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Purposes of Image
Processing

Visualization (human)
Enhancement, Restoration

Analysis (computer)
Documents, Textures, Biometrics,
Objed recognition

There are fundamental differences between them
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Lena Soderberg (ne Sjooblom) was last reported living in her
native Sweden, happily married with threekids and a job with the
state liquor monopoly. In 1988 she was interviewed by some
Swedish computer related pubdicaion, and she was pleasantly
amused by what had happened to her picture. That was the first she
knew of the use of that picture in the cmputer business.
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Sonnet for Lena &,_

Thomas Colthurst

O dea Lena, your beauty is © vast

It is hard sometimes to describe it fast.

| thought the entire world | would impress
If only your portrait | could compress

Alas! First when | tried to use VQ

| found that your cheeks belong to only you.
Your silky hair contains athousand lines
Hard to match with sums of discrete asines.
And your lips, sensual and tactual

£ Thirteen Crays found not the proper fradal.
And whil e these setbads are dl quite severe
I might have fixed them with hadks here or there
But when filters took sparkle from your eyes

| said, Damn all this, I Il just digitize 7
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Image Basics
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Image Formation

External Irradiation
Eledromagnetic
Acoustic

A/D  Sensor Array Focus °

M Dr. Yoram Td m
Digital Images

A digital image is an ordered set of pixels (picture
elements, also cdled pels).

A pixel isadually a point that has two components:
position and color. Further, pixel position has two
components (X,Y) while olor is represented by
three @mponents, which makes atotal of five
Independent components.

The screen representation of an image pixel may
contain more (sometimes lesg than a single screen
point (or screen pixel) per image pixel

10




30 CHAPTER 2. IMAGE REPRESEN TATION

b : C

Figure 2.3: The three possible regular grids in 2-D: a triangular grid, b square

grid, ¢ hexagonal grid.
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In most cases
an image is
represented by
a 2D matrix
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2.2. SPATIAL REPRESENTATION OF DIGITAL IMAGES . 31

a ’ b | C
m-1,n | m-1,n-1}{ m-1,n |m-1,n+1
m,n-1 m,r; m,n+1 m,n-1 m,n m,n+1
i
m+1,n m+1,n-1| m+i,n |m+1,n+1

Figure 2.4: Neighborhoods on a rectangular grid: a 4-neighborhood and b 8-.
neighborhood. ¢ The black region counts as one object (connected region) in an
8-neighborhood but as two objects in a 4-neighborhood.
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Figure 2.6: A discrete line is only well-defined in the directions of axes and di-
agonals. In all other directions, a line appears as a staircase-like jagged pixel
sequence (exercise 2.2).



2.2 A Simple Image Model 29

Intensity

Position

()

Intensity

Position
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Figure 2.7 Two examples showing that perceived brightness is not a simple function of
intensity. (Adapted from Cornsweet [1970].)
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'CHAPTER 1. APPLICATIONS AND 7

a b

ure 1.8: Test images for distance and area estimation: a parallel line
) to 5% difference in length; b circles with up to 10 % difference in radiu.
rvtical line appears longer, though it has the same length as the horizont
deception by perspective: the upper line (in the background) appears
an the lower line (in the foreground), though both are equally long.
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\
Figure 2.8: The context determines how “bright” we perceive an object to be
(exercise 2.4). Both squares have the same brightness, but the square on the
dark background appears brighter than the square on the light background.
The two squares only appear equally bright if they touch each other. |
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UMAN AND COMPUTER VISION
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1.10: a Recognition of boundaries between textures; b “interpolation” o

.
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Vase or Faces?
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Stretch your brain « | have my own little world. But that's OK, they know me here!

« Forrest Gump goes Kids on the Subject of Love
to Heaven »

Stretch your brain

This is not a test - just a phenomenon. All readings are explained. Read
out loud the text inside the triangle below.

wuww, planetperplex, com

More than likely you said, “A bird in the bush,” and if this is what you
said, then you failed to see that the word THE is repeated twice! Sorry,
look again.

Next, let’s play with some words. What do you see?

file:///D|/Courses/Image/Introductions/illusions/illusions.htmI[11/3/2011 8:52:46 AM]


http://godslilrocker7.wordpress.com/2007/10/15/forrest-gump-goes-to-heaven/
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Stretch your brain « | have my own little world. But that's OK, they know me here!

In black you can read the word GOOD, in white the word EVIL (inside
each black letter is a white letter). It’s all very physiological too, because
it visualizes the concept that good can’'t exist without evil (or the absence
of good is evil). Now, what do you see?

