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Grayscale Morphology

g2 = ordfilt2 (glnse) ;

Order filter: replacethe central pixel by the n-th element
of the sorted image neighborhood pixel list.

M =sum(se(:) > 0); % number of positive dements

n=21 minimum (erosion)

00 11 00
n=M: maximum (dilation 01111 O
( ) se 111D11
n =M/2: median 111111
01111 O
00 11 00




Gray Scale Morphology

Replace dilation/erosion by maximum/minimum

dilation
(f ®b)(s,t)=max{ f(s—x,t—y)+b(X,Yy)
|(s—Xx),(t—y)eD,,(xy)eD}

D, = domain of f
D, = domainof b
f b are functions not sets

One Dimension

(f ®@b)(s)=max{ f (s—Xx)+b(x)
|(s—=x)eD,,xeD}

Note, we shift f rather than the structuring element.
Usually, D, is smaller than D, (figure 9:36)

smoothing is accomplished by opening followed by closing

(figure 9:38)

gradient: g=(f ®@b)—(f ©b) (figure 9:39)

top-hat: h=f —(f ob) (figure 9:40)



Gray-value morphological processing

The techniques of morphological filtering can be extended to gray-level
images. To simplify matters we will restrict our presentation to structuring
elements, B, that comprise a finite number of pixels and are convex and
bounded. Now, however, the structuring element has gray values associated
with every coordinate position as does the image A.

* Gray-level dilation, Dg(*), is given by:

D (B.B) = max {a[m— j.n—k]+ b1k
Dilation . 2o (A+B) = max{alm—j.n—k1+Hj.kT}

For a given output coordinate [m,n], the structuring element is summed with a
shifted version of the image and the maximum encountered over all shifts
within the J x K domain of B is used as the result. Should the shifting require
values of the image A that are outside the M x N domain of A, then a decision
must be made as to which model for image extension, as described in Section
9.3.2, should be used.

* Gray-level erosion, Eg(*), is given by:

Erosion - Eq(A.B)= [5‘}.‘]23{“[”!+ Jont k]-8 7.k}

The duality between gray-level erosion and gray-level dilation--the gray-level
counterpart of eq. --is somewhat more complex than in the binary case:

Duality - E5(A,B)=-D,(~A.B)
where " —4" means that aj,k] - > -a[-j,-k].

The definitions of higher order operations such as gray-level opening and
gray-level closing are:

Opening - U (4.B) = D, (£,(4.B).B)
Closing - Cs(4.B)=-0,(-4.-B)

The important properties that were discussed earlier such as idempotence,
translation invariance, increasing in A, and so forth are also applicable to gray
level morphological processing. The details can be found in Giardina and
Dougherty .

In many situations the seeming complexity of gray level morphological
processing is significantly reduced through the use of symmetric structuring
elements where b[j,k] = b[-],-k]. The most common of these is based on the
use of B = constant = 0. For this important case and using again the domain
[j,k] =B, the definitions above reduce to:



Do (A.BY= max{a[m— j.n—k]|} = max( A
Dilation - o(A-B) [,',Jr]ea{[ J I} ax( )
E.(A,By= min {a[m— j.n—k]} = min( &
Erosion - o(AB) [,i.'i']EE{ [ =7, 1 1 (&)
O, (A.B) = max(min(&))
B ]

C_(A.B)= min(max(Aa))

Opening -
Closing -

The remarkable conclusion is that the maximum filter and the minimum filter,
introduced in Section 9.4.2, are gray-level dilation and gray-level erosion for
the specific structuring element given by the shape of the filter window with
the gray value "0" inside the window. Examples of these operations on a
simple one-dimensional signal are shown in Figure 45.

| Dilation 250 - Clesing
w 200 7 w 2001 /
H H
£ 150 1+ £ 150 5
Eu 100 | '5 oo 4
B oo @ g _f
Opening
0 . ! + 4 0 + ' ‘ |
0 S0 100 150 200 1} S0 100 150 200
Horizontal Position Horizontal Position

a) Effect of 15 x 1 dilation and erosion b) Effect of 15 x 1 opening and closing
Figure 45: Morphological filtering of gray-level data.

