THE USE OF DIGITAL
MORPHOLOGY
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MORPHOLOGY DEFINED

To be completely precise, the word morphology means ‘‘the form and structure
of an object,”” or the arrangements and interrelationships between the parts of an
object. Morphology is related to shape, and digital morphology is a way to describe
or analyze the shape of a digital (most often raster) object.

The oldest uses of the word relate to langnage and to biology. In linguistics,
morphology is the study of the structure of words, and this has been an area of
study for a great many years. In biology, morphology relates more directly to the
shape of an organism—the shape of a leaf can be used to identify a plant, and the
shape of a colony of bacteria can be used to identify its variety. In each case, there
1s an intricate scheme for classification based on overall shape (elliptical, circular,
etc.), type and degree of irregularities (convex, rough or smooth outline, etc.), and
internal structures (holes, linear or curved features, etc.) that has been accumulated
over many years of observation. |

The science of digital morphology is relatively recent, since it is only recently
that digital computers have made it practical. On the other hand, the mathematics
behind it is simply set theory, which is a well studied area. The idea underlying
digital morphology is that images consist of a set of picture elements (pixels) that
collect mnto groups having a two-dimensional structure (shape). Certain mathe-
matical operations on the set of pixels can be used to enhance specific aspects of
the shapes so that they might be (for example) counted or recognized. Basic op-
erations are erosion, in which pixels matching a given pattern are deleted from
the image, and dilation, in which a small area about a pixel is set to a given
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gical Operations

Morphological operations are methods for processing binary images based on
shapes. These operations take a binary image as input, and return a binary
image as output. The value of each pixel in the output image 1s based on thg
corresponding input pixel and its neighbors. By choosing the neighborhogq
shape appropriately, you can construct a morphological operation that is
sensitive to specific shapes in the input image.

Dilation and Erosion

The main morphological operations are dilation and erosion. Dilation and
erosion are related operations, although they produce very different results.
Dilation adds pixels to the boundaries of objects (i.e., changes them from of+ 1,
on), while erosion removes pixels on object boundaries (changes them from gn,
to off).

Each dilation or erosion operation uses a specified neighborhood. The state of
any given pixel in the output image is determined by applying a rule to the
neighborhood of the corresponding pixel in the input image. The rule used
defines the operation as a dilation or an erosion:

* For dilation, if any pixel in the input pixel’s neighborhood is on, the output
pixel is on. Otherwise, the output pixel is off.

* For erosion, if every pixel in the input pixel’s neighborhood is on, the output
pixel is on. Otherwise, the output pixel is of f.

The neighborhood for a dilation or erosion operation can be of arbitrary shape
and size. The neighborhood is represented by a structuring element, which is a
matrix consisting of only 0’s and 1’s. The center pixel in the structuring element
represents the pixel of interest, while the elements in the matrix that are on
(i.e., = 1) define the neighborhood.

The center pixel is defined as floor((size(SE)+1)/2), where SE is the
structuring element. For example, in a 4-by-7 structuring element, the center
pixel is (2,4). When you construct the structuring element, you should make
sure that the pixel of interest is actually the center pixel. You can do this by
adding rows or columns of (’s, if necessary. For example, suppose you want the
neighborhood to consist of a 3-by-3 block of pixels, with the pixel of interest in
the upper-left corner of the block. The structuring element would not be




:LEMENTS OF DIGITAL MORPHOLOGY—BINARY OPERATIONS

Binary morphological operations are defined on bilevel images; that is, images
that consist of either black or white pixels only. For the purpose of beginning the
discussion, consider the image seen 1n Figure 2Z.1a. The set of black pixels form
a square object. The object in Figure 2.1b is also square, but 1s one pixel larger
in all directions. It was obtained from the previous square by simply setting all
white neighbors of any black pixel to black. This amounts to a simple binary
dilarion, so named because it causes the original object to grow larger. Figure 2.1c
shows the result of dilating Figure 2.1b by one pixel, which is the same as dilating
Figure 2.1a by two pixels; this process could be continued until the entire image
consisted entirely of black pixels, at which point the image would stop showing
any change. | :

This is a very simple example of digital morphology, and one that can be
implemented directly by first marking all white pixels having at least one black
neighbor, and then setting all of the marked pixels to black. This 1s not, however,
how morphological operators are usually implemented. In general the object is
considered to be a mathematical set of black pixels; since each pixel is identified
by its row and column indices, a pixel is said to be a point in two-dimensional
space (E®). The set of pixels comprising the object in Figure 2.1a can now be
written as {(3,3)(3,4)(4,3)(4,4)} if the upper left pixel in the image has the index
(0,0). This set is too awkward to write out in full all of the time, so 1t will simply
be called A.
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Figure 2.1 The effects of a simple binary dilation on a small
‘object. (a) Original image. (b) Dilation of the original by 1 pixel.
(c) Dilation of the original by 2 pixels (dilation of (b) by 1 pixel).




{(0,0)(0,1)}. The pixels in the set C = A + B are computed using Equation 2.7,
which can be rewritten in this case as:

A@B=A+ {(00OHU @A+ {ODLDH (EQ2.8)

There are four pixels in the set A, and since any pixel translated by (0,0) does
not change, those four will also be in the resulting set C after computing C = A

+ {(0,0)}:
(3,3 + (0,0) = 3,3) (34 + (0,0 = (3.4
4,3y + (0,0) = 4,3) G4 + (0,0) = (4,3)
The result of A + {(0,1)} 1s: '
3,3 + 0,1H)=034 G4 + O1 =35
43y + (0,1) = 4,4) @4 + (0,1) = (4,5

The set C is the result of the dilation of A using structuring element B, and
consists of all of the pixels listed above (some of which are duplicates). Figure
2.2 illustrates this operation, showing graphically the effect of the dilation. The
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Figure 2.2 Dilation of the set A (Figure 2.1a) by the set B. (2) The
two sets. (b) The set obtained by adding (0,0) to all element of A.

(c) The set obtained by adding (0,1) to all elements of A. (d) The
union of the two sets is the result of the dilation.
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Binary Dilation
Now some definitions of simple set operations can be stated, with the goal being
to define dilation in a more general fashion in terms qof sets. The transilarion of

the set A by the point x is defined, in set notation, as:

(A, ={clc=a + x,a €A} (EQ 2.1)

For example, if x were at (1,2) then the first (upper left) pixel in A would be
(3,3) + (1,2) = (4,3); all of the pixels in A shift down by one row and right by
two columns in this case. This 1s a translation in the same sense that 1s seen in
computer graphics——a change in position by a specified amount.

The reflection of the set A is defined as:

A= {clc = —a a€ 4} (EQ2.2)

This is really a rotation of the object A by 180 degrees about the origin. The
f’ge,f complement of the set A is the set of pixels not belonging to A. This would
correspond to the white pixels in the figure, or in the language of set theory:

A = [cle & A) (EQ 2.3)

\(ﬂ'ﬂ The intersection of two sets A and B is the set of elements (pixels) belonging
T to both A and B:

AN B = {c(c €A A (c € B} (EQ 2.4)

ql ’y [0 The union of two sets A and B isrthe set of pixels that belong to either A or B,
or to both:

AUG = {clc € A v (c € B)) (EQ 2.5)

Finally, completing this collection of basic definitions, the difference between
_the set A and the set B 1s:

A — B = {c/(c €A) A (c & B)} | : (EQ 2.6)

which 1s the set of pixels that belong to A but not also to B. This is really just the
intersection of A with the complement of B or A (1 B-.

[t is now possible to define more formally what 1s meant by a dilation. A dilation
of the set A by the set B is:

A@B={cc=a+ba€E A bec B} (EQ2.7)

where A represents the image being operated on, and B is a second set of pixels,
a shape that operates on the pixels of A to produce the result; the set B 1s called
a structuring element, and its composition defines the nature of the specific dila-
tion. To explore this ided, let A be the set of Figure 2.1a, and let B be the set




As a further é;{ample, consider the object and structuring element shown
Figure 2.3. In this case, the origin of the structuring element B, contains a whi
pixel, implying that the origin is not included in the set B,. There is no rule again
this, but it is more difficult to see what will happen, so the example will be dor
in detail. The image to be dilated, A,, has the following set representation:

Ay = {(1L,DI(2,2)(2,3)(3,2)(3,3)(4,4)}.
The structuring element B, is: |
B, = {{0,—1I)}0,1)}.
T'he translétion of A; by (O,fl) vields
(Ade,-n = {(1,O(Z,D(Z,2)3,1)(3,2)(4,3)]
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Figure 2.3 Dilation by a structuring element that does not include
the origin. Some pixels that are set in the original image are not
set in the dilated image.
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Figure 2.4 Dilating an image using a structuring element. (a) The
origin of the structuring element is placed over the first black
- pixel in the image, and the pixels in the structuring element are
copied into their corresponding positions in the result image.
(b) Then the structuring element is placed over the next black
pixel in the image and the process is repeated. (¢} This is done for
every black pixel in the image.
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Figure 11.5: Dilation as isotropic expansion.

s several interesting properties that may ease its hardware or softw
present some here without proof. The interested reader may consult

paper [Haralick et al. 87].
n operation is commutative,

X&B=BgX
Jclative,
X®BoeD)=(XeB)eD

Jso be expressed as a union of shifted point sets,

X®B= UXb
beB

{ to translation,
X, B = (X ¥, B)h
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FIGURE 9.7

(a) Sample text of
poor resolution
with broken
characters (see
magnified view).
(b) Structuring
element.

(c) Dilation of (a)
by (b). Broken
segments were
joined.
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~ Erosion
i A and B as sets in Z°, the erosion of A by B, denoted A & B, is defined as

ASRB = {z](B).C A} (9.2-1)

s words, this equation indicates that the erosion of A by B 1s the set of all
‘ats z such Lhat B, transfated by 7. is contained in A. In the following discus-
-~ n. set B is assumed to be a structuring element. Equation (9.2-1) is the
sthematical formulation of the exampie in Fig. 9.3(e), discussed at the end of
-= last section. Because the statement that B has to be contained in A is
zivalent to B not sharing any common clements with the background, we
- express erosion in the following equivalent form:

ACB = {z[(B).N A = &} (9.2-2)

-zere, as defined in Section 2.6.4, A° is the complement of A and & s the
oty set.

Figure 9.4 shows an example of erosion. The elements of A and B are
vown shaded and the background is white. The solid boundary in Fig. 9.4(c)
he limit beyond which further displacements of the origin of 5 would
:se the structuring element to cease being completely contained in A.
i Trus, the locus of points (locations of the origin of B} within {and includ-
=72y this boundary, constitutes the erosion of A by B. We show the erosion
<iraded in Fig. 9.4(c). Keep in mind that that ercsion is simply the ser of
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. FIGURE 9.4 (a) Set A. (b) Square structuring clement. B. (¢} Erosion of A by B, shown
raded. {d) Elongaied structuring element. () Erosion of 4 by B using this clement.
i “he dotted border in (¢) and (e} is the boundary of set A. shown only for reference.
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The final translation is not a match, and
the result is a white pixel. The remaining
image pixels are white and could not
match the origin of the structuring
element; they need not be considered.