¥ Er ir€ =
VIT'V/

You may not see it at first, but the white spaces read the word optical,
the blue landscape reads the word illusion. Look again! Can you see why
this painting is called an optical illusion?

What do you see here?

This one is quite tricky! The word TEACH reflects as LEARN.

Last one. What do you see?

file:///D|/Courses/Image/Introductions/illusions/illusions.htmI[11/3/2011 8:52:46 AM]




Stretch your brain « | have my own little world. But that's OK, they know me here!

You probably read the word ME in brown, but when you look through ME
you will see YOU! Do you need to look again?

Test your brain. This is really cool. The second one is amazing so please
read all the way though.

ALZHEIMERS’ EYE TEST
Count every “F” in the following text:

FINISHED FILES ARE THE RESULT OF YEARS OF SCIENTIFIC STUDY
COMBINED WITH THE EXPERIENCE OF YEARS... (SEE BELOW)

How many? Wrong! There are 6 - no joke! Read it again! Really, go Back
and Try to find the 6 F’s before you scroll down.

The reasoning behind is further down. The brain cannot process “OF”.
Incredible or what? Go back and look again! Anyone who counts all 6
“F's” on the first go is a genius. Three is normal, four is quite rare.

More Brain Stuff From Cambridge University
Olny srmat poelpe can raed tihs.

I cdnuolt blveiee taht | cluod aulaclty uesdnatnrd waht | was rdanieg. The
phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at
Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoatnt tihng is taht the frist and Isat Itteer be in the
rgh it pclae. The rset can be a taotl mses and you can sitll raed it wouthit
a porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by
istlef, but the wrod as a wlohe. Amzanig huh? Yaeh and | awlyas tghuhot
slpeling was ipmorantt!

Possibly related posts: (automatically generated)

» So you think you know everything?
» Mind Boggles
» Your Eye Is Slower Than Your Brain

» O Iny Srmat Poelpe Can Raed Tihs.

file:///D|/Courses/Image/Introductions/illusions/illusions.htmI[11/3/2011 8:52:46 AM]
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Stretch your brain « | have my own little world. But that's OK, they know me here!

Tags: brain, illusions, test

This entry was posted on October 15, 2007 at 11:32 pm and is filed under Random. You
can follow any responses to this entry through the RSS 2.0 feed. You can leave a
response, or trackback from your own site.

2 Responses to “Stretch your brain™

kaidee33 Says:
October 16, 2007 at 6:17 pm

| like the f one. | counted it a zillion times, before realising about of. lol

godslilrocker7 says:
October 16, 2007 at 6:28 pm @

Haha, me too! Actually I couldn’t figure it out so I started to read down and read
about “of”.

Leave a Reply

You must be logged in to post a comment.

Blog at WordPress.com .
Entries (RSS) and Comments (RSS).
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Cracking the da Vinci Code

What do the Mona Lisa and President Abraha
BY VILAYANUR S. RAMACHANDRAN AND DIANE OGE

-RAMACHA?

m Lincoln have in common?

SPANISH PAINTER EL GRECO often
depicted elongated human figures and
obijects in his work. Some art historians
have suggested that he might have been
astigmatic—that is, his eyes’ corneas or
lenses may have been more curved hori-
zontally than vertically, causing the im-
age on the retina at the back of the eye
to be stretched vertically. But surely this
idea is absurd. If it were true, then we
should all be drawing the world upside
down, because the retinal image is up-
side down! (The lens flips the incoming
image, and the brain interprets theimage
on the retina as being right-side up.) The
fallacy arises from the flawed reasoning
that we literally “see” a picture on the
retina, as if we were scanning it with
some 1nmner eye.

No such inner eye exists. We need to
think, instead, of innumerable visual
mechanisms that extract information
from the image in parallel and process it
stage by stage, before their activity cul-
minates in perceptual experience. As al-
ways, we will use some striking illusions
to help illuminate the workings of the
brain in this processing.

Angry and Calm _

Compare the two faces shown in 4.
If you hold the page about nine to 12
inches away, you will see that the face on
the right is frowning and the one on the
left has a placid expression.

But if you move the figure, so that
it is about six or eight feet away, the
expressions change. The left one now

pained) ComT N W 01
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Up close, one face frowns and the other looks

calim.

. Viewed from farther away, the two faces change. How?
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Squint, and the image blurs, eliminating the sharp edges.
Presto! Lincoln becomes instantly recognizable.

contrasts, but that is not im-
portant for the purposes of
this column.)

