s b ity o 6 S

Ao i CLn T G
RV Fh r.-.,-" . o s s »(afaf" &//
.C'd/n.fvr;-c‘n AL 2y At durgts  EA L R G i ot L 2L

Seorian’l XK 2

s i . 4 o el

44




i

N

1

: 1
U . 4

Meshz (Letter)
Colormap copper

Histogram equalization does not

Help here!

3D map of “Letter” Histogram of “Letter”

Background separation (2




= of Hlock
Bac roum?;proximation s
—
bg = blkproc(x,[1 10],'mean2(x)*ones(size(x))');

bg
Block processing

Better approximations may be used (e.g., splines) 46

et e o e £ o




Background subtraction

Letter - bg | Thresholding

T
1tr
e ——— ch
b o ——y —agy
& - -
et s et
———— 'ﬁ}.‘
-~
————— "
m ——
AN

f;g‘g " A2edh .e’.e?- ?dﬂ".."&‘;)

Lo pr1 oKy, BT éf'df'rfé'“f A~
thp- 7D Nr’fr}‘{’;c‘fﬂ& K/?IZ’-‘Q-‘-
- F’.&’?"f’égf- /?4//‘

oty rberrpts EH L2 &G L
&Cp?‘tfﬁﬂ-’d' 3“-’-';-.').




Figure 5.1: Image thresholding: (a) original image; (b) threshold segmentation; (c) threshold
too low; (d) threshold too high.

thresholding), in which the threshold value varies over the image as a function of local
image characteristics, can produce the solution in these cases.
A global threshold is determined from the whole image f:

T =17(f) (5.3)

On the other hand, local thresholds are position dependent:

T=1T(f fe) (5.4)

where f. is that image part in which the threshold is determined. One option is to divide the
image f into subimages f. and determine a threshold independently in each subimage; then
if a threshold cannot be determined in some subimage, it can be interpolated from thresholds
determined in neighboring subimages. Each subimage is then processed with respect to its
local threshold.

Basic thresholding as defined by equation (5.2) has many modifications. One possibility is
to segment an image into regions of pixels with gray-levels from a set D and into background
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stherwise (band thresholding):

g(1,7) =1 for f(s,5) € D
=0 otherwise (5-5)

[his thresholding can be useful, for instance, in microscopic blood cell segmentations, where
v particular gray-level interval represents cytoplasma, the background is lighter, and the cell
ternel darker. This thresholding definition can serve as a border detector as well; assuming
lark objects on a light background, some gray-levels between those of objects and background
:an be found only in the object borders. If the gray-level set D is chosen to contain just these
»bject-border gray-levels, and if thresholding according to equation (5.5) is used, object
orders result as shown in Figure 5.2. Isolines of gray can be found using this appropriate

rray-level set D.
P o {:} O
B ,
- |

(a) (b)

?iguré 5.2:  Image thresholding modification: (a) original image; (b) border detection using
yand-thresholding.

There are many modifications that use multiple thresholds, after which the resulting image
s no longer binary, but rather an image consisting of a very limited set of gray-levels:

g(i,j) =1 for f(i,5) € D
=2 for f(i,j) € Dy
=3 for f(i,j) € Ds3 (5.6)
=n for f(i,j) € D,
=0 otherwise

vhere each D; is a specified subset of gray-levels.
Another special choice of gray-level subsets D; defines semi-thresholding, which is some-
imes used to make human-assisted analysis easier:

~0 for f(i.1) <T (5.7)
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Figure 2.4-4 Histogram Thresholding Segmentation

a. Original image. b. Image after histogram thresholding segmenta-
tion using four gray levels.

c. Histogram of image (a). d. Histogram of image (b).

that as the white point is approached in the color space, a greater number of hues w:
be observable in a fixed area by the human visual system than on the perimeter of t}
color triangle. This observation is application specific because it only applies to colo
from white (in the center of the triangle) to the green and red vertices. Skin tumor cc
ors typically range from white out to the red vertex. The SCT/Center segmentatic
algorithm is outlined as follows:

1. Convert the (R,G,B) triple into spherical coordinates (L, angle A, angle B).
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- Figure 5.4: Gray-level histograms approzimated by two normal distributions— the threshold
is set to give minimum probability of segmentation error: (a) probability distributions of
background and objects; (b) corresponding histograms and optimal threshold.