Figure 2.6 Binary erosion using a simple structuring element,
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FIGURE 9.8 (a) Structuring element B “rolling” along the inner boundary of A (the dot
indicates the origin of B). (b) Structuring element. (¢) The heavy line is the outer
boundary of the opening. (d) Complete opening (shaded). We did not shade A in (a)
for clarity.
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Figure 11.8: Erosion as isotropic shrink.

o

11.9: Contours obtained by subtraction of an eroded image from a

sion might be interpreted by structuring element B sliding across t}
1slated by the vector p is contained in the image X, the point con
tative point of B belongs to the erosion X & B. |
mplementation of erosion might be simplified by noting that an i
:turing element B can be expressed as an intersection of all translat
e vector! —b € B:

XoB= ﬂ X_p
beB
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X, the structuring element does not contain the origin. In Figure 13.3 a mor
elaborate example shows that erosion is ‘marking’ occurrences of patterns in the
image. It is as if the structuring element was a probe which is moved over th
image, recording a ‘hit’ whenever it corresponds to the same structure.

Combining dilation and erosion — boundaries and contours

Because isotropic shrinking is accomplished by erosion, we can use the compos-
ite operation:

I-TSX)

to perform boundary extraction. Here we are shrinking the image and subtract-
ing the result from the original. The subtrahend is thus the set of pixels ‘lost’ by
the erosion process. For isotropic shrinking we can use a 3x3 or a 5x5 structur-
ing element of 1’s. The dimension of the structuring element will determine the
width of the boundary detected. For example, using a 5x5 structuring element
will result in a boundary set that is between 2 and 3 pixels thick.




Figuré 2.7 gives some examples of erosions of a simple 1mage by a collectior
of different structuring elements. The basic shape of the structuring elements is
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' Figure 2.7 Examples of erosions by various structuring elements.
The binary structuring elements are labelled SE1 through SE6.




pixel in the input image. For example, to determine the state of the pixel (4,6)
in the output 1image:

e Overlay the structuring element on the input image, with the center pixel of
the structuring element covering the pixel (4,6).

e Look at the pixels in the neighborhood of the input pixel. These are the five
pixels covered by 1’s in the structuring element. In this case the pixels are:
(2,4), (3,b), (4,6), (5,7), (6,8). If all of these pixels are on, then set the pixel in
the output image (4,6) to on. If any of these pixels is off, then set the pixel
(4,6} in the output image to of f.

You perform this procedure for each pixel in the input image to determine the
state of each corresponding pixel in the output image.

Note that for pixels on borders of the image, some of the 1’s in the structuring
element are actually outside the image. These elements are assumed to cover
off pixels. As a result, the output image will usually have a black border, as in
the example below.

The Image Processing Toolbox performs dilation through the dilate function,
and erosion through the erode function. Each of these functions takes an input
image and a structuring element as input, and returns an output image.

This example illustrates the erosion operation described above:

BW1 = imread('circbw.tif');
SE = eye(5);

BW2 = erode(BW1,SE);
imshow(BW1)

figure, imshow(BW2)

o
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FIGURE 2.5 Using
erosion to remove
image compo-
nents. (a) A

486 X 486 binary
image of a wire-
bond mask.
(b)-(d) Image
eroded using
square structuring

elements of sizes
11 x 11,15 x 15,
and 45 X 45,
respectively. The
elements of the
SEs were all 1s.
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OPENING/CLOSING

Dilation: A®B
Erosion: AoB
Opening: A-B=(AcB)®B

Closing: AeB=(A®B)oB

Thus
Opening
1. AcBc A
2. 1f CcD then Co-Bc=DoB

3. (AcB)oB=AcB

Closing

1. Ac AB
If CcD then C:.Bc= DB

3. (AB)-B=AB

N

So, repeated opening or closing does nothing.
Only alternating them them accomplishes something
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Figure 2.4-13 Opening
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a. Original image. b. Structural element;  c.lmage after opening; erosion followed by
X == origin. dilation.
Figure 2.4-14 Closing
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a. Original image. b. Structural element;  c. image after closing; dilation followed by

X = origin. erosicn; original in dashes.

3. The number of iterations n.

The function L( ) and the values of @ and b are all functions of the row and col
umn, (r, ¢), but for coneise notation this is implied. Set S can contain any or all of the
14 surrounds defined in Figure 2.4-16. L(a, b) can be any logic function, but it turn:
out that the most useful are the AND and OR functions. The AND function tends t
etch away at object boundaries (erosion), and the OR function tends to grow object
{dilation).




Figure 13.5

Opening a binary image
with a disk structuring
element.

ariprassriirax’. ;v

After erosion

After dilation




11.4 Gray-scale dilation and erosion

Figure 11.11: Closing (original on the left).

mnd erosion, opening and closing are invariant to translation of the ¢
uations (11.14) and (11.20) imply that both opening and closin.
1ations. Opening is anti-extensive (X o B C X) and closing is exte

sing, like dilation and erosion, are dual transformations:

(X e B =X%0o B (1
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3733, <5

Figure 2.11 The closing operation. {a) The result of closing Figure
2.10d using the simple structuring element. (b) A thresholded
image of a circuit board, showing broken traces.

(<) The same image after closing, showing that most
of the breaks have been repaired.

(a) (b) () (d) (e) - (0
Figure 2.12 Multiple closings for outline smoothing. (a) Glyph
from Figure 2.11a after a depth 2 closing. (b) After a depth 3
closing. (c) A chess piece. (d) Thresholded chess piece showing

irregularities in the outline and some holes. (e) Chess piece after
closing. {f) Chess piece after a depth 2 closing.

for this latter option can be prohibitive, and if file storage 18 used the /O tume can
‘be large also.
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@ . _(b) N - ©

(d) (e) - (f)

Figure 2.31 Classifying coins by their size. (a) The image
containing coins to be classified. (b) After opening by a
-structuring element of radius 6. (¢) After opening by radius 6.5. (d)
Thresholded version of (), showing that the dimes can be
removed. (e) After opening by radius 8, showing that the pennies
have been removed. (f) After opening by radius 10; the only coin

remaining is the one-dollar coin.

shape would require quite a bit of experimenting with different structuring ele-
ments, size classification will be explored here. Quite a variety of objects are
regularly classified according to their size, from biological objects under a micro-
scope to eggs and apples. A “‘grade A large’’ egg, for example, should be notice-
ably bigger than a “‘medium’’ egg, and it should be possible to create a program
for classifying eggs using grey-level morphology. However, since eggs are often
graded using their weight, we will examine another case close to all of us—that
of money. ‘

As it happens, and not by accident, coins vary in size according to their value.
A dime is the smallest, and a one-dollar coin is (if you can find one) the biggest.
Figure 2.31a shows an image of a small collection of coins on a dark background.
It is a mixture of U.S. and Canadian coins, since it was easy to obtain a Canadian

one-dollar coin (called a loon).




Figure 2.8 is a better illustration of the use of erosion elements in a practical
sense. The problem is to design 4 structuring element that will locate the staff
lines in a raster image of printed music. The basic problem is to 1solate the symbols
5o that, once identified, the staff lines will be removed. The structuring clement
consists of five horizontal straight line segments separated by “‘don’tcare’ pix-
els—the latter corresponds to whatever occupies the space between the staff lines:
note heads, sharps, etc. In effect, these elements act as spacers, permitting the
combination of five distinct structuring elements into one.

After an erosion by the structuring element, each short section of staff lines has
been reduced to a single pixel. The staff Iines can be regenerated by a dilation of
the eroded image by the same structuring element (Figure 2.8d). If it is necessary
to remove the staff lines, this can be done by subtracting this image from the
onginal (Figure 2.8e). There are now gaps in the image where the lines used to
be, but otherwise the music symbols are free of the lines. A further morphological
step can fill in some of the gaps (Flffure 2.81). |
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Figure 2.8 Morphological removal of staff lines from printed
music. (a) The originai image. {b) The structuring element. (c)
Result of the erosion of (a) by (b). (d) Result of dilating again by
the same structuring element. (e) Subtract (d) from (a). (f) Use a

" simple morphological operator to fill in the gaps.

PP
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gure 136

A series Of openlng/
,ubtraCtmg operatlor?s
(based on an illustration
Haralick and Shapiro

(1992))-

Figure 13.7
Using the closing operation
to cluster points.

e e p g e ey g g etk e Ao Ams Lk Am T AR L n o e T g e m e = ams e g

Figure 2.15 Computing the roughness of reservoir rock pores. (a)
A pore image. (b) Opening of depth 3. Grey areas are pixels that

have been changed. (c) Opening of depth 6.
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Original image After closing with a disk

An example of an application of closing is shown in Figure 13.7. Here clusters
of points are changed into connected sets. Thus each point can now be labelled
as belonging to a certain cluster.
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a D
d C
2| it

FIGURE 9.11

(a) Noisy image.
(b) Structuring
element.

(c) Eroded image.
(d) Opening of A.
(e) Dilation of the
opening.

(f) Closing of the
opening.
(Original image
courtesy of the
National Institute
of Standards and
Technology.)



3.8 First words: morpholosical sradienrs SH

3.8.]1 Basic morphological gradients

A contmon assumption in image analysis consists in considering image objects
as regious of rather homogeneous grey levels. It follows that object boundaries
or wlges are located where there are high grey level variations. Gradient
operators are used to enhance these variations. When the image signal is
disturbed by some noise signal, it should be filtered before applying a gradient
operator o as to avoid enhancing the noise component.

Many gradient operators have been proposed in image analysis because
there is no unique discrete equivalent of the gradient operator defined for dif-
ferentiable continuous functions. Morphological gradients are cperators en-
hancing variations of pixel intensity in a neighbourhood determined by a
siructuring element. The erosion/dilation outputs for each pixel the mini-
mum,/maximum value of the image in the neighbourhood defined by the SE.
Variations are therefore enhanced by combining these elementary operators.

Three combinations are currently used:

1. arithmetic difference between the dilation and the erosion;
2. arithmetic difference between the dilation and the original image;
3. arithmetic difference between the original image and its erosion.

Only symmetric structuring elements containing their origin are considered.
By doing so, we make sure that the arithmetic difference is always nonnega-
tive.

The basic morphological gradient, also called Beucher gradient, is defined
as the arithmetic difference between the dilation and the erosion by the ele-
mentary structuring element B, of the considered grid. This morphological
gradient is denoted by p:

pp =0p —€B. (3.16)

From this latter equation, it can be seen that the morphological gradiemnt
outputs the maximum variation of the grey level intensities within the neigh-
bourhood defined by the SE rather than a local slope. In the continuous case,
the Beucher gradient is defined for a disc B whose radius A tends to zero:

(5}3 —ERB
= fim 282 "S5
PE = T 2

It can be shown that this definition is equivalent to the norm of the gradient
vector of the image considered as a differentiable function:

o(f) = IV 51,
where V f = (%5, %5). Note that the Beucher gradient is invariant to com-
plementation: p = pl. It is therefore a self-complementary operator.

In situations where the components of the gradient vector need to be
determined, alternative non-morphological methods should be considered.
For example, an estimation of the z— and y—components of the gradient

vector can be obtained by the so-cailed Sobel operator whose convolution
masks are given hereafter:

Lo -y o251
i ———— f)f A ‘—07A|

, A l !
d.lld = = *:l*: ] Dioi'
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FIGURE 9.14
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binary image, with
1s represented in
white. (b) Result
of using

Eq. (9.5-1) with
the structuring
element in
Fig.9.13(b).
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These properties can be understood by the fact that once a hole or crack has
been filled in, it remains flled in and cannot be filled in again. Likewise,
once a hair or protrusion has been removed, it remains removed and cannot
be recreated without evidence (e.g. without appealing to the original image
data).