Using computer algo-
rithms, we can process a nor-
mal portrait to remove either
high or low spatial frequen-
cies. For instance, if we re-
move high frequencies, we
get a blurred image that is
said to contain “low spatial
frequencies in the Fourier
space.” {This mathematical
description need not concern
us further here.) In other
words, this procedure of
blurring is called low-pass fil-
tering, because it filters out
the high spatial frequencies
(sharp edges or fine lines) and
lets through only low fre-
quencies. High-pass filtering,
the opposite procedure, re-
tains sharp edges and out-
lines but removes large-scale
variations. The result looks a
bit like an outline drawing
without shading.

These types of computer-processed
images are combined together, in an atyp-
ical manner, to create the mysterious faces
shown in 4. The researchers began with
normal photographs of three faces: one
calm, one angry and one smiling. They
filtered each face to obtain both high-pass

" (containing sharp, fine lines) and low-

pass (blurred, so as ro capture large-scale
luminance variations) images. They then
combined the high-pass calm face with
the low-pass smiling face to obtain the
leftimage. For the right image, they over-
laid the high-pass frowning face with the
low-pass calm face.

What happens when the figures are
viewed close-up? And why do the expres-
sions change when you move the page
away? To answer these questions, we
need to tell vou two more things about
visual processing. First, the image needs

to be close for you to see the sharp fea-
tures. Second, sharp features, when vis-
ible, “mask”—or deflect attention away
from—the large-scale objects (low spa-
tial frequencies).

So when you bring the picture near,
the sharp features become more visible,
masking the coarse features. As a resul,
the face on the right looks like it is
frowning and the one on the left, like it
is relaxed. You simply do not notice the
opposite emotions that the low spatial
frequencies convey. Then, when you
move the page farther away, your visual
system 1s no longer able to resolve the
fine details. So the expression conveyed
by these fine features disappears, and the
expression conveyed by low frequencies
is unmasked and perceived.

The experiment shows vividly an
idea originally postulated by Fergus

Campbell and John Robson
of the University of Cam-
bridge: information from

different spatial scales is ex-
tracted in parallel by vari-
ous neural channels, which
have wide ranges of recep-
tive field sizes. (The recep-
tive field of a visual neuron
is the part of the visual field
and corresponding tiny
patch of retina to which a
stimulus needs to be presented to activate
it.) It also shows that the channels do not
work in isolation from one another.
Rather they interact in interesting ways
(for example, the sharp edges picked up
by smali receptive fields mask the blurred
large-scale variations signaled by large
receptive fields).

Honest Abe

Experiments of this kind go back to
the early 1960s, when Leon Harmon,
then working at Bell Laboratories, de-
vised the famous Abraham Lincoln ef-
tect. Harmon produced the picture of
Honest Abe (b} by taking a regular pic-
ture and digitizing it into coarse pixels
(picture elements). Even when viewed
close-up, there is enough information in
the blocky brightness variations to recog-
nize Lincoln. But these data, as we noted

www.ScientificAmerican.com/Mind
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contrasts, but that is not im-
portant for the purposes of
this column.)

Using computer algo-
rithms, we can process a nor-
mal portrait to remove either
high or low spatial frequen-
cies. For instance, if we re-
move high frequencies, we
get a blurred image that is
said to contain “low spatial
frequencies in the Fourier
space.” (This mathematical
description need not concern
us further here.) In other
words, this procedure of
blurring is called low-pass fil-
tering, because it filters out
the high spatial frequencies
(sharp edges or fine lines) and
lets through only low fre-
quencies. High-pass filtering,
the opposite procedure, re-
rains sharp edges and out-
lines but removes large-scale
variations. The resultlooks a
bit like an outline drawing
without shading.

These types of computer-processed
images are combined together, in an atyp-
ical manner, to create the mysterious faces
shown in a. The researchers began with
normal photographs of three faces: one
calm, one angry and one smiling. They
filtered each face to obtain both high-pass

"(containing sharp, fine lines) and low-

pass {blurred, so as to capture large-scale
luminance variations) images. They then
combined the high-pass calm face with
the low-pass smiling face to obtain the
leftimage. For the right image, they over-
laid the high-pass frowning face with the
low-pass calm face.

What happens when the figures are
viewed close-up? And why do the expres-
sions change when you move the page
away? To answer these questions, we
need to tell you two more things about
visual processing. First, the image needs

to be close for you to see the sharp fea-
tures. Second, sharp features, when vis-
ible, “mask™—or deflect attention away
from—the large-scale objects (low spa-
tial frequencies).

So when you bring the picture near,
the sharp features become more visible,
masking the coarse features. Asa result,
the face on the right looks like it is
trowning and the one on the left, like it
is relaxed. You simply do not notice the
opposite emotions that the low spatial
frequencies convey. Then, when vou
move the page farther away, your visual
system is no longer able to resolve the
fine derails. So the expression conveyed
by these fine features disappears, and the
expression conveyed by low frequencies
is unmasked and perceived.

