Probabilistic and Bayesian Analytics

Andrew W. Moore School of Computer Science Carnegie Mellon University

Discrete Random Variables

- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
- A = The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- A = You have Ebola

Probabilities

- We write P(A) as "the fraction of possible worlds in which A is true"
- We could at this point spend 2 hours on the philosophy of this.
- But we won't.

Visualizing A

The Axioms of Probability

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

Simple addition and subtraction

These Axioms are Not to be Trifled With

- There have been attempts to do different methodologies for uncertainty
 - Fuzzy Logic
 - Three-valued logic
 - Dempster-Shafer
 - Non-monotonic reasoning
- But the axioms of probability are the only system with this property:

If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

Theorems from the Axioms

- $0 \le P(A) \le 1$, P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

From these we can prove:

P(not A) = P(-A) = 1 - P(A)

• How?

Side Note

- I am inflicting these proofs on you for two reasons:
 - 1. These kind of manipulations will need to be second nature to you if you use probabilistic analytics in depth
 - 2. Suffering is good for you

Another important theorem

- 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

From these we can prove:

P(A) = P(A and B) + P(A and not B)

Conditional Probability

 P(A|B) = Fraction of worlds in which B is true that also have A true

- H = "Have a headache"F = "Coming down withFlu"
- P(H) = 1/10P(F) = 1/40P(H|F) = 1/2

"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 50-50 chance you'll have a headache."

Conditional Probability

H = "Have a headache"F = "Coming down withFlu"

P(H) = 1/10P(F) = 1/40P(H|F) = 1/2 P(H|F) = Fraction of flu-inflicted worlds in which you have a headache

= #worlds with flu and headache

#worlds with flu

Area of "H and F" region
Area of "F" region

= P(H ^ F) -----P(F)

Definition of Conditional Probability $P(A \land B)$ $P(A/B) = \dots P(B)$

Corollary: The Chain Rule $P(A \land B) = P(A|B) P(B)$

Probabilistic Inference

H = "Have a headache"F = "Coming down withFlu"

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Another way to understand the intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:

Let's say we have P(F), P(H), and P(H|F), like in the example in class. Areawise, P(F) = A + B, P(H) = B + C, Also, P(H|F) = $\frac{B}{A + B}$ Thus, to get the opposite conditional probability, ie, P(F|H), we need to figure out $\frac{B}{B + C}$

Since we know B / (A+B), we can get B / (B+C) by multiplying by (A+B) and dividing by (B+C). But since we already calculated, A+B = P(F), and B+C = P(H), so we are actually multiplying by P(F)and dividing by P(H). Which is Bayes Rule:

$$P(F|H) = P(H|F) * P(F)$$

$$P(H)$$

Probabilistic Inference

H = "Have a headache" F = "Coming down with Flu"

P(H) = 1/10P(F) = 1/40P(H|F) = 1/2

 $P(F \text{ and } H) = P(H | F) \times P(F) = \frac{1}{2} \times \frac{1}{40} = \frac{1}{80}$

$$P(F \mid H) = \frac{P(F \text{ and } H)}{P(H)} = \frac{\frac{1}{80}}{\frac{1}{10}} = \frac{1}{8}$$

What we just did... $P(A \land B)$ P(A|B) P(B) $P(B|A) = \dots = \dots$ P(A)P(A)P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Bad Hygiene Menu Menu Menu Menu		Good H	lygiene Menu

- You are a health official, deciding whether to investigate a restaurant
- You lose a dollar if you get it wrong.
- You win a dollar if you get it right
 - Half of all restaurants have bad hygiene
 - In a bad restaurant, ³/₄ of the menus are smudged
 - In a good restaurant, 1/3 of the menus are smudged
 - You are allowed to see a randomly chosen menu

Copyright © Andrew W. Moore

Slide 20