There are a number of other properties of closing and opening; amongst

the most important ones are the following set containment properties:

AeBIAeBDA (B.27)

AeBCAcBCA (B.28)

In particular, objects in a closed image will if anything be larger than the
original objects, and objects in an opened image will if anything be smaller
than the original objects.

B.3.5 Hit-and-miss tra nsform

We now move on to a transform that can be used to search an image for
particular instances of a shape or other characteristic image feature. It i$
defined by the expression:

Az (B,C)=(AoB)N (A0 C) (B.29)

The fact that this cxpression contains an and (intersection) sign would
“hit-and-miss” transform more appropriale

appear to make the description
than thc name “hitor-miss” transform which is sometimes used.

We first of all consider the image analysing properties of the AsB

bracket. Applying B in this way (i.c. using erosion) leads fo the location
Is in the image match the 1s in the mask.
reveals a set of pixels where the
or the Os in A. Howe¥er, it is usual to take a €
mask which does not intersect with B (i.c. BOC= @). This indicates that
we are matching a set of 0s in a more general mask D against the Os in A.
a specified set of 0s

a specified set of 18 {corresponding to
the 1s in ). Certain other locations in [ contain neither 0s not s and

of a set of pixels where the
Now notice that applying C to image AS
1s in ¢ match the 1s in A*

Thus D is an augmented form of B containing
(corresponding to the 1s in C) and

Mathematical Morphoiogy

BE7
can be regarded as “don’t care” elements {which we will mark with an

x”). As an example, take the followi
: . owing lower leff ;
locating misks b elt concave corner

—

Lﬂ;*—J b4 1 1

‘It Yvill be seen that, in reality, this transform is equivalent to a code
coincidence detector, with the power to ignore irrelevant pixels. Thus it
searches fqr instances where specified pixels have the requiredb Vl’«':lhlcﬁ: :md
ther s_pcmﬁed pixels have the required 1 values: when it encounters silcch a
plX.C], it marks it with a 1 in the new image space, and otherwise rctﬁrm a (;
This qpproach is quite general and can be used 1o detect a wide variclt‘ 01;'
loc_al image conditions, including particular features, structures, sha e?sr or
ob_]ﬁ:cts. It. 1s by no means restricted to 3 x 3 masks as the abc;\’fé cx[')nn ple
might md.lcale. In short, it is a gencral binary tcmplate matching operat(or 1Ite
Eoiwcr mi}ght serve to indicate that crosion is ultimatcly a more impor;anll
p(r)c:;g')tlicglmn dilation—at least in its discriminatory, pattern recognition

- B.3.6 Template matching

© As m‘d;czlted in the previous subsection, the hit-and-miss transform is
essenttally a template matching operator and can be used to ?CaI'Ci'l ima *e:s
er Ltk!aracteris[ic features or structures. However, il needs to ]i]C gcncr'lliic;l

5 significantly before 1t can be used for practical featre detection ‘l'lsks
3 because features may appear in a number of different orientations or 71;i;c;,
. and 3ny one of them will have to trigger the detector. To achieve t%lfsl wé
glfe;:az k:;c::cd to take the union of the results obtained from the various pairs

U;A®(B,;C;)=U;(A@B')ﬂ(ALE)C‘) (Bju)

Qr,‘cqmvalently, 1o tak(? the union of the results abtained from the various
D-type masks (sce previous subscction),




The Use of Digital Morphology

OO0 1010
| 1
1 C>(D C>(D C) Lo i
% e
:::::oo . % O O O Oleleo/eleje
Clelee/ejele
W (0@ 00O Hotsesser
OO0 Ole/ele
oroﬁo OO C>(D O L oooootj ] }J 1
oolololel T 1T
(a) (b) (c) olo]olo[o] il
oicloicjolc|e !
olo|olclolo]o
OHONGHGNO, 01610,010.0,0
o 0/o/o olejo/e e]e ojolo]olojolo|ojclo 0;0[o[0lo
ss e o eeeeee O . . Q O senseeseec | [ I
ool Olo| Beeiasesy  ©
eolclofoioCloleje O @ . O ololclolojojo|elelo
O
siooisioctoeisl |O 1O O| O] Blkkicnicnes
NODEEERERDD ciolojolololojoie]o
teissisisiosiers | Q1O OO0 ReSSEiSRes

—_——
Q.
N

(e) (f)

Figure 2.17 lllustration of the hit and miss transform. (a) The
image to be examined. (b) Foreground structuring element for the
location of upper right corners. (c) The erosion of (a) by (b)—the
"hit"” portion of the computation. {(d) The complement of (a). {e)
The background structuring element, showing that the three
pixels to the upper right of the corner must be background pixels.
(f) The erosion of (d) by (e), or the “miss” portion of the
computation. (g) The intersection of (¢} and (f)—the result,
showing the location of each of the two upper right corners in
the original image.

the result of the intersection of the ‘‘hit’’ and the ‘‘miss.”” The set pixels in the
result both correspond to corners in the image.

Also notice that the background structuring element is not the complement of
the foreground structuring element; indeed, if it had been, then the result would
have been an empty image since there 1S no match to its peculiar shape in the
complement image. The set pixels in the background structuring element are those
that must be background pixels in the image in order for a match to take place.
Overspecification of these pixels results in few matches, and underspecification
results in too many. Careful selection, possibly through experimentation, 1s
needed.

By the way, the upper and rlght p1xels in Flcure 2.17f are white because they

et N AT s TlaAds i Ala




Morphological Image Processing Lecture 22 (page 2)

e Objective is to find a disjoint region (set) in an image

e If B denotes the set composed of X and its background,
the match /hit (or set of matches/hits) of B in A, is

A®B=(ASX)N[AS (W — X)

e Generalized notation: B = (B, By)

Set formed from elements of B associated with

* B an object

Set formed from elements of B associated with

* By the corresponding background

[Preceeding discussion: By = X and By = (W — X))]
e More general definition:

A®B=(A© B;)N[A°S By

e A ® B contains all the origin points at which, simulta-
neously, By found a hit in A and B, found a hit in A°



Morphological Image Processing Lecture 22 (page 3)

e Alternative definition:

A®B=(AOB) - (A® B,)

e A background is necessary to detect disjoint sets

e \When we only aim to detect certain patterns within a set, a
background is not required, and simple erosion is sufficient

9.5 Some basic morphological algorithms

When dealing with binary images, the principle application
of morphology is extracting image components that are useful
in the representation and description of shape

9.5.1 Boundary extraction

The boundary G(A) of a set A is

where B is a suitable structuring element



Morphological Image Processing Lecture 22 (p. 19)

B B
1 I
W | . )
| B'i=1,2,34 [x[|x|] B'i=1,2,...,8
* %] (rotate 907) (rotate 457)
I 1V
B'i=1,2734 B'i=156,78
* (rotate 907) (rotate 907)
V

FIGURE 9.26 Five basic types of structuring elements used for binarv morphology. The
origin of each element is at its center and the >’s indicate “don’t care™ values.

9.6 Extensions to grey-scale images

f(z,y): Input image
b(x,y): Structuring element image

0.6.1 Dilation

Grey-scale dilation of f by b, is defined as

(fdb)(s,t) =max{f(s—x,t —y)+blx,y)
(s —z),(t —y) € Dy; (z,y) € Dy},

where D and Dj, are the domains of f and b, respectively



erode

S

Purpose

Syntax

Description

Class Support

Remarks

nple

Perform erosion on a binary image

BW2 = erode(BW1,SE)

BWZ2 = erode{BW1,5E,alg)

Bw2 = erode(BW1,SE,...,n)

BW2 = erode(BW1,SE) performs erosion on the binary image BW1, using the

binary structuring element SE. SE is a matrix containing only 1's and s,

BW2 = erode(BW1,SE,alg) performs erosion using the specified algorithm. a
ig a string that ean have one of these values:

e 'spatial’' (default) — processes the image in the spatial domain.

® 'freguency' — processes the image in the frequency domain.

Both algorithms produce the same result, but they make different tradeoffs
between speed and memory use. The frequency algorithm 1s faster for large
images and structuring elements than the spatial algorithm, but uses mucl
more memory.

BW2 = erode(BW1,SE,...,n) performs the erosion operation n times.

The input image BW1 can be of class double or uint8. The output image BW2
of class uint8.

You should use the frequency algorithm only if you have a large amount of
memory on your system. If you use this algorithm with insufficient memory
may actually be slower than the spatial algorithm, due to virtual memory
paging. If the frequency algorithm slows down your system excessively, or:
you receive “out of memory” messages, use the spatial algorithm instead.

BW1 = imread('text.tif')
SE = ones (3,1}

BwW2 = er‘ode(BW1,SE);
imshow(BW1)
figure, imshow(Bw2)




wmorph

Jrpose

rntax

escription

Perform morphological operations on binary images

BW2 = bwmorph(BW1,operation)
BW2 = bwmorph(BW1,operation,n)
BW2 =

bwmorph (BW1,operation) applies a specific morphological operation to
the binary image BW1.

BW2 = bwmorph(BW1,operation,n) applies the operation n times. n can be Inf,
in which case the operation is repeated until the image no longer changes.

operation is a string that can have one of these values:

‘bothat' - 'erode’ 'shrink'
'bridge’ Fill! 'skel’
‘clean’ "hbreak' "spur'
‘close’ - 'majority’ | "thicken'
‘diag’ o ‘open’ "thin'
'dilate' ‘remove’ ‘tophat’

‘bothat’ (“bottom hat”) performs binary closure (dilation followed by erosion)
and subtracts the original image.

'bridge' bridges previously unconnected pixels. For example:

1 0 0 1 0 0
1 0 1 becomes 1 1 1
0 0 1 0 0 1

‘clean' removes isolated pixels (individual 1’s that are surrounded by 0’s),
such as the center pixel in this pattern:

0 0 0
0 1 0
0 0 0

‘close’ performs binary closure (dilation followed by erosion).




bwmorph

'diag' uses diagonal fill to eliminate 8-connectivity of the background. For
example:

0 1 0 0 1 0
Tt 0 0 becomes 1 1 0
0 0 O o 0 0

'dilate' performs dilation using the structuring element ones(3).
'erode ' performs dilation using the structuring element ones(3).

'£111' fills isolated interior pixels (individual 0’s that are surrounded by 1’s),
such as the center pixel in this pattern:

‘hbreak' removes H-connected pixels. For example:

1 i1 i 1 1
0 1 0 becomes 0 0 0
1 1 1 T 1 1

'majority' sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are
1’s; otherwise, it sets the pixel to 0.

'open' implements binary opening (erosion followed by dilation).

'remove’ removes interior pixels. This option sets a pixel to 0 if all of its
4-connected neighbors are 1, thus leaving only the boundary pixels on.

'shrink', with n = Inf, shrinks objects to points. It removes pixels so that
objects without holes shrink to a point, and objects with holes shrink to a
connected ring halfway between sach hole and the outer boundary. This option
preserves the Euler number.