The experiment shows vividly an
idea originally postulated by Fergus

Campbell and John Robson
of the University of Cam-
bridge: information from
different spatial scales is ex-

tracted in parallel by vari-
ous neural channels, which
have wide ranges of recep-
tive field sizes. (The recep-
tive field of a visual neuron
is the part of the visual field
and corresponding tiny
patch of retina to which a
stimulus needs to be presented to activate
it.) It also shows that the channels do not
work In isolation from one another.
Rather they interact in interesting ways
(for example, the sharp edges picked up
by small receptive fields mask the blurred
large-scale variations signaled by large
receptive fields).

Honest Abe

Experiments of this kind go back to
the early 1960s, when Leon Harmon,
then working at Bell Laboratories, de-
vised the famous Abraham Lincoln ef-
fect. Harmon produced the picture of
Honest Abe (b) by taking a regular pic-
ture and digitizing it into coarse pixels
(picture elements). Even when viewed
close-up, there is enough information in
the blocky brightness variations to recog-
nize Lincoln. But these data, as we noted
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illusions

The elusive smile can be seen only when you look away
from the mouth. Attend to it out of the corner of your eye.

already, are masked by the sharp edges of
the pixels. When you move far away from
the photograph or squint, the image
blurs, eliminating the sharp edges. Pres-
to! Lincoln becomes instantly recogniz-
able. The great artist Salvador Dali was
sufficiently inspired by this illusion to use
it as a basis for his paintings, an unusual
juxtaposition of art and science (¢).

Mysterious Mona Lisa

Finally, consider the mysterious smile
of Leonardo da Vinci’s Mona Lisa. Phi-
losophers and art historians who special-
ize in aesthetics often refer to her expres-
sion as “enigmatic” or “elusive,” mainly
because they do not understand it. In-
deed, we wonder whether they prefer not
to understand it, because they seem to
resent any attempts to explain it scien-
tifically, apparently for fear that such
analysis might detract from its beauty.

But recently neurobiologist Marga-
ret Livingstone of Harvard Medical
School made an incriguing observation;
she cracked the da Vinci code, you might
say. She noticed that when she looked
directly at Mona Lisa’s mouth (d, center
panel), the smile was not apparent (quite
a disappointment). Yet as she moved her

gaze away from the mouth, the smile ap-
peared, beckoning her eyes back. Look-
ing again at the mouth, she saw that the
smile disappeared again. In fact, she
noted, the elusive smile can be seen only
when you look away from the mouth.
You have to attend to it out of the corner
of your eye, rather than fixating on it
directly. Because of the unique shading
(placement of low spatial frequencies) at
the corners of the mouth, a smile is per-
ceived only when the low spatial fre-
quencies are dominant—that is, when
you look indirectly at the masterpiece.
To confirm this notion, she performed
a low-pass filtering (left panel) and a
high-pass filtering (right panel) of the
Mona Lisa. Notice that with the low-pass
(blurred) image the smile is more obvious
than in the original—it can be scen even
if you look directly at the mouth. With
the high-pass (outlinelike) image, how-
ever, no smile is apparent, even if you
look away from the mouth. Putting these

two images back together restores the

original masterpiece and the elusive na-
ture of the smile. As with the changing
faces, we can now better appreciate what
Leonardo seems to have stumbled onand |
fallen in love with—a portrait that seems
alive because its fleeting expression
(thanks to quirks of our visual system) |
perpetually tantalizes the viewer.
Taken collectively, these experiments
show that there is more to perception
than what meets the eye. More specifi-
cally, they demonstrate that information
at different scales, such as fine versus
coarse, may be extracted initially from ‘
an image by separate neural channels and
recombined at different stages of process-
ing to create the final impression of a sin-
gle unified picture in your mind. M

VILAYANUR S. RAMACHANDRAN and
DIANE ROGERS-RAMACHANDRAN are at
the Center for Brain and Cognition at the
University of California, San Diego. This
column is reprinted from an earlier issue
of Scientific American Mind.
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|| (Further Reading)

# Dr. Angry and Mr. Smile: When Categorization Flexibly Modifies the Perception
of Faces in Rapid Visual Presentations. Philippe G. Schyns and Aude Oliva in Cognition,

Vol. 69, No. 3, pages 243-265; 1999.
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Reconstruction

algorithm

Figure 1.9 Image reconstruction using X-ray CT scanners.

