
Inhomogeneous data

(�) ut = kuxx 0 < x < l; t > 0

u(x; 0) = 0 initial condition

u(0; t) = h(t) boundary condition

u(l; t) = j(t) boundary condition

Assume:

(��) u(x; t) =
1P
n=1

un(t) sin(
n�x

l
)

un =
2

l

lR
0

u(x; t) sin(
n�x

l
)dx

Note: Since u(x; t) is nonzero at the boundaries the convergence cannot be
uniform but either pointwise or else least square !!
Substitute (**) into (*) giving

0 = ut � kuxx =
1P
n=1

�
dun
dt

+ kun(t)
�n�x

l

�2�
sin(

n�x

l
)

This can�t match the boundary conditions:

Lesson: Di¤erentiating (**) is illegal !!

Method #1
Instead we avoid di¤erentiation os a nonuniform converging series. Assume

u(x; t) =
1P
n=1

un(t) sin(
n�x

l
)

@u

@t
=

1P
n=1

vn(t) sin(
n�x

l
)

vn(t) =
2

l

lR
0

@u

@t
sin(

n�x

l
)dx =

dun
dt

since new integrand is continuous

@2u

@x2
=

1P
n=1

wn(t) sin(
n�x

l
)

wn(t) =
2

l

lR
0

@2u

@x2
sin(

n�x

l
)dx

= �2
l

lR
0

�n�
l

�2
u(x; t) sin(

n�x

l
)dx+

2

l

�
@u

@x
sin(

n�x

l
)� n�

l
cos(

n�x

l
)

�l
0

= �
�n�
l

�2
un(t)�

2n�

l2
[(�1)nj(t)� h(t)] let �n =

�n�
l

�2
1



So

vn(t)� kwn(t) = 0
dun
dt

= kwn(t)

Then

dun
dt

= �k�nun(t) +
2n�

l2
[(�1)nj(t)� h(t)]

un(0) = 0

Solving the ODE we get

un(t) = Ce��0kt � 2n�
l2

k
tR
0

e��nk(t�s) [(�1)nj(s)� h(s)] ds

Consider the PDE

(�) utt = c2uxx + f(x; t) 0 < x < l; t > 0

u(x; 0) = '(x) initial condition

@u

@t
(x; 0) =  (x) initial condition

u(0; t) = h(t) boundary condition

u(l; t) = k(t) boundary condition

Method #2: De�ne a new variable v using g(x; t)that satis�es the homogenous
boundary conditions

v(x; t) = u(x; t)� (l � x)h(t) + xk(t)
l

Now

vtt = c2vxx + f(x; t)�
(l � x)h00(t) + xk00(t)

l
= c2vxx + F (x; t)

v(x; 0) = '(x)� (l � x)h(0) + xk(0)
l

dv

dt
(x; 0) =  (x)� (l � x)h

0(0) + xk0(0)

l
v(0; t) = v(l; t) = 0

More generally
v(x; t) = u(x; t)� U(x; t)

then
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vtt = c2vxx + f(x; t)�
�
Utt � c2Uxx

�
v(x; 0) = '(x)� U(x; 0)
dv

dt
(x; 0) =  (x)� Ut(x; 0)

v(0; t) = h(t)� U(0; t)
v(l; t) = k(t)� U(l; t)

So we choose U so that

Utt = c2Uxx + f(x; t)

U(0; t) = h(t)

U(l; t) = k(t)

e.g. if f ,h,k are independent of t then choose U also independent of t and

Uxx = �
1

c2
f(x)

U(0) = h

U(l) = k
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Inhomogeneous right hand side

Consider

(�) �r � (p(x )ru) + q(x )u(x ) = am(x )u(x ) + f(x ) x 2 D

with homogeneous Dirichlet or Neumann (or more generally symmetric) bound-
ary conditions.

Theorem 1 (a) If a is not an eigenvalue (f=0) then there exists a unique
solution for all f with jjf jj2 <1
(b) if a is an eigenvalue then either there is no solution or else an in�nite

number of solutions (Fredholm alternative) depending on f(x)

Proof. (a) Denote the eigenvalues by �nand the eigenfunctions by vn(x ); n =
1; 2; 3:::
Let � be the distance between a and the nearest eigenvalue. By completeness

we have

(��) u(x ) =
1P
n=1

(u; vn)

(vn; vn)
vn(x ) (u; v) �

RRR
D

muvdV

and the sum converges in L2.
Multiply (*) by vn and integrate to get

�
Z
r � (pru)vndV +

Z
quvndV = a

Z
muvndV +

Z
fvndV

By Green�s second identity we replace the �rst integral by (using the sym-
metric homogenous boundary conditions on u and v)

�
Z
r � (prvn)udV +

Z
quvndV = a

Z
muvndV +

Z
fvndV

But vn satis�es the homogenous version of (*)
and so

�r � (p(x )rvn) + q(x )vn(x ) = �nm(x )vn(x )

Hence, subtracting we get

(�n � a)
Z
muvndV =

Z
fvn

or

(u; vn) =

R
fvn

(�n � a)
Putting into (**) we �nally arrive at

u(x ) =
1P
n=1

R
fvn

(�n � a) (vn; vn)
vn(x )
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To show convergence we have

ju(x )j �
1P
n=1

j
R
fvnj

�(vn; vn)
vn(x )

For simplicity assume the eigenfunctions are orthonormal so (vn; vn) = 1. Then

jjujj2
Schwarz
� 1

�2
j
1P
n=1

j
Z
fvn(x )j2

Bessel
� 1

�2

Z
f2
1

m
dV <1

So the series converges

(b) Suppose a = �n . Then

(�n � a)
Z
muvndV =

Z
fvn

implies that Z
fvn = 0

If this is not true then there are no solutions. If it is true then we can add Cvn
to any solution to get an in�nite set of solutions.
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