'skel', with n = Inf, removes pixels on the boundaries of objects but does not
allow objects to break apart. The pixels remaining make up the image skeleton.
This option preserves the Euler number.




vmorph

1ss Support

ol d

'spur’' removes spur pixels. For example:

O 0 0 0 0 0 0 0
0 0 0 0O 0 0 0 O
0 0 1 0 becomes 0 0 0 O
0 1 0 0 0 1 0 0
i1 0 0 1 1 0 0

'thicken', with n = Inf, thickens objects by adding pixels to the exterior of
objects until doing so would result in previously unconnected objects being
8-connected. This option preserves the Euler number.

'thin', with n = Inf, thins objects to lines. It removes pixels so that an object
without holes shrinks to a minimally connected stroke, and an object with holes
shrinks to a connected ring halfway between each hole and the outer boundary.
This option preserves the Euler number.

‘tophat' (“top hat”) returns the image minus the binary opening of the image.

The input image BW1 can be of ¢class double or uint8. The output image BW2 is
of class uints.




.Examples

See Also

References

bwmory

BW1 = imread('circles.tif'}),;
imshow{(BW1) ;

BW2 = bwmorph(BW1, ‘remove'},
BW3 = bwmorph(BW1, 'skel',Inf});
imshow (BW2)

figure, imshow(BW3)

bweuler, bwperim, dilate, erode

Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,

Volume I. Addison-Wesley, 1992.

Pratt, William K. Digital Image Processing. John Wiley & Sons, Inc., 1991.




Morphological Operatior

For example, suppose you want to reduce all objects in the circuit image to
lines, without changing the essential structure (topology) of the image. This
process is known as skeletonization. You can use bwmorph to do this:

BWi = imread('circhw.tif');
BW2 = bwmorph(BW1, 'skel',Int);
imshow (BW1)

figure, imshow(BW2)

L)

1

The third argument to bwmorph indicates the number of times to perform the
operation. For example, if this value is 2, the operation is performed twice, with
the result of the first operation being used as the input for the second
operation. In the example above, the value is Inf. In this case bwmorph
performs the operation repeatedly until it no longer changes.

For more information about the predefined operations available, see the
reference entry for bwmorph in Chapter 11.
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Comments
(The Roman numerals refer to the
structuring elements shown in
Operation Equation Fig. 9.26).

Translation (A), ={w|w=a +z, forae A} Translates the origin
of A to point z.

Reflection B = {w|w = b, forbc B} Reflects all elements
of B about the origin
of this set.

Complement A° = {w|we A} Set of points not in A.
Difference A—-B={w|lwes A weg B} Set of points that belong
= AMNB to A but not to B.

Dilation ATRB = {z|(f>’)_. NA#J} “Expands” the boundary
ol A.(I)

Erosion ASB = {z|(B), C A} “Contracts” the boundary
of A. (1)

Opening A-B=(ASCB)T B Smoothes contours,

breaks narrow isthmuses,
and eliminates small
islands and sharp

peaks. (1)

Closing A*B=(ADB)SB Smoaothes contours, fuses
narrow breaks and long
thin gulfs. and eliminates
small holes. (1)

Hit-or-miss A@B={AcB)N(ASB,) The set of points
transform i {coordinates) at which.
={ASB) - (ATB,) simultaneously, B, found

amatch ("hit™) in A and
1, found a match in A",

Boundary BlA)= A - [A2B) Set of points on the
extraction houndary of
set A. (1)
Region filling X, = (X, @ B) 1 A% X, = pand Fills a region in A, given a
k=12173.. point g in the region. (11}

Connected Xy =(X;, |\ DB)MA X, = pand Finds a connected
components k& = 1,2.3, ... component ¥ in A, given
apoint pin V. (1)

Convex hull Xt = (X}, @ B)U Aii = 1,2.3,4  Finds the convex hull C(A)
k=12.2...Xy= A:and of set A. where “conv”
D= X indicates convergence

in the sense that
& = X (1)
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Operation

Equation

Comments
{The Roman numerals refer to the
structuring elements shown in
Fig.9.26).

Thinning

Thickening

Skeletons

Pruning

-~ A-(A®B)
AN (A® BY

§(4) = HSK(A)

S.(A) = H]{(A S kB)
~[(4kB) - B]}

Reconstruction of A:

A= CJ(SA.(A) @ kR)

X, = A® {B)
g
X, - J(x,0 )
k=1
X:=(X,DH)NA
X_; = X| J X_'l,

A® B2 RBY) ... )@ RB")
{B. B*, B, ... B"}

Thins set A. The first two
equations give the basic
definition of thinning.
The last two equations
denote thinning by a
sequence of structuring
elements. This method
is normally used in
practice. (I'V)

Thickens set A. (See
preceding comments on
sequences of structuring
glements.) Uses TV with
(’s and 1's reversed.

Finds the skeleton S{A) of
set A. The last equation
indicates that A can be
reconstructed from its
skeleton subsets S,( A).
[n all three equations, K is
the value of the iterative
step after which the set A
erodes to the empty set.
The notation (A S kB)
denotes the kth iteration
of successive erosion of
A by B.(I)

X, is the result of pruning
set A. The number of
times that the first
equation is applied to
obtain X, must be
specified. Structuring
elements V are used for
the first two equations.
[n the third equation H
denotes structuring
element 1.




re Extraction

When you process an image, you may want to obtain information about how
certain features of the image change. For example, when you perform dilation,
yvou may want to determine how many pixels are changed from of f to on by the
operation, or to see if the number of objects in the image changes. This section
describes two functions, bwarea and bweuler, that return two common
measures of binary images: the image area and the Kuler number.

Image Area

The bwarea function returns the area of a binary image. The area is a measure
of the size of the foreground of the image. Roughly speaking, the area is the
number of on pixels in the image.

bwarea does not simply count the number of on pixels, however. Rather, bwarea
weights different pixel patterns unequally when computing the area. This
weighting compensates for the distortion that is inherent in representing a
continuous image with discrete pixels, For example, a diagonal line of 50 pixels
is longer than a horizontal line of 50 pixels. As a result of the weighting bwarea
uses, the horizontal line has area of 50, but the diagonal line has area of 62.5.

This example uses bwarea to determine how much the area of the circuit image
increases after a dilation operation:

BW1 = imread('circbhw.tif');

SE = ones(5);

BW2 = dilate(BW1,SE);

increase = (bwarea(BW2) — bwarea(BW1))/bwarea(BW1);

increase =

0.3456

The dilation increases the area by about 35 percent.

For more information about the weighting pattern used by bwarea, see the
reference entry for bwarea in Chapter 11.
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B.4 Connectedness-based analysis of images B

one illustration of the applicanon of

Each of these masks recognizes a particular situation where the central
alysis. We have chosen the case of

pixel is unnecessary for maintaining counnectedness and can be eliminated
(this assumes that the foreground is regarded as 8-connected). Thus all
pixels can be subjecled to the T, mask and eliminated if the mask matches
the neighbourhood; then all pixels can be subjected to the T, mask and
eliminated if appropriate; and so on until upon repeating with all the masks
there 1s no change in the output image (see Chapter 6 for a full description
-of the process).

However, although this particular procedure is guaranteed not to
disconnect objects, it does not terminate the skeleton location procedure, as
there remain a number of locations where pixels can be removed without
disconnecting the skeleton. The advantage of the masks given above is that
they are very simple and produce fast convergence towards the skelcton.
Their disadvantage is that a final stage of processing is required to complete
“the process (for example, one of the crossing number based mothods of

Chapter 6 may be used for this purpose, but we do not pursuc the matter
: further here).

In this appendix there is only space for
morphology 10 conmectedness-based an
<keletonization and thinning.

B.4.1 Skeletons and thinning

i \it-and-miss transform
A widely used thinning algorithm uscs cight D-type hit and-1 1%

masks (see Section B.A.5)
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{i) {ii) {iii)

{b) Examples where P, is not deletable {P, = 1}.
(i) Deleting P, will tend to split the region;
{il) deleting 2, will shorten arc ends;
(i) 2 < NZ(P,) <6 but P, is not deletable.

—_—
\ \
} j
H /
rd
|
[
- d
(i} (i)
{c} Example of thinning.
(i} Original; ‘ _
(i} thinned. Figure 9.32 A thinning algerithm,

tained is not influenced by small contour inflections that may be present on the
initial contour. The basic approach [42] is to delete from the object X simple border
points that have more than one neighbor in X and whose deletion does not locally
disconnect X. Here a connected region is defined as one in which any two points in
the region can be connected by a curve that lies entirelv in the region. In this way,
endpoints of thin arcs are not deleted. A simple algorithm that vields connected arcs
while being insensitive to contour noise is as follows [43].

Referring to Figure 9.32a. let Z0(F) be the number of zero to nonzero

transitions in the ordered set P, B, P....., B P Let NZ(P)) be the number ot
nonzero neighbors ot . Then £ is deleted if (Fig. 9.32b)
2= NZ(P)=6
and ZO(F)=1
(9.86)
and PP -P=0 or ZOP)#1
and P-P-F=0 or ZOPF)+1

The procedure is repeated until no further changes occur in the image. Figure 9.32¢
gives an example of applying this algorithm. Note that at each location such as P, we
end up examining pixels from a 5 X 5 neighborhood.

Sec. 9.9 Structure 383




11.5 Skeletons and object marking

o
~1
—~1

Figure 11.22: Skeleton as points where two or more wavefronts of grassfire meet.

A more formal definition of skeleton is based on the concept of maximal ball. A ball
B(p,r) with center p and radius r, r > 0, is the set of points with distances d from the center
less than or equal to r. '

The ball B included in a set X is said to be maximal if and only if there is no larger
ball included in X that contains B, ie., each ball B, B C B’ € X == B’ = B. Balls and
maximal balls are illustrated in Figure 11.23.

Nota

maI balls

Figure 11.23: Ball and mazimal balls in Euclidean plane.

The distance metric 4 that is used depends on the grid and definition of connectivity.
Unit balls in a plane (i.e., unit disks) are shown in Figure 11.24.

@ W K

Figure 11.24: Unit-size disk for different distances, from left side: Buclidean distance, 6-, 4-,
and 8-connectivity, respectively.

The plane R? with the usual FEuclidean distance gives the ball Bg. Three distances and
balls are often defined in the discrete plane Z2. If a hexagonal grid and 6-connectivity is
used, the hexagonal ball By is obtained. If the support is a square grid, two unit balls are
possible: By for 4-connectivity and By for 8-connectivity.

b 11The skeleton by maximal balls §(X) of a set X C 27 is the set of centers p of maximal
alls:
S(X)={pe X: 3r >0, Bp,r) is a maximal ball of X}

: T}.l'ls definition of skeleton has an intuitive meaning in the Euclidean plane. The skeleton
%ta disk reduces to its center, the skeleton of a stripe with rounded endings is a unit thickness
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line at its center, etc.

Figure 11.25 shows several objects together with their skeletons—a rectangle, two touching
balls, and a ring. The properties of the {Euclidean) skeleton can be seen here—in particular,
the skeleton of two adjacent circles consists of two distinct points instead of a straight line
joining these two points, as might be intuitively expected.

Figure 11.25: Skeletons of rectangle, two touching balls, and a ring.