o —

1.7 IMAGE DATA COMPRESSION

X rays

The amount of data associated with visual information is so large (see Table 1.1a)
that its storage would require enormous storage capacity. Although the capacities of
several storage media (Table 1.1b) are substantial, their access speeds are usually
inversely proportional to their capacity. Typical television images generate data
rates exceeding 10 million bytes per second. There are other image sources that
generate even higher data rates. Storage and/or transmission of such data require
large capacity and/or bandwidth, which could be very expensive. Image data com-
pression techniques are concerned with reduction of the number of bits required to
store or transmit images without any appreciable loss of information. Image trans-

Sec. 1.7

TABLE 1.1a Data Volumes of Image Sources
(in Millions of Bytes)

National archives 12.5x 10°
1 h of color television 28 X 10°
Encyclopeadia Britannica 12.5 x 10°
Book (200 pages of text characters) 1.3

One page viewed as an image 13

TABLE 1.1b Storage Capacities
(in Millions of Bytes)

Human brain 125,000,000
Magnetic cartridge 250,000
Optical disc memory 12,500
Magnetic disc 760
2400-ft magnetic tape 200
Floppy disc 1.25
Solid-state memory modules 0.25

Image Data Compression
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RGB images

Three intensity matrices: R, G and B
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image
imagesc
imshow

colorbar
getimage
truesize
warp
zoom

Image Display

Create and display image object.
Scale data and display as image.
Display image.

Display  colorbar

Get image data from axes.
Adjust display size of image.
Display image as texture
Zoom in and out of image or 2

- mapped surface.

- D plot.
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imread
imwrite
imshow
uiimport

iminfo

Image I/0

Read image type files.
Write image type files.
Load and display an image.

Interactive loading of different files
(MATLAB 6).
image file info (IP toolbox 3)

22
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Image Files Structure
tif .omp .jpg .png .pcx .gif

eV : :
Header | width || Height |
comments
Image Data
colormap
raster
fields
blocks

Formats: .tif .bmp .jpg .png .pcx .gif

23
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Image Conversion

gray2ind - intensity image to  indexed image.
im2bw - image to binary imageby thresholding
Im2double - image to double precision.

im2uint8 - image to 8- bit unsigned integers.
Im2uint16 - image to 16- bit unsigned integers.
ind2gray - indexed imageto intensity image.
ind2rgb - indexed imageto RGBimage.
mat2gray - matrix to intensity image.
rgb2gray - RGBimage or colormap to grayscale

rgb2ind

RGBimageto indexed image.

24
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MATLAB programming

Dr. Yoram

MATLAB
Tools -
USER Tools

MATLAB Environment

RAM

Nt
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b Dr. Y oram Tal
Important Concepts

Selection
V ectorizaion
Sparse Matrices

31

b Dr. Yoram Td
Selection (1)

Matrices are stored column wise,
in contiguous memory blocks

b|c

a
Matrix: dl e

g|hli

Memory: |a [d]g[blefh|c|f]i]

32
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Selection (2)

Arrays vs. Linear reference

8| 1
M= 5
41912
M(1,3)=6
M(3,2)=9 o
M(S) =5 M(:) = all elements of M
in a column vector
M(1,)) =18, 1, 6]
M(:,2)=| 1 Functions:
5 sub2ind
9 ind2sub

33
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M=

M([1 21,3) =[ 6 ]
7

M([12],[23D=|1 6
57

Selection (3)

Arrays vs. Linear reference

8

1

5

4

912

M(1:2:7)=[8, 4, 5, 6]

M([12],[333])=[ 666
777

34
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R =

Whatis R = L(M)?

31015
41311
-1 3 )22

R is the result of a selection M from a Look Up table L

w Dr.Yoram Td
¢ ¢

X
0.0804
0.0986
0.1626
0.2311
0.3361
0.3498
0.3817
0.4114
0.4091

© © N o g~ w NP

y
0.7751

0.8062
0.8206
0.8206
0.8182
0.9211
0.8206
0.7632
0.7081

Area of a polygon

Vectorization (1)

ZS = z (Xi+1yi - X1 yi+1)
1=1

n vertices
x(n+1) = x(1)
y(n+1) = y(1)
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©- Vectorization (2)

option #1: Loop

% close polygon (if not closed already)
x(end+1) =x(1);

y(end+1) = y(1);
s=0;

% loop
fori=1mn,

s=s+x(i+D)*y()) x(i)*y(itl);
end

s =1s/2;

37

©- Vectorization (3)

option #2: element by element product

2S =x2yl +x3y2 + x4y3 - xly2 - x2y3 - x3y4
I 2 n 1
X
y
I 2 n 1

s = sum(x(2:end).*y(1:end-1) - x(1:end-1).*y(2:end));
s =s/2;

38
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© Vectorization (4)

option #3: inner product

s =x(2:end) *y(1:end-1) - x(1:end-1) *y(2:end);

s =s/2;
1 2 n 1 y
x| !
2
n39
=

w Dr.Yoram Td
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DMpoly

40
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Sparse Matrices

41

L Dr.Yoram Td
Sparse Matrices
The Bucky ball graph
(Buckminst er Fuller - archit ect, mathematic i an,in ventor, ..
[BvV] = bucky ; hal f

gplot (B,v); bucky

)

N
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Adjacency Matrices

B is the adjacency (connect
the Bucky - ball.