For a rectangular window, J x K, the two-dimensional maximum or minimum
filter is separable into two, one-dimensional windows. Further, a one-
dimensional maximum or minimum filter can be written in incremental form.
(See Section 9.3.2.) This means that gray-level dilations and erosions have a
computational complexity per pixel that is O(constant), that is, independent of
Jand K. (See also Table 13.)

The operations defined above can be used to produce morphological
algorithms for smoothing, gradient determination and a version of the
Laplacian. All are constructed from the primitives for gray-level dilation and
gray-level erosion and in all cases the maximum and minimum filters are

taken over the domain [/-k]1 =B,
Morphological smoothing

This algorithm is based on the observation that a gray-level opening
smoothes a gray-value image from above the brightness surface given by the
function a[m,n] and the gray-level closing smoothes from below. We use a
structuring element B based on eqs. and .

MorphSmooth( A, B) = C.(O,(A.B),B)

= min{max({max{min{ &))))



Note that we have suppressed the notation for the structuring element B
under the max and min operations to keep the notation simple.

Morphological gradient

For linear filters the gradient filter yields a vector representation (eq. (103))

with a magnitude (eq. (104)) and direction (eq. (105)). The version presented

here generates a morphological estimate of the gradient magnitude:
Gradient(A,B) = I{DG{A,B)—EG{A,B}}

2

= —(max(A)—min(&))

b | =

Morphological Laplacian

The morphologically-based Laplacian filter is defined by:

P | = bl | = b | =

Laplacian(h.B) (D.(A.B)-&)-(A-E.(A.B))

(D,(A.B)+ E (A, B)—24)

(max(A)+min(A)—24)

Summary of morphological filters

The effect of these filters is illustrated in Figure 46. All images were processed
with a 3 x 3 structuring element as described in egs. through . Figure 46e was
contrast stretched for display purposes using eg. (78) and the parameters 1%
and 99%. Figure's_ 46c¢,d,e should be _(‘;ompg[gd to Figt_Jres 30, 32, and 33.

B
#Z8Nd) Gradient e) Laplacian

Figure 46: Examples of gray-level morphologica filters.



REY-LEVEL MORPHOLOGY

The use of multiple grey levels introduces an enormous complication, both cop-
ceptually and computationally. A pixel can now have any integer value, so the
nice picture of an image being a set disappears. There is also some question about
what dilation, for example, should mean for a grey-level image. Rather than being
strictly mathematical here we will take a more intuitive approach, in the hope that
the result will make sense.

Consider the image of a line in Figure 2.22a. This is a bilevel image, and the
dilation of this image by simple can be computed (Figure 2.22b). Now imagine
that instead of having levels 0 and 1, the pixels in the line have the value 20 and
the background is 0. What should a dilation of this new image by simple look
like? The binary dilation spread out the line, as determined by the locations of the
‘17 pixels, making it three pixels wide instead of only one. The grey-level image
should have a corresponding appearance after dilation, where the difference be-
tween the foreground and background pixels should be about the same as in the
original and the line should be about three pixels wide. An example of how the
dilated grey-level line (Figure 2.22c) might appear is given in Figure 2.22d.

This appears to be a reasonable analogue of dilation for the grey-level case, at
least for a simple image. The image in Figure 2.22d was computed from Figure
2.22c¢ in the following way:

(A @D Dlijl = max{Ali — rj — c] +
Strelli — rj —cl € Alrcl €8} (EQ2.22)

where S is the simple structuring element and A is the grey-level image to be
dilated. This 1s one definition of a grey-scale dilation, and it can be computed as

follows:
OIOIO|I0IC|O0|CIOIC @ |CIO|ICIO|I0|0IC o e e
OIOI0|0IOI0ICIO|O] |O|O|C|O|0|I0 @ e e|e
OlOO|OI0ICIO| @ OO |CloI0|0I0 o0 e e
siislisitsiisiieilellell lislgieliel{eliejielle]l ILILIL INT@@lIOolIoIIOIL Jolieollolielnielioliol 3T H I I Nelle]
olojolo]o ) oloiclo]o e
oooooggoggooooo:::oo ollolioliell lielielielielelniolion It H M H MHellelle)
OOOOO'OOOQOOO“'“'ggOOO.OOOOOO 0 e e e e e COoo|lol
olcloloie 0
el s e el IS0 [e0j0[0|0l0 00| [e|e|e|e|e|0[00[o]o
GO |OI0QOIC[0I0] (eie (@ |8 8|00 |0|10{0 0.00000000 ....OOOOOO
Olelolo[olo|o[o[ojo! (e|ele]e[o[ol0[0]0]0 &
sicloiclololololols] [elerelololelololoiol [@]010]00]0]0[0]0] 0] [e]e]e[0[0[G10[o[o(0]
(a) (b) () ' (d) '

Figure 2.22 Grey-scale dilation. (a) A bilevel image of a line. (b)
Binary dilation of (a) by simple. (c) A grey-scale image of a ling;
background is 0, line pixels have the value 20. (d) This is what the
grey line should look like after a dilation.
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Grayscale Morphology - 1D example

Origipal signal

Linear filtering (gaussian)
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Grayscale Morphology - 1D example (2)

—

Qriginal signal
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Grayscale Morphology - 1D example (3)

Original signal

‘ Closing = dilation + erosion }

n

Black 255
White O

170




33

w Dr.Yoram Td
¢ 4

Strel shapes
se =strel(shape,parameters);
Flat Structuring Elements Nonflat Structuring Elements
‘arbitrary’ ‘arbitrary’
Ipajrl Ibajll
‘diamond'
‘periodicline'
'disk’
‘redangle
'line'
Imlﬂel
‘octagon’
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Strel shapes
SE= Origin SE = Diamond Drigin
g 1 g [ o [ 0 0
s 1 pea Lo > @
, Lo 0T
Line
SE Origin - Octagon g
SE= Origin
|1 1 1 1 @ - 1 1 T ] ] 7 T o
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Figure 13.10

A one-dimensional
demonstration of grey-scale
erosion (adapted from an
flustration by Gonzalez and
Woods (1992)).

Grey scale fnorpholdgy
Dilation and erosion

Extending the concepts of binary image morphology to grey scale imagery i
non-trivial. The images can no longer be regarded as point sets and the questio
that immediately arises is: what do such operations as dilation mean wit
respect to a grey scale image? A definition of grey scale dilation can be forme
by extending the binary definition by use of a maximum operator:

I8 X)) =max{i(i-xj-») + X&) | {{-x,0-%) € D; (x,y) € Dx]

where Dry and Dy are the domains of [ and X and both [ and X are now functior
of two spatial variables.

The algorithmic definition of this operation is perhaps more accessible and
defined as:

for each pixel:

position the structuring element over the pixel and calculate the sum «
each pair of corresponding pixels

find the maximum of the sums and output this value

Note the similarity of this operation to cross-correlation. Here, instead of calc
lating the sum of products over the corresponding mask and image elements v

N
I X(x) iex

select the maximum of the sums of corresponding pixels in the image and yiny
turing element. We can describe the effect of the operation qualitatively iy
following terms. First, because of the addition operation and the selection of i
maximum sum, the image being dilated will tend to be brighter (assuming po
itive values in the structuring element). Second, dark details will tend 1o
reduced and relatively large dark structure will be undisturbed. This effe
depends on the nature and extent of the structuring element with respect
image structure or detail. A simple one-dimensional illustration is shawn
Figure 13.9. In this case there is no shape information in the structuring ¢
ment, but the effect of the grey scale variation in the structuring element ont
image is clear.