The skeleton by maximal balls has two unfortunate properties in practical applications.
First, it does not necessarily preserve the homotopy {connectivity) of the original set; and
second, some of the skeleton lines may be wider than one pixel in the discrete plane. We shall
see later that the skeleton is often substituted by sequential homotopic thinning that does
not have these two properties.

Dilation can be used in any of the three discrete connectivities to create balls of varying
radii. Let nB be the ball of radius n:

nB=B®B&...oB (11.44)

The skeleton by maximal balls can be obtained as the union of the residues of opening of the
set X at all scales {Serra 82}:

& @]

S(X)=|J(X&nB)\ (X @nB)o B (11.45)

n=0
The trouble with this is that the resulting skeleton is completely disconnected and this prop-
erty is not useful in many applications. Thus homotopic skeletons that preserve connec-
tivity are often preferred. We present an intuitive homotopic skeletonization algorithm hased
on consecutive erosions {thinning) in Section 11.5.3.

11.5.3 Thinning, thickening, and ﬁomotopic skeleton

One application of the hit-or-miss transformation {Section 11.3.3) is thinning and thicken-
ing of point sets. For an image X and a composite structuring element B = (By, Bz) (notice
that B here is not a ball), thinning is defined as

X@B=X\(X@B) (11.46)
and thickening is defined as )
X@eB=XU(X3B) (11.47)

. o . , : (o reniCe
When thinning, a part of the boundary of the object is subtracted from it by the set differ ?”Ct
operation. When thickening, a part of the boundary of the backeround is added to the object:
Thimning and thickening are dual transformations:

(X®BY¥=X0B B=(B5) (11.45)
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FIGURE 9.23

(a) Set A.

(b) Various
positions of
maximum disks
with centers on
the skeleton of A.
(c) Another
maximum disk on
a different
segment of the
skeleton of A.

(d) Complete
skeleton.
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Thinning reduces a curvilinear object to a single-pixel-wide line, showing its topol-
ogy graphically. In Figure 18-23, thinning a group of chromosomes, some of which are
touching, produces a graph with one segment for each chromosome. This can be used as the
basis for a separation algorithm for objects that are in contact.

Figure 18-23  Thinning

18.7.4.3 Skeletonization

An operation related to thinning is skeletonization, also known as the medial axis trans-
Jorm or the grass-fire technigue [46-50). The medial axis is the locus of the centers of all
the circles that are tangent to the boundary of the object at two or more disjoint points.
Skeletonization is seldom implemented, however, by actually fitting circles inside the
object.

Conceptually, the medial axis can be thought of as being formed in the following way.
Imagine that a patch of grass, in the shape of the object, is set on fire all around the periphery
at once. As the fire progresses inward, the locus of points where advancing fire lines meel
is the medial axis.

Skeletonization can be implemented with a two-pass conditional erosion, as with
thinning. The rule for deleting pixels, however, is slightly different. Figure 18-24 comparcs
thinning with skeletonization. The primary difference is that the medial axis skeleton
extends to the boundary at corners, whiie the skeleton obtained by thinning does not.

18.7.4.4 Pruning

Often, the thinning or skeletonizing process will leave spurs on the resulting figure. These
are short branches having an endpoint located within three or so pixels of an intersectiol-
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; Q
Figure 18-24 Thinaing and

skeletonization: (a) thinned skeleton;
(b) medial axis

Spurs result from single-pixel-sized undulations in the boundary that give rise to a short
branch. They can be removed by a series of three-by-three operations that remove endpoints
(thereby shortening all the branches), followed by reconstruction of the branches that still
exist. A three-pixel spur, for example, disappears after three iterations of removing end-
points. Not having an endpoint to grow back from, the spur 18 not reconstructed.

18.7.4.5 Thickening

Dilation can be implemented so as not to merge nearby objects. This can be done in two
passes, similarly to thinning, An alternative is to complement the image and use the thinning
operation on the background. In fact, each of the variants of erosion has a companion dila-
tion-type operation obtained when it is run on a complemented image.

Some segmentation techniques tend to fit rather tight boundaries to objects so as to
avotd erroneously merging them. Often, the best boundary for isolating objects is too tight
for subsequent measurement. Thickening can correct this by enlarging the boundaries with-
oul merging separate objects.

- 18.7.4.6 An example

Figure 18-25 illustrates how morpholfogical operations can be concatenated to implement a
complex process. Here an image of a printed circuit board 1s analyzed to locate a break point
in the traces.

18.7.5 The Distance Transformation

Another related operation that can be performed on binary images is the distance transfor-
mation. It results, however, not in another binary image, but in a gray-level image. The gray
level at each pixel is the distance from that pixel to the nearest background pixel.

An approximate distance transformation can be computed by an erosion-like opera-
tion wherein, on each pass, pixels are labeled with the iteration number rather than being
climinated from the object. The so-called chamfer algorithm computes a distance transfor-
mation in only two passes over the image [51,52].
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See Sections 11.4.2 and
11.4.3 for additional
applications of
morphological
reconstruction.

This definition of
reconstruction is based
on dilation. It is possible
to define a similar
operation using erosion.
The results are duals of
each other with respect
to set complementation.
These concepts are
developed in detail in
Gonzalez and Woods
[2008].

imreconstruct

EXAMPLE 10.8:
Opening by
reconstruction.

Morphological Image Processing

Morphological Reconstruction

Reconstruction is a morphological transformation involving two images and a
structuring element (instead of a single image and structuring element). One
image, the marker, is the starting point for the transformation. The other image,
the mask, constrains the transformation. The structuring element used defines
connectivity. In this section we use 8-connectivity (the default), which implies
that B in the following discussion is a 3 X 3 matrix of 1s, with the center defined
at coordinates (2, 2). In this section we deal with binary images; gray-scale
reconstruction is discussed in Section 10.6.3.

If G is the mask and F is the marker, the reconstruction of G from F,
denoted R.(F),is defined by the following iterative procedure:

1. Initialize A, to be the marker image, F.
2. Create the structuring element: B = ones(3).
3. Repeat:

by = (B ® B)NG
until 4, = A,.

4. R,(F)=h,,,.

Marker F must be a subset of G:
FCG

Figure 10.21 illustrates the preceding iterative procedure. Although this iter-
ative formulation is useful conceptually, much faster computational algorithms
exist. Toolbox function imreconstruct uses the “fast hybrid reconstruction”
algorithm described in Vincent [1993]. The calling syntax for imreconstruct
is

out = imreconstruct(marker, mask)

where marker and mask are as defined at the beginning of this section.

Opening by Reconstruction

In morphological opening, erosion typically removes small objects, and the sub-
sequent dilation tends to restore the shape of the objects that remain. However,
the accuracy of this restoration depends on the similarity between the shapes
and the structuring element. The method discussed in this section, opening by
reconstruction, restores the original shapes of the objects that remain after ero-
sion. The opening by reconstruction of an image G using structuring element
B, is defined as R,(G © B).

A comparison between opening and opening by reconstruction for an im-
age containing text is shown in Fig. 10.22. In this example, we are interested in
extracting from Fig. 10.22(a) the characters that contain long vertical strokes.

Copyright Gonzalez, Woods, Eddins
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ale] it

FIGURE 10.21 Morphological reconstruction. (a) Original image (the mask). (b) Marker image. (c)-(e) Interme-
diate result after 100, 200, and 300 iterations, respectively. (f) Final result. (The outlines of the objects in the
mask image are superimposed on (b)-(e) as visual references.)

Because both opening and opening by reconstruction have erosion in common,
we perform that step first, using a thin, vertical structuring element of length
proportional to the height of the characters:

>> f = imread('book_text bw.tif');
>> fe = imerode(f, ones(51, 1));

Figure 10.22(b) shows the result. The opening, shown in Fig. 10.22(c), is
computed using imopen:

>> fo = imopen(f,ones(51, 1));

Note that the vertical strokes were restored, but not the rest of the characters
containing the strokes. Finally, we obtain the reconstruction:

>> fobr = imreconstruct(fe, f);

Copyright Gonzalez, Woods, Eddins
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FIGURE 9.29 (a) Text image of size 918 X 2018 pixels. The approximate average height
of the tall characters is 50 pixels. (b) Erosion of (a) with a structuring element of size
51 X 1 pixels. (c) Opening of (a) with the same structuring element, shown for
reference. (d) Result of opening by reconstruction.
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FIGURE 9.31

(a) Text image of
size 918 X 2018
pixels. (b) Com-
plement of (a) for
use as a mask
image. (c) Marker
image. (d) Result
of hole-filling
using Eq. (9.5-29).
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FIGURE 10.22
Morphological
reconstruction:
(a) Original
image.

(b) Image eroded
with vertical line;
(c) opened with a

Morphological Image Processing
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Segmentation of nontrivial images is one of the mog
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The result in Fig. 10.22(d) shows that characters containing long vertical strokes
were restored exactly; all other characters were removed. The remaining parts
of Fig. 10.22 are explained in the following two sections.

Filling Holes

Morphological reconstruction has a broad spectrum of practical applications,
each characterized by the selection of the marker and mask images. For exam-
ple,let I denote a binary image and suppose that we choose the marker image,
F, to be 0 everywhere except on the image border, where itis setto1—1I:

1—1I(x,y) if (x,y) is on the border of /

F(x,y)=
(x,7) 0 otherwise

Then,
H= [Rl‘(F )]
is a binary image equal to / with all holes filled, as illustrated in Fig. 10.22(e).

Copyright Gonzalez, Woods, Eddins
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Toolbox function imfill performs this computation automatically when
the optional argument 'holes' is used:

g = imfill(f, 'holes"') imfill
This function is discussed in more detail in Section 12.1.2.

Clearing Border Objects

Another useful application of reconstruction is removing objects that touch
the border of an image. Again, the key task is to select the appropriate marker
to achieve the desired effect. Suppose we define the marker image, F, as

Flx.y) = I(x,y) if (x,y)is on the border of /
770 otherwise

where [/ is the original image. Then, using / as the mask image, the reconstruc-
tion

H =R,(F)

yields and image, H, that contains only the objects touching the border, as Fig.
10.22(f) shows. The difference, 1 — H, shown in Fig. 10.22(g), contains only the
objects from the original image that do not touch the border. Toolbox function
imclearborder performs this entire procedure automatically. Its syntax is

g = imclearborder(f, conn) imclearborder
where f is the input image and g is the result. The value of conn can be either 4

or 8 (the default). This function suppresses structures that are lighter than their
surroundings and that are connected to the image border.

Copyright Gonzalez, Woods, Eddins
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5.2 THE MEDIAL-AXIS TRANSFORM

Possibly the first definition of a skeleton is that of Bium (1‘967) in d@ning the
medial axis function (MAF). The MAF treals afl boundary p1xe£s‘ as point sources
of # wave front. Bach of these pixels excites its neighbors with a d@uy time
proportional to distance, so that they, too, become part of the wav;:rtr‘ont\. Thi
wave passes through each point only once, and when two waves mee:L they Lfm(,?
each other, producing 4 corner. The medial axis (MA) is the IQCLIS of the corners,
and forms the skeleton (Blum says line of symmetiy) of the olb)ect. The MAE uses
both time and space information, and can be invert-ed. to give back Ihc? original
picture. It is possible to inplement this directly, but 1t 1s dlfﬁCl-.lle. What 1s nee.ded
is to convert the continuous transform to a discrete one. ThIS' mxfo;ves various
approximations involving the distance functi(?n ona d;sc‘rete g§1(i.. This allowzthe
MAF to be applied to a raster image, for which the medial axis 18 n(?t defined.
One way to find the medial axis is to use the boundary of the object. Eor any
point P in the object, locate the closest point on the bounc.lary. If there is more
than one boundary point at the minimum distance, then P is on the medu‘ﬂ axis.
The set of all such points is the medial axis of the object. Unfortunately this must

be done at a very high resolution, or Euclidean distances will not be equal when
they should be, and skeletal pixels will be missed.