1
B(i.j)= {
0

spy(B)

nz=

) Sparsity = 5%

I vity) matrix of

if ia ndjar
connect ed

oth erwis e

43

e
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Sparse Matrices:

Representation & Syntax

Ful

Sparse Syntax

S = sparse(A
S = sparse(i,j,s mn)
S = sparse(i,j, s)

WIN P~
AW W N|—.
~N O DN»;

2/10| 3

Any elements of S that have duplicate valuesof i andj
are added together.

W i.e, (=2, j=5, s=10) and (i=2, =5, s=11) yield §(2,5) = 21

44
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1. Histograms

im (image matrix)

The value of each pixel in this

Compute the number of pixels
eadt gray-level

S=sparse( im(),1,1);

: bar(S)

| Sparse Matrix Applications

isan integer intherange [0, 255.

image

for

45
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Histograms

46
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Histograms
Given an array of numbers: 2 9 4 5 2 2 5 6
6 9 3 7 3 5 4 2
A= 37 8 0 7 7 5 4
Find the frequency of 2 40 6 6 5 30
each number: 7 4 7 0 4 6 4 9

Number: 0 1 2 3 4 5 6 7 8 9
Count: 5 2 5 4 7 5 5 6 2 4

N =0 D =

a7

w Dr.Yoram Td
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Histogram (Normal)

X image matrix (intensity)

imhist (x)  display histogram
[count, bin] = imhist  (X) ;

Count
# pixels

Gray level
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Histograms cont)

concerning the distribution of gray levels

It does not contain any spatial information

The histogram of an image contains valuable information

All the following images have exactly the same histograms!

Dr. Yoram Td
w.. 4/

Histograms as Voting

A histogram isaresult of voting it countsthe number
of supporters (i.,e., pixels) of each candidate (graylevel)

In the simple cae of abinary image there ae only two
candidates: Mr zero and Ms one.

Voting has many useful applications in image processing
(aswell as in democracy).

50
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Image global deformations (v

Too dark

(a)

Too bright

o

(b)

51
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Image global deformations (2

Low contrast

High contrast

(@

52
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| = imreal('pout.tif’);
a =min(l(:));

b= max(I(:));
J=255%(1-a)/(b-a);
J=uint8(J);

Histogram stretching

Histogram of |
1500
1000
500
0 e P E
0 50 100 150 200 250
a=74 b=224
= =l peg
I max - min

53
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J

Histogram stretching com

1500

1000

500

Histogram of J
n I
0 50 100 150 200 i}
Histogram of |
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Stretching limitations
What happened?
A single pixel
Change
Plus rescaling

The minimum is 0 and the maximum is 255

55
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Histogram adjustment

K

Histogram of | K = imadjust(l,[0.3 0.67],[]);
1500 1
ot & =74 b=170 |
500
0 f iE
0 50 100 150 200 250
255 if ,l>=Db
operation
255%(1-a)/(b-a) if a<=Il,<b
0 if .<a

Thisisanon-linea

56
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Histogram adjustment o

o

Dr.Yoram Td

Histogram equalization
y = histeq(x,256);




30

Dr.Yoram Td
¢ 4

Transfer Function

Original Histogram

s

Equalized Hist(‘)gram‘

tf

e

n = prod(size(x))
tf = cumsum(255*h/n ) >

X (in[0 255])
L(1:150) =0;
L(151:240) =
L(241:255) = 255;

y = L(x+1);

© Dr'led_ook Up Table (LUT)

Linear approx. of tf

ot

linspace (0,255 , 90) ;
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© Non-linear LUT (1):

Gamma Correction

brighten darken

T
Histogram equalization (2)
Adam
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Pout

~ Histogram equalization (3)

w Dr.Yoram Td
¢ 4

paper

Histogram of paper

Histogram equalization (4)

Determining the grayscale precision of a scanner

64
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plot(sum(xeq))

Dr. Yoram Td

“ Non-linear LUT (2): Quantization

Reducing the number of bits/pixel - compresson

-

Lenna 1)y=1+ floor (Lenna/64) ;

2) L= repmat (0:3,64,1);
L=L( )
y=L( Lenna);

)
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" Quantization

The contouring effect

2D sine funct I on
Lewvals = 64 Lewvals = 32 Levels = 16
Levels =8 Levels = 4 Levels =2

sl sl =

67

" Quantization
Can it be made looking better?