Grey scale erosion can be similarly defined. In this case we extend the binJ
definition by using a minimum operater and subtraction:

(I © X)) = min{Ii + xj + ) - X(x,)) | (i + x),( + ¥) € Dy; (x,p) € Dxl

where D; and Dy are the domains of I and X and both I and X are now functi
of two spatial variables. Figure 13.10 is a simple one-dimensicnal effect of {
operation. The effect on an image is first, to tend to make it darker becaus¢
the subtraction, and bright details in the input image that are contained witi
the structuring element are diminished.




3.2 Erosion 07

simply replacing the set X with the subgraph of the grev tone image f:
p[SGUN) = A(x) | Bixny € SG(f)}. Examples of crosions on binary and

grey 101e iages are shown in Fig. 3.5. Inn this figure. the eroded vertical bhars

—-—-

-
-
s i 1 1
(a) Uilldl‘y image. (b) Erosion of (@) by a vertical line seg-
ment.

(c) Grey tone image. (d) Erosion of (c) by a vertical line seg-
x ment.

Fig. 3.5. Erosion of binary and grey tone images by a centred vertical line segment
of 13 pixels.

are reduced to asfew points because the structuring element could fit the bars
only when it was centred on these points. The bars connected to the top and
bottom image borders are not as much eroded as those lying within the image
because it has been assumed that values outside the image definition domain
are set to tyax. This is a common way to deal with border effects when
eroding an image (see local knowledge property of erosions, page 70).

Nonflat SEs have grey scale values for each point of their domain of defi-
nition. The erosion by a nonflat SE B, is defined as follows:

68 3. Erosion and Dilation

= m x+b b);.
e, (]9 = min {f(x+b) - Bu(b)}
The grey scale weights of a volumic SE should be set according to the image
intensity values. Because of the difficulty to meet this condition and due to
the extra computations required by the subtraction, grey scale SEs are seldom
used in practical applications.




3.3 Dilation

The dilation is the dual operator of the erosion and is based on the following
question: “Does the structuring element hit the set€” The dilated set is the
locus of points where the answer to this question is affirmative.

The dilation of a set X by a structuring element B is denoted by 85(X)
and is defined as the locus of points x such that B hits X when its origin
coincides with x:

dp(X) ={x| BxNX #0}. (3.4)

This definition is illustrated in Fig. 3.6 for the gilation of a set by a disc SE.
Note that the dilation of a single pixel x outputs the reflected SE, centred

gB

“-\
8,0%)

C X

Fig. 3.6. Dilation § of a set X by a disc B. The two connected components of X
are connected by the dilation: B always hits X when it is placed in the channel
separating the particles. :

on x: dp(x) = By. Equation 3.4 can be rewritten in terms of a union of set
translations, the trapslations being defined by the SE:

Sp(X)= | ) Xob.

bel

This latter definition can be directly extended to binary and grey scale im-
ages: the dilation of an image f by a structuring element B is denoted by
di(f) and is defined as the maxinum of the translation of f by the vectors
—b of B:

5=\ fe (3.5)

bef?

I other words, the dilated value at a given pixel @ is the maximum value of
the huage in the window defined by the structuring clement when its origin
s at x:

Op(N](x) = biax f(x + b). (3.0)

The dilation of a 1-D signal is illustrated in Fig. 3.7. Examples of dilations

_ .

(a) 1-D signal f and SE B. (b)Y ds(f) = Vi, ffl,f+l1}-

Fig. 3.7. Dilation represented as the point-wise maximur of a series of image
translations (the successive image translations are shown in Fig. 3.4). The dilated
value of a given pixel corresponds to the maximum value of the image within the
neighbourhood defined by the SE when it is centred at this pixel. Note that the
following equation also holds: dg{SG{f}] = {(x,t) | B .. NSG(/) £ B1.




on binary and grey toue images are shown in Fig. 3.8. Note that the SE is
long enough to hit the line segments of the dashed line when it is located in
between two segments. This explains why the gaps are completely flled in
the dilated images.

!

i
i
s
H r
; : ey
B R 3 o E
(EL) Dilation of Fig_ 3.5a by a vertical line (b) Dilation of Flg. 3.5¢ by a vertical line
segment. segment,

Fig. 3.8. Dilation of binary and grey tone images by a centred vertical line segment
of 13 pixels (the input images are displayed in Figs. 3.5a and ¢ respectively). The
displayed dilations have been computed assuming that values outside the image
definition domain are set to 0.