An approximation to the medial axis on a sampled grid is more easily obtained
in two steps. First, compute the distance from each object pixel to the nearest
boundary pixel. This involves computing the distance to all boundary pixels. Next,
the Laplacian of the distance image is calculated, and pixels having large values
are thought to belong to the medial axis.

The way that distance is measured has an impact on the result, as seen in Figtire
5.1. The medial axis was found for a T-shaped object using Euclidean distance,
4-distance, and 8-distance. 4-distance between pixels A and B is defined to be the
minimum number of horizontal and vertical moves needed to get from A to B. 8-
distance is the minimum number of pixel moves, in any of the standard eight
directions, needed to get from A to B. There are clear differences in the medial
axis depending on which way distance is calculated, but any of them could be
used as a skeleton.

The skeleton of the T produced by the medial axis does not have the same shape
as the T, nor does it-need it. The main concern is whether the skeleton characterizes
the basic shape of the object somehow. On the other hand, a simple example

o - s
(a) (b) (@
Figure 5.1 The effect of the distance function on the medial

axis. {a) Medial axis {above) and skeleton {(helow) of the T-
shaped object, using 4-distance. (b) Medial axis and skeleton
computed using 8-distance. (¢) Computed using
Euclidean distance,
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9.5.2 Region filling

e Begin with a point p inside the boundary, and then fill the
entire region with 1's

e All non-boundary (background) points are labeled 0
e Assign a value of 1 to p to begin...

e The following procedure fills the region with 1's,
X, = (Xk_l@B) NAS k=1,23,...,
where X = p, and B is the symmetric structuring element in

figure 9.15 (c)

e The algorithm terminates at iteration step k if X, = X;_;

e The set union of X and A contains the filled set and its
boundary

Note that the intersection at each step with A° limits the
dilation result to inside the region of interest
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FIGURE 9.15

Region filling. — Origin
(a) Set A.

(b) Complement
of A.

(¢) Structuring
element B,

(d) Initial point
inside the
boundary.
(e)-(h) Various
steps of

Eq. (9.5-2).

(i) Final result
[union of (a) and
(h)].

i)

X, X, X,UA

abc

FIGURE 9.16 (a) Binary image (the white dot inside one of the regions is the starting
point for the region-filling algorithm). (b) Result of filling that region (¢) Result of fill-
ing all regions.
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9.5.3 Extraction of connected components

Let Y represent a connected component contained in a set A
and assume that a point p of Y is known. Then the following
iterative expression vyields all the elements of Y':

Xk:(Xk_l@B)ﬂA k=1,2,3,...,

where Xy = p, and B is a suitable structuring element. [f
X = X}_1, the algorithm has converged and we let Y = X.

This algorithm is applicable to any finite number of sets of
connected components contained in A, assuming that a point
is known in each connected component

r()rigin
W

¥

nix

abc
d e

FIGURE 9.17 (a) Sct A showing initial point p (all shaded points are valued 1. but are
shown different from p to indicate that they have not vet been found by the algorithm).
(b) Structuring element. (¢) Resull of first ilerative step. (d) Result af second step.
(&) Final result.
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Example 9.7:

a

b

B5d

FIGURE 9.18

(a) X-ray image
of chicken filet
with bone
fragments.

(b) Thresholded
image. (¢) Image
eroded with a

3 X 5structuring
element of 17s,
(d) Number of
pixels in the
connected

Connected  No. of pixels in
component  connected comp

. 01 11

components of - 9

(¢). (Image pos .

courtesy of NTB 04 39

Elektronische 5 133
Geraete GmbH, 05 1
Diepholz, 7 1
Germany, 08 74

www.ntbxray.com.) 09 7
10 11

11 11

12 9

13 9

14 674

15 85

0.5.4 Convex hull

Morphological algorithm for obtaining the convex hull, C'(A),
of a set A...

Let By, By, B3 and B, represent the four structuring elements
in figure 9.19 (a), and then implement the equation ...
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X =(Xp_1®BYUA, i=1,234,k=1,2,..., X, = A

Now let D' = X

eonyy Where “conv’ indicates convergence in
the sense that X = X] ;. Then the convex hull of A is

d | = ¢ %
b ¢ d —— =
- I. g x| X x '.1 x x
- " B' B? B B
FIGURE 9.19

{a) Structuring
elements. (b) Set
A. (©)—(I) Results
of convergence
with the
structuring
elements shown
in (a). (g) Convex
hull. (h) (}'um-‘ex X'I' 2 x! x?
hull showing the
contribution of
each structuring
element.
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Shortcoming of above algorithm: convex hull can grow beyond
the minimum dimensions required to guarantee convexity

Possible solution: Limit growth so that it does not extend
past the vertical and horizontal dimensions of the original set
of points

%
i
-
R 7]
.
=
FIGURE 9.20 Result of limiting growth of convex hull algorithm to the maximum di-

mensions of the original set of points along the vertical and horizontal directions,

Boundaries of greater complexity can be used to limit growth
even further in images with more detail

9.5.5 Thinning
The thinning of a set A by a structuring element B:
AR B=A—-(A®B)=AN(A®DB)*
Symmetric thinning: sequence of structuring elements,
{B}={B',B* B°,...,B"},

where B is a rotated version of B*~!
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A {B}=((...(A® B Y ® B%)...) ® B")

llustration: Note that figure 9.21 (in the handbook) has many
errors — this one is correct...

— Origin
| = % = " = =
LB £ | *
B! B B3 B B Ro B B
4 A =498 A, = A®B?
_ 3 o 4 B . 5
A3 - A2®B A4 o A3®B A5 — A4®B
= 6 - 7.8 _ 1,2,3.4
A.f] = A5®B AH - A(,@B A&4 —A8®B
_ 5 _ 16
Ags =dg4©B Ag g =Ags®B Ag ¢ converted to

No further changes after this. m-connectivity.
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9.5.6 Thickening

Thickening is the morphological dual of thinning and is defined
by A®B=AU(A®B),

where B is a structuring element

Similar to thinning...

Ao{B}=((...(A®BY®B?%...)® B")

Structuring elements for thickening are similar to those of fig-
ure 9.21 (a), but with all 1's and 0's interchanged

A separate algorithm for thickening is seldom used in practice
— we thin the background instead, and then complement the
result

a b
cd
e

FIGURE 9.22 (a) Sct A, (b) Complement of A. (¢) Result of thinning the complement of
A (d) Thickened set abtained by complementing (¢). (e¢) Final result, with no discon-
necled poinls
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0.5.7 Skeletons

The algorithm proposed in this section is similar to the me-
dial axis transformation (MAT). The MAT transformation is
discussed in section 11.1.5 and is far inferior to the skeletoniza-
tion algorithm introduced in section 11.1.5. The skeletoniza-
tion algorithm proposed in this section also does not guarantee
connectivity. We therefore do not discuss this algorithm.

l[lustration of the above comments...

ab

¢ d

FIGURE 9.23

{a) Set A.

(b) Various
positions of
maximum disks
with centers on
the skeleton of A.
{c) Another
maximum disk on
a different
segment of the
skeleton of A.
(d) Complete
skeleton.
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A further illustration...

i ASKB |(AGKB)-B| si(A) ;-usk(,q) Se(A) @ kB kl'_jlsk(Ajeka
n 0 O 0 . 0
0
O 0 O 0
1
O 0 O m > o n
2
B

FIGURE 9.24 Implementation of Egs. (9.5-11) through (9.5-15). The original set is at the top left.
and its morphological skeleton is at the bottom of the fourth column. The reconstructed set is at
the bottom of the sixth column.

9.5.8 Pruning

e Cleans up “parasitic’ components left by thinning and skele-
tonization

e Use combination of morphological techniques
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lllustrative problem: hand-printed character recognition
e Analyze shape of skeleton of character

e Skeletons characterized by spurs (“parasitic’ components)
e Spurs caused during erosion of non-uniformities in strokes

e We assume that the length of a parasitic component does
not exceed a specified number of pixels

ab
C
t] e x
f B
FIGURE 9.25 < B', B*, B*, B* (rotated 907)

(a) Original
image. (b) and
(c) Structuring
elements used for B°. B° B7, B® (rotated 90°)
deleting end
points. (d) Result
of three cycles of
thinning. (¢) End
points of (d).

() Dilation of end
points
conditioned on
(a). (g) Pruned

image.

i
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Any branch with three or less pixels is to be eliminated

(1) Three iterations of:
X, =A®{B}
(2) Find all the end points in X;:
X, =U_, (X;®BY

(3) Dilate end points three times, using A as a delimiter:

Xs=(Xo®H)NA, H=[1]1]1

(4) Finally:

Xy=X1UX;5
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VA

(b)

Figure 5.2 A single pixel difference between two objects can

create a large difference in their skeletons. (a) The T-shaped

object, but with one less black pixel. (b) The skeleton of the
new object, quite different from those in Figure 5.1.

exposes a fundamental problem with the medial axis as a skeleton. Most people
would agree that the skeletons of two objects that are similar to each other should,
- in turn, be similar. Figure 5.2 shows an object that differs from Figure 5.1a in
only a single pixel; the medial axes of these objects, on the other hand, differ
substantially.

Most vision researchers would agree that the medial-axis transform often does
not yield an ideal skeleton, and takes too long to compute. It does, however, form
the basis of a great many thinning methods, and in that regard is a very important
concept.
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Figure 6.32: Region skeletons; small changes in border can have a significant effect on the
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(a) (b

Figure 6.33: Region skeletons, see Figures 5.1a and 6.2a for original images; thickened for
visibility.

and small-scale local deformation.

~Skeleton construction algorithms do not result in graphs, but the transformation from
skeletons to graphs is relatively straightforward. Consider first the medial axis skeleton, and
assume that a minimum radius circle has been drawn from each point of the skeleton which
has at least one point common with a region boundary. Let contact be each contiguous subset
of the circle which is common to the circle and to the boundary. If a circle drawn from its
center A has one contact only, A is a skeleton end point. If the point A has two contacts, it
is a normal skeleton point. If A has three or more contacts, the point A is a skeleton node
point.

Algorithm 6.9: Region graph construction from skeleton

1. Assign a point description to all skeleton points—end point, node point, normal point.

2. Let graph node points be all end points and node points. Connect any two graph nodes
by a graph edge if they are connected by a sequence of normal points in the region
skeleton.




5.3

ITERATIVE MORPHOLOGICAL METHODS

The majority of thinning algorithms are based on a repeated stripping away of
layers of pixels until no more layers can be removed. There is a set of rules definine
which pixcels may be removed, and frequently some sort of zcmplate“matchin;
scheme 1s used to implement these rules. Often, the rules are designed so that it
is easy to tell when to stop: when no change occurs after two consecutive passes
through the image.