Sure, Add som e noise t hen quantize

source lmage a=02%

a=1.00 a=1.50 a=2.00

68
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Graylevel/color Dithering

Optimal representation of grayleve (or color) imagesusing a
small number of graylevels (or colors)

References:

R. W. Floyd and L. Steinberg, "An Adaptive Algorithm for Spatia Gray Scae, Internationa
Symposium Digest of Tecdhnica Papers, Society for I nformation Displays, 36. 1975.

Spencer W. Thomeas, "Efficient Inverse Color Map Computation”, Graphics GemslI, (ed. James

Arvo), Academic Press. Boston. 1991. (includes source ade) 69

@ Dr. Y oram Tal ' '
MATLAB Dithering

rgb2| Nd converts RGB images to indexed images using one of three different methods:
uniform quantizati on, minimum variance quantization, and colormap mapping. For al of
these methods, rgb2ind also dithersthe image unless you specify ‘nodither’ for
dither_option.

X = dither(RGB,map) creates an indexed i mage approximation of the RGB image in the
array RGB by dithering the colorsin colormap map. map can not have more than 65,536
colors.

BW = dither(l) convertsthe intensity imagein the matrix | to the binary (black and
white) image BW by dithering.

[Y,newmap] = [ MapprOX(X,map,n) approximates the colorsin the indexed image X
and asociated colormap map by using minimum variance quanti zation. imapprox returns
indexed image Y with colormap newmap, which hasat most n colors. (additional options)

70
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Thresholding

A ¢

71

o Thresholding

separate objects from background

72
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Thresholding (2)

t imagesc (t>T)

o

Dr.Yoram Td

Background separation

Problem: background is not uniform

imagesc(Letter > T)

T =100

74
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© é;nckground separation (2)

3D map of Letter Histogram of Letter

Meshz(Letter)
Colormap copper

Histogram equali zation does not |:>
Help here!

Dr.Yoram Td

~ Background approximation

bg = blkproc(x,[10 1J,'mean2(x)*ones(size(x))");

bg

Block processng

Better approximations may be used (e.g., splines) 76
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Background subtraction

L etter - bg
; ]

——m 3

== e
FHS e Alshdecs ,zc.f.mamé y{‘—) T shteg Kieifiis
L miversery r Edinber gty piirn o7 e Dy A
CDepri e ;_\f;ﬁ:ma vl L b :.:;ﬁnﬂ, AR
Einbargh S ZRGE | s ibunph EH L 2L
C.S’d'&‘fifdﬂd; ey .- ; . &Eﬂféﬂ'md; %K

w Dr.Yoram Td

bg = blkproc(x,[20 20, mean2(x)");

-
Doy -
SN

Surf( bg); axis i
bg issmaller than Letter
bge = imresize(bg,size(L etter), bilinear );

78

Background approximation (2)
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Background subtraction (2)

40

L etter - bge

A5, Axhtes lleihi

o7 Ly rrdace g di) |
@;ﬁrgfg AT e e Zj.;r#’ﬁ

5 FErrEST s
V= /o) .£w74 LA E 2 4PL

TRGT LI e
CL 3 S -
. e S

b e A

[ o rtamel AR

Thresholding

f?.'u-‘

Vo AL /ff_f FéJMALLJ
; 7" L é’u-d -
Zg’.’;}"”,‘, Ao AR e z?;m,%
E = o s
efd’/néu_ A O L 2L
S ?‘gbr/u(c{ MR
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(will be

Filtered Letter

/7.5 ,lt?k/rft’-ff it D
?f)uz_ér_&'f/ o5 L o e

s SERrrEET Py

s raitpiragty S ZE 244
Seo Pand A

(Top hut filter 7x7)

Morpholo§lcal Filtering

iscussed later)

Thresholding
= ¥

PR, PRy M filn 2
E A STPN I L of Er v

e 27 ’J’ff“'”[ /“"’#ﬁ"' D™ 25 AP Pt ;@.:?2

& GEEE LT s
E.:?’/NW; S L 2 5L
S f/lnfu# 20 F

80
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Linear Filtering

81

b Dr. Yoram Td
MATLAB’s Functions

Conv2 Perform 2-D convolution. (ThisisaMATLAB function)

convmtx2 Compute 2-D convolution matrix

convn Perform N-D convolution. (ThisisaMATLAB function)
filter2 Perform 2-D filtering. (ThisisaMATLAB function.)
fspedal Crede predefined filters

imfilter Multidimensiona image filtering

82
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Properties

Linear filtering is atransformation of a source (image)
matrix into atarget matrix such that ead element of the
target matrix isa linea combination of some elements
of the source matrix.