The following algorithm represents a simpler version that shows a rationale for this ap-
proach [Ridler and Calvard 78] and works well even if the image histogram is not bi-modal.
This method assumes that regions of two main gray-levels are present in the image, thresh-
olding of printed text being an example. The algorithm is iterative, four to ten iterations
usually being sufficient.

Algorithm 5.2: Iterative (optimal) threshold selection

1. Assuming no knowledge about the exact location of objects, consider as a first ap-
proximation that the four corners of the image contain background pixels only and the
remainder contains object pixels.

2. At step t, compute p% and pl as the mean background and object gray-level, respec-
tively, where segmentation into background and objects at step t is defined by the

/it — Z(i,j)ebackground f(z,j) ¢ Z(i,j)Eijects f(Z,])
B back : Ho = : : (5'
#background_pixels #object_pixels

3. Set

T(t+1) — lutB + /J'tO
e (5.

Tt now provides an updated background—object distinction.

4. If T+ = 70 halt: otherwise return to step 2.

——— -




optimal thresholds can be determined for each voxel and used for segmentation. In [Fra
et al. 95, Santago and Gage 93], the partial volume effect was also considered (in brain M
images, the finite-size voxels can consist of a combination of, e.g., gray and white matt
and a volume percentage corresponding to WM, GM, and CSF was calculated for each vox
Figure 5.6 gives an example of such brain segmentation. The brighter the voxel location
individual segmented images, the higher the volume percentage of the GM, WM, or CSF
that particular voxel. In each voxel, the sum of partial volume percentages is 100%.

Volume Volume _ Volume
% % %
16 167 16

Gray matter

2 White matter

8 8 8
4 | 41 CsF
0 T T L T 0 0 L v mad
0 50 100 150 200 250 0 56 100 150 200 250 0 50 100 150 200 250
Gray level © Gray level Gray level
@ R ©

Figure 5.5: Segmentation of 3D T1-weighted MR brain image data using optimal thres
olding: (a) local gray-level histogram; (b) fitted Gaussian distributions, global 3D image fi
(c) Gaussian distributions corresponding to WM, GM, and CSF. Courtesy R.J. Frank, T..

Grabowski, Human Neuroanatomy and Neurotmaging Laboratory, Department of Neurologr
The University of Iowa.

'5.1.3 Multi-spectral thresholding

Many practical segmentation problems need more information than is contained in one spec
tral band. Color images are a natural example, in which information is coded in three spectra
bands, for example, red, green, and blue; multi-spectral remote sensing images or meteoro
logical satellite images may have even more spectral bands. One segmentation approacl

determines thresholds independently in each spectral band and combines them into a singl
segmented image.

Algorithm 5.3: Recursive multi-spectral thresholding

1. Initialize the whole image as a single region.

2. Compute a smoothed histogram (see Section 2.3.2) for each spectral band. Find the
most significant peak in each histogram and determine two thresholds as local minima on
either side of this maximum. Segment each region in each spectral band into sub-regions
according to these thresholds. Each segmentation in each spectral band is projected
into a multi-spectral segmentation—see Figure 5.7. Regions for the next processing
steps are those in the multi-spectral image.

3. Repeat step 2 for each region of the image until each region’s histogram contains onlv
one significant peak.
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(a) (b) ()

Pigure 5.7: Recursive multi-spectral thresholding: (a) band 1 thresholding; (b) band 2 thresh-
olding; (c) multi-spectral segmentation. '