We denote by nB a structuring element of size n, i.e., a SE B that has
naan Ailatoed - o Tonew Ko men@ims ¥ TR QBN S £ -

nB=353""(B), (3.7)

where n > 2. When B is convex, then nB is the stretching of B with size
parameter n. An elementary triangle and the corresponding triangles of size
2 and 3 are shown in Fig. 3.9.

] (¢] (o}
. o o o © o 0o o
o © ° o o0 o o 0o o o
! B B 2B = §4(B) 3B = §;(2B)

Fig. 3.9. An elementary triangle B, its reflection B, and the corresponding struc-
turing elements of size 2 and 3 obtained by dilating B once and twice with B.

The dilation by a nonflat SE B, is defined as follows: :
(68, ()] (x) = ex {f(x+Db)+ By(b)}.

Unlike images dilated or eroded by flat SEs, grey scale values of images dilated
or eroded by nonflat SEs are not bounded by the minimum and maximum
grey scale values of the input image. In particular, erosions with nonflat SEs
may output negative integers. -{ ‘




5.1 Definttlons

The white fop-hat’ WTH of an image f is the difference between the original
image [ oamd its opening =y

WTH(f) = f =~ (+.9)

e, WTH = id — ~. Since the opening is an anti-extensive image transform-
Ation, the grey seale values of the white top-hat are always greater or equal
te zero. An example is shown in Fig. 4.15 for a 1-D signal. Note that_ the sig-
nal poaks are extracted independentiy from their intensity level. It is only a

3 : ‘
White top-hats are also cailed top-hats by upening.

! B,, ;

i - (D
WTH(D

o ﬂﬂﬂﬂ

{a) Original image [ and its YWTIH ) = [ —ve(f).
opening v by I3,

Tig. 4.15. White top-hat WTH of a 1-D signal.

shape criterion that is taken into account: all structures of the subgraph that
cannot contain the SIE are extracted by the white top-hat. White top-hats
are non-increasing but idempotent transformations:

T =0 = f = ()]
‘—/_/

)

i

WTH[WTH(f)]

= f =~

The dual transformation of the white top-hat with respect to set comple-
mentation is:

[VVTH(fC)]C = tmnx - \}VTI{(tnmx - f}
= tmax = bmax T f + 'Y(tma.x - .]L)
e et

[@( 1))
= Lonax f - Qb(f)

In practice however, the black fop-hat' BTH of an image f is simply
defined as the difference between the closing ¢ of the original image and the
original iimage:

BTH(f) = (/) - /, (4.10)

lLe., BTH = ¢—id. It follows that Dlack and white top-lats are complementary
operators: BTH = WTHL. Owing to the extensivity property of the closing
operator, the values of the black top-hat images ave always greater or equal
to zero. It is neither an idempotent nor an increasing transformation. A black
top-hac s illustrated i Fig. 4.16 for a 1-D signal.

The sum of the white and black top-lats extracts all mage struchures
that cannot contain the SE whatever their velative contrast (i.e.. peaks and
tronghs). In fact, this st comes down to the avithmetic difference between
the closing and e opening of the image. Owing to its self-complementariness
property. we call this operator the self-complementary top-hat and denote it
by

o=WTH+BTH = ¢ — .

' Black top-lints ave also ealled top-hats by closing.




{a} Original image [ and its (L) BTH{f 1 =aop(f) — F.
closing o by B,

Fig. 4.16. Black top-hat BTH performed on a 1-D signal. Note that the troughs
are extracted independently of their intensity levels.