The first such algorithm to be described (Stentiford 1983) is typical of the zenre.,
It uses 3 X 3 templates, where a match of the template in the 1mage means to
delete (set to white) the center pixel. The basic algorithm is:

1. Find a pixel location (i,j) where the pixels in the image I match those in
template M1 Figure 5.3a).

2. If the central pixel is not an endpoint, and has connectivity number = 1,
then mark this pixel for later deletion.

X
X|:

(a) (o] (d)

Figure 5.3 Templates for identifying pixels that can be deleted
in the Stentiford thinning algorithm. (a) Template M1. (b)
Template M2. () Template M3. (d) Template M4. The specified
black and white pixels in the templates must correspond to
pixels of an identical color in the image; the Xs indicate places
where we don’t care what color the image pixel is.

XXX

XIOX

X
O @€
X
(b)

3. Repeat steps 1 and 2 for all pixel locations matching the template M1.
4. Repeat steps 1--3 for the remaining templates in turn: M2, M3, and M4,

5. If any pixels have been marked for deletion, then delete them by setting
them to white.

6. If any pixels were deleted in step 3, then repeat the entire process from step
1; otherwise stop.

The image must be scanned for a template match in a particular order for each
template. The purpose of template M, is to find removable pixels along the top
edge of an object, and we search for a match from left to right, then from top to
bottom. M, will match a pixel on the left side of an object; this template moves
from the bottom to the top of the image, left to right. M; will locate pixels along
the bottom edge, and moves from right to left, bottom to top. Finally, to find pixels
on the right side of an object, match template M, in a top-to-bottom, right-to-left
fashion. This specific order and direction for applying the templates ensures that
the pixels will be removed in a symmetrical way, without any significant direc-
tional bias.

There are still two issues to be resolved, both from step 2. A pixel is an endpoint
if it is connected to just one other pixel; that is, if a black pixel has only one black
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Figure 5.4 An illustration of the connectivity number. (a) The
central pixel does not connect any regions, and can be
removed. Connectivity number = 1. (b) If the central pixel were
to be deleted, then the left and right halves would (might)
become disconnected. Connectivity number = 2.

(c) Connectivity = 3. (d) Connectivity = 4, the maximum.

(e) Connectivity = 0.

A connectivity number is a measure of how many objects a particular pixel might
connect.

One such connectivity measure, as seen in Figure 5.4, is (Yokoi 1973):

C, = 2 Ny — (Ne - Newt - Newn) (EQ5.1)

k=S

Where N, is the color value of one of the eight neighbors of the pixel involved,
and S = {1,3,5,7}. N, is the color value of pixel to the right of the central pixel,

(a) (b) (<) (d)
Figure 5.5 The four parts of each iteration of the Stentiford
thinning method. (a) After applying template M1. (b) After M2.
(c) After M3. (d) After M4. In each case, the black pixels
represent those to be deleted in this iteration.
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and they are numbered in counterclockwise order around the center. The value of
Ny is one if the pixel 1s white (background) and zero if black (object). The center
pixel is N, and N, = N,_g if £k > 8. Another way that connectivity can be
computed is by visiting the neighbors in the order Ny, N, ... Ng, N,. The number
of color changes (black-white) counts the number of regions the central pixel
connects,

Figure 5.5 shows one iteration (the first) of this thinning algorithm applied to
the T-shaped object of Figure 5.1. One iteration includes one pass for each of the
four templates. The black pixels are those marked for deletion, and it is clear from

Original image Iteration 1 Iteration 2

Iteration 3 lteration 4 [teration 5 lteration 6

T —-.'.-— e s R

Iteration 7 [teration 8 lteration 9 [teration 10
T e = o
lteration 11 iteration 12 [teration 13

Figure 5.6 All iterations of the Stentiford thinning algorithm
applied to the T. The last two iterations are the same, since one
extra pass is needed to ensure that the skeleton is complete.

i i am
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the figure exactly what each template accomplishes. Each complete iteration ef-
fectively erodes a layer of pixels from the outside of the object. but unlike standard
morphological erosion, the deletion of a pixel is contingent upon meeting the
endpoint and connectedness constraints.

Complete thinning of this object requires 13 iterations {counting the final iter-
ation, which does nothing except show that we are finished). Figure 5.6 shows the
resulting image after each iteration. One iteration makes four passes through the
image, which in this case is 60 X 60 pixels, or 3600 pixels. Thus, 187,000 pixels
were examined in order to thin this simple image. It gets worse: Each template
application looks at three pixels (the maximum is 561,600), and each time a tem-
plate match occurs, another 18 pixels are looked at (the upper limit is 10,108,800
pixels, but will be a fraction of that in practice). Finally, there will be one extra
pass each iteration to delete the marked pixels (10,152,000). This is an expensive
way to thin a small image, but is quite typical of template-based mark-and-delete
algorithms.

There are a few classic problems with this thinning algorithm that show up as
artifacts in the skeleton. They are classic because they tend to appear in a great
variety of algorithms of this type, and researchers in the area have learned to
anticipate them. The first of these is called necking, in which a narrow point at
the intersection of two lines is stretched into a small line segment (Figure 5.7a).

(b)

Figure 5.7 Classic thinning artifacts. (a) Necking. (b) Tailing.
(c) Spurious projection (line fuzz).




184 = Skeletonization—The Essential Line

Tails can be created where none exist because of excess thinning where two lines
meet at an acute angle (Figure 5.7b). Finally, and perhaps most common, is the
creation of extra line segments joining a real skeletal segment; this has been called
a spurious projection, hairs, or line fuzz (5.7¢).

Stentiford suggests a preprocessing stage to minimize these thinning artifacts.
Since line fuzz is frequently caused by small irregularities in the object outline, a
smoothing step is suggested before thinning to remove them. Basically, a pass is
made over all pixels, deleting those having two or fewer black neighbors and
having a connectivity number less than two.

For dealing with necking, he suggests a procedure called acute angle emphasis,
in which pixels near the joint between two lines are set to white 1f they *‘plug
up”’ an acute angle. This is done using the templates seen in Figure 5.8. A match
to any template marks the central pixel for deletion, and causes another iteration
of less severe acute angle emphasis using only the first three templates of each
type. If any pixels were deleted, one last pass using only the first templates of
cach type 1s performed.

Smoothing is done first, followed by all passes of acute angle emphasis, fol-
lowed finally by the thinning steps. Figure 5.9 shows the final skeletons of the
characters from Figure 5.7 when the preprocessing steps are included.

As good as these skeletons appear to be, the method 1s still flawed. The use of
three stages of acute angle emphasis will not be sufficient for very thick characters,
and the templates do not match all situations that can cause necking and tailing.
Also, the smoothing step will not catch all irregularities that can cause line fuzz.

elecee (00 Clele| @00 OCe @000 96000
esOiele| elejceje] ee0je e eCO0e® @e00[Cle
c0ooe (eeeoc oceoe eeceoe oceee
000 oc eoejee ececoe ceoo0e eo0e o0
esle Y00 e e 6 ¢o o 00
D1 D2 D3 D4 D5
ooe | | loefe o 0o | olelo e ¢le
ese6oe eocoe eo00ee eceeo ¢ooee
eeeoce co0ce 00000 ecceco ceoee
o6 0es 00 ee 0 ee @eCCee o€ 00
olelClele e0/0Cele |ele0C0le [@0OClelel [ele[00 e
U1 U2 U3 U4 us

Figure 5.8 Templates used for the acute angle emphasis
preprocessing step.
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Figure 2.18 Morphological boundary extraction. (a) The squares
image. (b) The squares image after an erosion by the simple
structuring element. (¢) Difference between the squares image
and the eroded image: the boundary. (d) A musical quarter rest,
scanned from a document. (e) The boundary of the quarter rest as
found by this algorithm.

Figure 2.18 shows this method used to extract the boundaries of the “‘squares”
image of Figure 2.17a. A larger example, that of a guarter rest scanned from a
page of sheet music, also appears in the figure,

'onal Dilation .
There are occasions when it is desirable to dilate an object in such a way that
certain pixels remain immune. If, for example, an object cannot occupy certain
parts of an image, then a dilation of the object must not intrude into that area. In
that case, a conditional dilation can be performed. The forbidden area of the image
is specified as a second image in which the forbidden pixels are black (1). The
notation for conditional dilation will be: '

A (S,,AN (EQ 2.15)

where S, is the structuring element to be used in the dilation, and A’ 1s the image
representing the set of forbidden pixels.

One place where this is useful is in segmenting an image. Determining a good
threshold for grey-level segmentation can be difficult, as discussed later in Chapter
3. However, sometimes two bad thresholds can be used instead of one good one.
If a very high threshold is applied to an image, then only those pixels that are
certainly supposed to belong to an object will remain. Of course, a great many
will be missed. Now a very low threshold can be applied to the original image,
giving an image that has too many object pixels, but where the background Is
marked with some certainty. Then the following conditional dilation is performed:

R = I, @ (simple, I,,.,) (EQ 2.16)
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Figure 5.9 Final thinned characters, after both preprocessing
steps and thinning.

‘ Still, perfection should not be expected, and the method does pretty well, partic-
ularly as a preprocessing step for character recognition.

One thinning algorithm that seems to be in everybody’s toolkit is the Zhang-
Suen (Zhang 1984) algorithm. It has been used as a basis of comparison for
thinning methods for many years, and is fast and simple to implement. It is a
parallel method, meaning that the new value for any pixel can be computed using
only the values known from the previous iteration. Therefore, if a computer having
one CPU per pixel were available, it could determine the entire next iteration
simultaneously. Since most of us don’t have a computer of that size, let’s consider
only the version of the program that uses one CPU.

The algorithm is broken up into two subiterations instead of, for example, the
four subiterations of the Stentiford method. In one subiteration, a pixel I(i,j) is_
deleted (or marked for deletion) if the following four conditions are all true:

———————

1. Its connectivity number is one (1).
W 2. It has at least two black neighbors and not more than six.
w.. | 3. At least one of I(z,j+1), I(i—1,j) and I(i,j—1) are background (white).

™74, Atleast one of I(i—1,j), I(i+1,j) and I(i,j—1) are background.

W W .
w Atthe end of this subiteration the marked pixels are deleted. The next subiteration

is the same except for steps 3 and 4:

1. At least one of I(i—1,j), I(i,j+1) and I(i+1,;) are background.
2. At least one of I(i,j+1), I(i+1,j) and I(i,j—1) are background.

and again, any marked pixels are deleted. If at the end of either subiteration there
are no pixels to be deleted, then the skeleton is complete, and the program stops.

Figure 5.10 shows the skeletons found by the Zhang-Suen algorithm applied to
the four example images seen so far: the T, X, V, and 8. The T skeleton is excep-
tionally good, and the V skeleton does not show any signs of tailing. The X
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"

Figure 5.10 The skeletons produced by the standard Zhang-
Suen thinning algorithm when applied to the test images of
Figure 5.2 and 5.7.

skeleton does still show necking, and the 8 skeleton still has line fuzz. The pre-
processing steps suggested by Stentiford may clear this up.

