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Discrete Random Variables
• A is a Boolean-valued random variable if A 

denotes an event, and there is some degree 
of uncertainty as to whether A occurs.

• Examples
• A = The US president in 2023 will be male
• A = You wake up tomorrow with a 

headache
• A = You have Ebola
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Probabilities
• We write P(A) as “the fraction of possible 

worlds in which A is true”
• We could at this point spend 2 hours on the 

philosophy of this.
• But we won’t.
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Visualizing A

Event space of 
all possible 
worlds

Its area is 1
Worlds in which A is False

Worlds in which 
A is true

P(A) = Area of
reddish oval
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The Axioms of Probability
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B

P(A or B)

BP(A and B)

Simple addition and subtraction
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These Axioms are Not to be 
Trifled With

• There have been attempts to do different 
methodologies for uncertainty

• Fuzzy Logic
• Three-valued logic
• Dempster-Shafer
• Non-monotonic reasoning

• But the axioms of probability are the only 
system with this property: 
If you gamble using them you can’t be unfairly exploited 
by an opponent using some other system [di Finetti 1931]
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Theorems from the Axioms
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(not A) = P(~A) = 1-P(A)

• How?
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Side Note
• I am inflicting these proofs on you for two 

reasons:
1. These kind of manipulations will need to be 

second nature to you if you use probabilistic 
analytics in depth

2. Suffering is good for you
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Another important theorem
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(A) = P(A and B) + P(A and not B)

A B
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Conditional Probability
• P(A|B) = Fraction of worlds in which B is 

true that also have A true

F

H

H = “Have a headache”
F = “Coming down with 
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

“Headaches are rare and flu 
is rarer, but if you’re coming 
down with ‘flu there’s a 50-
50 chance you’ll have a 
headache.”
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Conditional Probability
F

H

H = “Have a headache”
F = “Coming down with 
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(H|F) = Fraction of flu-inflicted 
worlds in which you have a 
headache

= #worlds with flu and headache
------------------------------------

#worlds with flu

= Area of “H and F” region
------------------------------

Area of “F” region

= P(H ^ F)
-----------

P(F) 
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Definition of Conditional Probability
P(A ^ B) 

P(A|B)  =  -----------
P(B) 

Corollary: The Chain Rule
P(A ^ B) = P(A|B) P(B) 
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with 
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat! 
50% of flus are associated with headaches so I must have a 
50-50 chance of coming down with flu”

Is this reasoning good?
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Another way to understand the 
intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2
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What we just did…
P(A ^ B)     P(A|B) P(B)

P(B|A) = ----------- = ---------------
P(A)             P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay 
towards solving a problem in the 
doctrine of chances. Philosophical 
Transactions of the Royal Society of 
London, 53:370-418
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Menu

Bad Hygiene Good Hygiene
MenuMenu

Menu

MenuMenu

Menu

• You are a health official, deciding whether to investigate a restaurant

• You lose a dollar if you get it wrong. 

• You win a dollar if you get it right

• Half of all restaurants have bad hygiene

• In a bad restaurant, ¾ of the menus are smudged

• In a good restaurant, 1/3 of the menus are smudged

• You are allowed to see a randomly chosen menu
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