The shape and size of the structuring element used for top-hat transforms
depend on the morphology of the structures to be extracted. For instance,
if we want to detect bright features of width smaller than [, a white top-hat
with a disc structuring of size slightly larger than ! should be considered so as
to remove them in the opening or closing step (opening for bright and closing
for dark objects with respect to their background). For example, Fig. 4.17
illustrates the extraction of one pixel thick bright structures using a top-hat
by opening. These structures are first removed from the input image by a

o i .
1% :!
S -
{a) Input image f (b) Parametric opening {c) Top-hat by opening f —
7.3,8(.1“) 7.3,6(f)

Fig. 4.17. Extraction of bright one pixel thick structures using a top-hat by
opening.

parametric opening with a 3 x 3 square while allowing for gaps of up to 3
pixels {i.e., A = 6 in Eq. 4.5). The structures themselves are then recovered by
the corresponding top-hat by opening. In this example, a parametric rather
than a plain opening produces better results because it is more selective for
removing the targeted structures.

In situations where the input image is corrupted by a high frequency noise
signal, it must be filtered out before using top-hat transforms to avoid side
effects. For example, a closing by a small SE should be considered before
computing a white top-hat and an opening before a black top-hat.
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Functions - Gray

conndef Default connectivity array

imbothat Perform bottom-hat filtering

imclearborder  Suppress light structures connected to image border
imclose Closeimage

imdilate Dilateimage

imerode Erode image

imextendedmax Extended-maximatransform
imextendedmin  Extended-minimatransform

imfill Fill image regions
imhmax H-maximatransform
imhmin H-minimatransform
imimposemin Impose minima
imopen Open image

imreconstr uct Perform morphological reconstruction
imregionalmax  Regional maxima of image
imregionalmin  Regional minima of image

imtophat Perform tophet filtering

water shed Find image watershed regions
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bw2 = bw

' bothat'

' bridge'

' clean'

' close'

' diag'

' dilate'

' erode’
Ll

' hbreak'
' majority
' open'

' remove'
' shrink'

' skel

' spur'

' t hicken'
't hin'

' t ophat'

bw2 = dilate(bwl,se);
bw2 = erode(bwl,se);

BW Morphology (1)

morph(bw1,0pt,N) % opt defines a 3x3 se

Subtra ctthein putimag e fromi tsclosin g
Bridge previous I yuncon nectedp i xels
Remove isolated pixels

Perfor m binary  closure

Diagon al fill t o elimin ate 8-connecti vity
Perfor mdilatio n

Perfor m erosion

Fill i solatedi  nterior pixels

Remove H- connecte d pixels

Perfor m binary  opening
findon |ybounda rypixel s

skelet onization
Remove end poin tsofli nes

Subtra cttheop eningfr omthei nputimag e

% se general structuring element
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main functions

imbothat Perform bottom-hat filtering

imclose Close image

imdilate Dilate image

imerode Erode image

imfill Fill im age regions

imopen Open image

imremnstruct Perform morphological reconstruction
imtophat Perform tophat filtering

watershed Find image watershed regions

strel sructuring element

163
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Strel: structure element

Creaion and Manipulation

getheight Get the height of a structuring element

(coardinateli )
getnhood Get structuring element neighborhood (matrix)
getsequence  Extract sequence of decomposed structuring elements

isflat Return true for flat structuring element
reflect Refled structuring e ement
strel Create morphological structuring element

Trandate Trandate structuring el ement

getneighbors  Get structuring d ement neighbor locations and heights
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Grayscde Opening
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© Grayscde Opening
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© Grayscde Opening

Structuring
Element
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Grayscale example (1)

Step 1: background reconstruction via closing operation

x = ordfit2  (Letter,49,0nes(7) , symm); %dilation
y = ordfilt2  (x,1,0nes(7),'symm’); % er osi on

Letter
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Z =Letter vy;

s /47.?1{/?-:/ Ll F A <2
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P = e

ety gty LA E 2 gL

R 2 A

Top hat (bottom hat) operation:

Grayscale example (2)

Step 2: background subtraction

Step 3: Thresholding

Z > Threshold

s — T

PHs. /494/«.’-5/ el i 2

B s sty ort £ oy Brid gy B
[ZJJ’Z‘A///

= - .
Do ;,,} ,&fxz*,,ﬁ_;n,-(
PR N e e
E:ﬂn.fur_ & LA B2 GIL
S rmads] e R
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Grayscale example (3)

Example taken from the demo files of the
SDC Morphology toodlbox v0.13
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© Defect Detection

The input image is a gray-scale image of a microeledronic circuit.
Therelevant objeds in thisimage ae verticd metal stripes. These
stripes have some irregularities that should be deteaed.

gradien

= =

Closing

Closing of the image by a vertical line of length 25 pixels.