In MATLAB, linea filtering is realized through
convolution:

Target = kernel & source
» Convolution is associative:

A®BOC)=(A®B)®C

83
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Linear filtering
h: 2(8)4 Amoving
1-3%4  window
A 2D matrix Central element
X \ J
_2 :4 2 0 -1 3 _0 _c 4 1l —h
7] L6) 4 -
2 1 1 3 2 : 3 - 3 ] E} 5 kernel
Result(ij) = 2*2 +6*3+4*3 + 13 3*2+4*0 = 31 84
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kernels

Conv2 uses a convolution kernel (rotated 180 )

Kconvolution=rot90(Kcorrelation,2);

Filter2 uses a correlation kernel (the kernel asis)

85

Dr.Yoram Td

Linear Filtering: fspecial
h= fspecial (Type,siz e},{si gma})

'gaussian' Gaussian lowpass filter

'sobel'  Sobel horizontal edge - emphasizing filter

' prewitt' Prewitt horizontal edge - emphasizing filter
' laplacian’ 2D Laplacian  operator filter

'log' Laplacian  of Gaussian filter

raverage' Averaging filter

"unsharp' Unsharp contrast enhancement filter

86
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The Gaussian function

87

Dr.Yoram Td .
¢ d -«

The Gaussian Filter

h= fspecial ( gauss);
freqz2 (h)

h

0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

Frequency response of h a lowpassfilter
88
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Filtering: filter2

y = filter2 (h,x, { shape })

Shape { full , sanme, vali d}
Defines the boundary condifions

Speaup features:

Automatically identifies separability
Realized via amex (dll) file

89
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Filtering: conv2

y= conv2 (hx ,{ shape })
y= conv2 (vert, horz x, { shape})

vert isavertical column-vedor [e.,g., ones(21,1)]

horz isahorizontal line-vedor [e.,g., ones(1,21)]

shape isthe same asin filter2.
Zero padding is applied where necessary.

90
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Border padding

Whenshape ={ full , sane}
a border padding is required

Filter2 and conv2 use zeo padding

Other choices are; Intensity profile mirror
Constant, non-zero value i

Replicaions of the border pixels

Mirror image of the nea border pixels constant
Circular (periodic) padding | zero
border

91
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Filtering: imfilter

y = imfilter (X, H,opt 1,o0pt 2, )

X and H are multidimensiomal
The classof y is the same & the class of x

Boundary options: zero, const. value, replicae, and symmetric

Output size same and full
Kernel: correlation or convolution

92
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Filtering - Separability

1 1 1 EI.E
_ C Is separableinto =
h=d 1 1 h=rF
A 11 E=
Followed by h, =[1 1 1]
Therefore : y=fi |ter2(hx)
Is the same as. tmp = filter2( ,x) h,

y = filter2( , h, tmp)

93
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Filtering - Separability ont)

The sameistruefor any function which can bewritten
asa product:

h is separabl e if
h(x,y) = h(x) *h(y)

For example, the Gaussan filter is parablesince

exp( - x"2 yn2) =
exp( - x"2)*exp (-y"2)

94
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Filtering - Separability ont)

Separ ability savestime!

A separable 20x20filter requires 40
operations (multipication-addition) per pixel
The same, non-separable filter requires 400
operations per pixel 10 timesas much

95
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Nonlinear Diffusion
filtering

96
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The Physical Model

basic equations

Fick s law: The concentration (or heat) gradient Cu
causes a flux j which aimsto compensate it.

[yes isotropic

j=-DMMu illoug

[No  anisotropic

Continuity equation: Diffusion does not create/destroys mass (heat)

o.u = —div(j)

97
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The Diffusion equation

Combining Fick s law with the @ntinuity equation yieldsthe
Diffusion equation:

d,u = div(D Du)
with the initial condition:

u(x,0)= f (x)

D isthe diffusion tensor (a positive definite symmetric matrix)

98
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Gaussian convolution

The solution of this equation (D = 1) isgiven by the
Convolution Integral:

0f (%) (t=0)

u(x.t)= de,, 0 1)) (t>0)

E f:R* - R
-

99
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Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany)
Died: 23 Feb 1855 in G ttingen, Hanover (now Germany)

100
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