Before trying this, an improvement of the algorithm was suggested (Holt 1987)
that is faster and does not involve subiterations. First, the two subiterations are
written as logical expressions which use the 3 X 3 neighborhood about the pixel
concerned. The first subiteration above can be written as:

v(C) A (~edge(C) v (WE) A v(S) A WN) v o(W))) (EQ5.2)

which is the condition under which the center pixel C survives the first subitera-
tion. The v function gives the value of the pixel (1 = true for an object pixel, 0
= false for background), and the edge function is true if C is on the edge of the
object—this corresponds to having between two and six neighbors and connectiv-
ity number = 1. The letters E, S, N, and W correspond to pixels in a particular
direction from the center pixel C; E means east (as in I(,j+1)) S means south (as
in I{i+1,/)) and so on.
The second subiteration would be written as:

V(C) A (~edge(C) v (W) A UN) A () v u(EN) (EQ35.3)

Holt and company combined the two expressions for survival (Egs. 5.2 and
5.3) with a connectedness-preserving condition (needed for parallel execution)
and came up with the following single expression for pixel survival:

v(C) A (~edge(C) v
(edge(E) Av(N) A0S v (EQ 5.4)
(edee(S) A v(W) A V(E)) v
{edge(E) ~ edge(SE) ~ edge(S))
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This expression is not a daunting as it appears: the v functions are simply pixel
values, and the edge function is just about as complex as the connectivity function
used in the Stentitord algorithm. The result from this are good. but not identical
to the standard Zhang-Suen. However, there is sull more to come.

Sometimes, when thinning is complete. there are still pixels that could be de-
leted. Principal among these are pixels that form a staircase; clearly half of the
pixels in a staircase could be removed without affecting the shape or connected-
ness of the overall object. Basically, the central pixel in one of the following
windows can be deleted:

0 1 x x | 0 0 x x x x 0
1 1 x x [ 1 x 1 1 1 1 x
x x 0 0 x X x 1 0 0 1 x

To avoid creating a new hole, we simply add a condition that one of the x values
be 0. For windows having a northward bias (the first two above) the expression
for survival of a pixel in the staircase-removal iteration 1s:

v(C)Yy A ~(U(N) A
(v(E) A ~UNE) A ~U(SW) A (~v(W) v ~v(S)) v (EQ 5.5)
(VW) A ~v(NW) A ~U(SE) A (~0(E) v ~v(S))))

The pass having a southward bias is the same, but with north and south ex-
changed. None of the example images seen so far possess any significant amount
of staircasing, but the image introduced in Figure 5.11 does. The version thinned
using staircase removal seems more smooth and symmetrical than the other skel-
etons. Figure 5.12 shows the result of applying this method to the four test images

(a) (b) 9 (d)

Figure 5.11 Variations on the Zhang-Suen thinning algorithm.
(a) Original image (b) Thinned using the standard algorithm.
(c) Thinned using Holt’s variation. (d) Holt's variation
plus staircase removal.
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Figure 5.12 Results from Holt's algorithm with staircase removal
applied to the standard test images.

we have been using. The basic problems are still present; in fact, this method does
not deal with tails as well as the standard Zhang-Suen method, and the T skeleton
1s not as good.

If simple speed is what is of importance, then the Holt variation of Zhang-Suen
is the better of the methods seen so far. On the other hand, if the quality of the
skeleton is of prime importance, it is probable that a merging of the three methods
is in order: Stentiford’s preprocessing scheme feeding images into Zhang-Suen’s
basic algorithm, with Holt’s staircase removal as a post-processor. The code for
this sequence of operations appears in Section 5.8, since it includes all of the
techniques of importance that have been discussed to this point. 1t is available on
the accompanying CD as the program thnbest, and does appear to generate the
best skeletons of all of the methods seen so far; of course, this is a subjective
measure. The best skeletons can be seen in Figure 5.13.

5.4 USE OF CONTOURS

“The iterative mark-and-delete methods secen so far have in common that they
always delete pixels from the outer layer. These are on the boundary of the object,
and form a contour having a distance of zero pixels from the background. A

Figure 5.13 Skeletons obtained from using the Stentiford
preprocessing steps combined with the Zhang-Suen thinning
algorithm and Holt's staircase-elimination procedure.




Erosion: AoB

Dilation: A®B

Opening: A-B

Closing: AeB

Hit or Miss: A®B=(AcB)n[AoB]

Boundary of a set: A-(A©B)

Hole filling: set one point X, in hole to 1
then X, =(X,,®B)n A

Extraction Connected Components: start with X,
then X, =(X,,®B)nA

Convex Hull: Choose 4 masks B
then X, =(X,,®B)UA

after convergence the convex hull is given by
c(n =D

®B=AN(A®B)

Thinnin A
g- =A-(A®B)" ®=hit&miss

A®{B}=(..(A®B')®B?)..®B")

AB=XNY*
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Thinning and thickening transformations arve very often used sequentially. Let {By,
By, By, - - By,} denote a sequence of composite structuring elements By;) = (Bi,. By, ).
Sequential thinning can then be expressed as a sequence of eight structuring elements for
square rasters,

and sequential thickening as

There are several sequences of structuring elements {B;} that are useful in practice.
Many of them are given by a permissible rotation of a structuring element in the appropriate
digital raster (e.g., hexagonal, square, or octagonal). These sequences, sometimes called the
Golay alphabet [Golay 69], are summarized for the hexagonal raster in [Serra 82]. We shall
present structuring elements of the Golay alphabet for octagonal rasters. 3 x 3 matrices will
be shown for the first two rotations, from which the other rotations can easily be derived.

A composite structuring element can be expressed by a single matrix only. A value of
one in it means that this element belongs to By (it is a subset of objects in the hit-or-miss
transformation), and a value zero belongs to By and is a subset of the background. An
asterisk * in the matrix denotes an element that is not used in the matching process, so its
value is not significant.

Thinning and thickening sequential transformations converge to some image—the number
of iterations needed depends on the objects in the image and the structuring element used. If
two successive images in the sequence are identical, the thinning (or thickening) is stopped.

Sequential thinning by structuring element L

This sequential thinning is quite important, as it serves as the homotopic substitute of the
skeleton; the final thinned image consists only of lines of width one and isolated points.
The structuring element L from the Golay alphabet is given by

00 0
L= 1 % | Lo= 1 (11.51)
11 1

X O
= ¥
¥ O O

{The other six elements are given by rotation). Figure 11.26 shows the result of thinning
with the structuring element L, after five iterations to illustrate an intermediate result, and
Figure 11.27 shows the homotopic substitute of the skeleton when the idempotency was
reached (in both cases, the original is shown on the left).

Sequential thinning by structuring element E

Agsume that the homotopic substitute of the skeleton by element L has been found. The
skeleton is usually jagged, because of sharp points on the outline of the object, but it is
possible to ‘smooth’ the skeleton by sequential thinning by structuring element . Using
n iterations, several points (whose number depends on n) from the lines of width one (and
isolated points as well) are removed from free ends. If thinning by element F is performed
until the image does not change, then only closed contours remain.
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Figure 11.27: Homotopic substitute of the skeleton (element L).
The structuring element F from the Golay alphabet is given again by eight rotated masks,
E =

Ey = (11.52)

o O ¥

1
1
0

o S #*
oo Q
O = ¥
o O ¥

Figure 11.28 shows sequential thinning (five iterations) by the element E of the skeleton
from Figure 11.27. Notice that lines have been shortened from their free ends.

Figure 11.28: Five iterations of sequential thinning by element E.

There are three other elements A/, D, C in the Golay alphabet [Golay 69]. These are
not much used in practice at present, and other morphological algorithms are used instead
to find skeletons, convex hulls, and homotopic markers.

The computationally most efficient algorithm of which we are aware creates the con-
nected skeleton as the minimal superset of the skeleton by maximal balls [Vincent 91]. Its
performance is shown in Figure 11.29. The homotopy is preserved.

gﬁ
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Pattern Recognition: Image Segmentation

Chap. 18

Figure 18-25 Morphologicat analysis of a printed circuit board image:

(a) grayscale image; (b} thresholded image; (¢} cleanup by opening; (d) isolation
of pads by erosion and dilation; (e) isolation of traces by skeletonization; (f) final
display of traces, pads and break points (Courtesy Luc Nocente, Noesis Vision)




Pruning
Elruomllgg methods are an essential complement of thinning and skeletonizing
negecflt lr)ns, because these procedures tend to leave parasitic components that
proble?n e cl(el:aned up by postprocessing. We begin the discussion with a pruning
S Zq then deve_lop a n_lorphological solution based on the material
develo:ljceed n ;he pl'?ltliedmg sections. Thus we take advantage of what has been
so far to illustrate how to go about solvin ‘i
: a proble n

several of the technigues discussed so far. gap m by combining
acte}; .cotmmon approach to the automated recognition of hand-printed char-
are oftlesncilimalyze .the shape of the skeleton of each character. These skeletons
sion bv 0 N arqfcterlggd b_y spurs’” (parasitic components), caused during €ro-
. moryh Olnupl 0rm1t1e§ in the strokes composing the characters. We develop
- ti% otﬁglcal technique for handling this problem, starting with the a%

ption that the length of a parasitic component does not exceed three piXelS'

Figure 8.40(a) shows the skeleton of a hand-printed “‘a.” The parasitic
component on the leftmost part of the character is typical of what we are
interested in removing. The solution is based on suppression of a parasitic
branch by successively eliminating its end point. Of course, this also shortens
(or eliminates) other branches in the character but, in the absence of other
structural information, the assumption is that any branch with three or less
pixels is to be climinated. For an input set A, thinning A with a sequence of

structuring elements designed to detect only end points achieves the desired
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Figure 8.40 Example of pruning: (a} original image; (b) and (c) structuring elemernts ‘1156‘(1.'
for deleting (thinning) end points; (d) result of three cycles of thinning; (e) end points of (a1:
(f) dilarion of end points conditioned on {a); {g) pruned image.
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Another application of conditional dilation is that of filling a region with pixels,
which is the inverse operation of boundary extraction. Given an outline of black
pixels and a pixel inside of the outline, we are to fill the region with black pixels.
In this case the forbidden image will consist of the boundary pixels; we want to
fill the region up to the boundary, but never set a pixel that 1s outside. Since the
outside pixels and the inside pixels have the same value, the boundary pixels are
forbidden and the dilation continues until the inside region is all black. Then this
image and the boundary image are combined to form the final result.

The conditional dilation is:

Fill = P @ (Serosss A (EQ2.18)

where P is an image containing only the seed pixel, which 1s any pixel known to
be inside the region to be filled, and A is the boundary image for the region to be
filled. S_,oss 1S the cross-shaped structuring element seen in Figure 2.20b. The same
figure shows the steps in the conditional dilation that fills the same boundary that
was 1dentified earlier in this section. The seed pixel used in the example is [3,3],
but any of the white pixels inside the boundary could have been used.

+ - 4 4

(a) (b) (0) (d) (e)

(f) (9) (h) | (i)

Figure 2.20 Filling a region using conditional dilation.
(a) The boundary of the region to
be filled. This is the boundary found in Figure 2.18. (b) The
structuring element. (¢) The seed pixel, and iteration 0 of the
process. (d) After iteration 1. (e) After iteration 2. (f) After
iteration 3. (g) After iteration 4. (h) After iteration 5 the dilation is
complete. (i) Union of (h) with (a) is the result.






