Probabilistic and Bayesian Analytics

Andrew W. Moore
School of Computer Science
Carnegie Mellon University

Discrete Random Variables

- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
- A = The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- A = You have Ebola

Probabilities

- We write $P(A)$ as "the fraction of possible worlds in which A is true"
- We could at this point spend 2 hours on the philosophy of this.
- But we won't.

Visualizing A

Event space of all possible \longrightarrow worlds

Its area is 1

$P(A)=$ Area of reddish oval

The Axioms of Probability

- $0<=P(A)<=1$
- P (True) $=1$
- $\mathrm{P}($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Simple addition and subtraction

These Axioms are Not to be

 Trifled With- There have been attempts to do different methodologies for uncertainty
- Fuzzy Logic
- Three-valued logic
- Dempster-Shafer
- Non-monotonic reasoning
- But the axioms of probability are the only system with this property:
If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

Theorems from the Axioms

- $0<=P(A)<=1, P($ True $)=1, P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

From these we can prove:

$$
P(\operatorname{not} A)=P(\sim A)=1-P(A)
$$

- How?

Side Note

- I am inflicting these proofs on you for two reasons:

1. These kind of manipulations will need to be second nature to you if you use probabilistic analytics in depth
2. Suffering is good for you

Another important theorem

- $0<=P(A)<=1, P($ True $)=1, P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

From these we can prove:
$P(A)=P(A$ and $B)+P(A$ and not $B)$

Conditional Probability

- $P(A \mid B)=$ Fraction of worlds in which B is true that also have A true
$\mathrm{H}=$ "Have a headache"
$\mathrm{F}=$ "Coming down with Flu"

$P(H)=1 / 10$
$P(F)=1 / 40$
$\mathrm{P}(\mathrm{H} \mid \mathrm{F})=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 5050 chance you'll have a headache."

Conditional Probability

H = "Have a headache"
F = "Coming down with Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$\mathrm{P}(\mathrm{H} \mid \mathrm{F})=1 / 2$
$\mathrm{P}(\mathrm{H} \mid \mathrm{F})=$ Fraction of flu-inflicted worlds in which you have a headache
= \#worlds with flu and headache
\#worlds with flu
= Area of " H and F " region
Area of "F" region
$=P\left(H^{\wedge} F\right)$
$P(F)$

Definition of Conditional Probability

$P(A \wedge B)$

$P(A / B)=--------$
$P(B)$

Corollary: The Chain Rule

$P(A \wedge B)=P(A / B) P(B)$

Probabilistic Inference

$\mathrm{H}=$ "Have a headache"
$\mathrm{F}=$ "Coming down with

Flu"

$$
\begin{aligned}
& P(H)=1 / 10 \\
& P(F)=1 / 40 \\
& P(H \mid F)=1 / 2
\end{aligned}
$$

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Another way to understand the intuition

Thanks to J ahanzeb Sherwani for contributing this explanation:

Let's say we have $P(F), P(H)$, and $P(H) F$, like in the example in class.

Areawise, $P(F)=A+B, \quad P(H)=B+C$,
Also, $P(H \mid F)=\frac{B}{A+B}$
Thus, to get the opposite conditional probability, ie, $P(F \mid H)$, we need to figure out $\frac{B}{B+C}$

Since we know $B /(A+B)$, we can get $B /(B+C)$ by multiplying by $(\mathrm{A}+\mathrm{B})$ and dividing by $(\mathrm{B}+\mathrm{C})$. But since we already calculated, $A+B=P(F)$, and $\mathrm{B}+\mathrm{C}=\mathrm{P}(\mathrm{H})$, so we are actually multiplying by $\mathrm{P}(\mathrm{F})$ and dividing by $\mathrm{P}(\mathrm{H})$. Which is Bayes Rule:
$P(F \mid H)=P(H \mid F)^{*} \frac{P(F)}{P(H)}$

Probabilistic Inference

$\mathrm{H}=$ "Have a headache"
$\mathrm{F}=$ "Coming down with Flu"

$$
\begin{aligned}
& P(H)=1 / 10 \\
& P(F)=1 / 40 \\
& P(H \mid F)=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& P(F \text { and } H)=P(H \mid F) \times P(F)=\frac{1}{2} \times \frac{1}{40}=\frac{1}{80} \\
& P(F \mid H)=\frac{P(F \text { and } H)}{P(H)}=\frac{1 / 80}{1 / 10}=\frac{1}{8}
\end{aligned}
$$

- You are a health official, deciding whether to investigate a restaurant
- You lose a dollar if you get it wrong.
- You win a dollar if you get it right
- Half of all restaurants have bad hygiene
- In a bad restaurant, $3 / 4$ of the menus are smudged
- In a good restaurant, $1 / 3$ of the menus are smudged
- You are allowed to see a randomly chosen menu

$$
\begin{gathered}
P(B \mid S)=\frac{P(B \text { and } S)}{P(S)}=\frac{P(S \text { and } B)}{P(S)} \\
=\frac{P(S \text { and } B)}{P(S \text { and } B)+P(S \text { and not } B)}
\end{gathered}
$$

$$
=\frac{P(S \mid B) P(B)}{P(S \text { and } B)+P(S \text { and not } B)}
$$

$P(S \mid B) P(B)$
$P(S \mid B) P(B)+P(S \mid \operatorname{not} B) P($ not $B)$