Close surf

F_.._
]
——— e
3 B
T ———Y
— ———
—
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Closing Top-Hat

Subtraction of the closing from the original is called closing top-

hat. It shows the discrepancies of the image where the
structuring element cannot fit the surface In this case, it

highlights vertical depression with length longer than 25 pixels.

Close surf

179

M\.d

Dr.Yoram Td

Thresholding & Cleaning
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Segmentation

The idea of segmentation hasits roots in work by Gestalt
psychdogist (e.g. Kohler) who studied the preferences exhibited
by human keingsin grouping or organzing sets of shapes
arranged in the visual field. (Ballard & Brown)

Segmentation isthe first esential andimportant step of low-
levd vison (Marr, Rosenfeld, Hall, Gonzalez, in Pal & Pal).
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Morphological Image Processing Lecture 22 (p. 19)

B B
1 I
W | . )
| B'i=1,2,34 [x[|x|] B'i=1,2,...,8
* %] (rotate 907) (rotate 457)
I 1V
B'i=1,2734 B'i=156,78
* (rotate 907) (rotate 907)
V

FIGURE 9.26 Five basic types of structuring elements used for binarv morphology. The
origin of each element is at its center and the >’s indicate “don’t care™ values.

9.6 Extensions to grey-scale images

f(z,y): Input image
b(x,y): Structuring element image

0.6.1 Dilation

Grey-scale dilation of f by b, is defined as

(fdb)(s,t) =max{f(s—x,t —y)+blx,y)
(s —z),(t —y) € Dy; (z,y) € Dy},

where D and Dj, are the domains of f and b, respectively
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Simple 1D example. For functions of one variable:

(feb)(s) =max{f(s—x)+b(x)
(s —x) € Dy; x € Dy}

max{f(x) + b(s, — x)}

max{f(x) + b(s; — x)}

max{f{x) + b(—x)}

cd

Lot}

FIGURE 9.27 (a) A simple function. (b) Structuring element of height A. (¢) Result of dila-
tion for various positions of sliding b past f. (d) Complete result of dilation (shown salid).

General effect of dilation of a grey-scale image:

(1) If all values of b(x, y) are positive ~» output image brighter

(2) Dark details are reduced or eliminated, depending on size
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0.6.2 Erosion

Grey-scale erosion of f by b, is defined as

(feb)(s,t)=max{f(s+x,t+y)—blz,y)
(s +z),(t+y) € Dy; (x,y) € Dy},

where D and D; are the domains of f and b, respectively

Simple 1D example. For functions of one variable:

(feb)(s) =max{f(s+x)— b(x)
(s+x) € Dy; x € Dy}

FIGURE 9.28 A
Erosion of the
function shown in
Fig. 9.27(a) by the P
structuring e
element shown in
Fig. 9.27(b).
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General effect of erosion of a grey-scale image:

(1) If all values of b(x,y) are positive ~» output image darker

(2) Bright details are reduced or eliminated, depending on size

Example 9.9: Dilation and erosion on grey-scale image

fla,y): 512 x 512
b(x,y): “flat top”, unit height, size of 5 x 5

ab

[
FIGURE 9.29
(a) Original
image. (b) Resull
of dilation.
(c) Result of
erosion.
(Courtesy of
Mr. A. Morris,
Leica Cambridge.
Ltd.)




Morphological Image Processing Lecture 22 (p. 23)

9.6.3 Opening and closing

The opening of image f by b, is defined as
fob=(fob) @b

The closing of image f by b, is defined as
fob=(f®b)ob

Explanation using “rolling ball”:

d

b
I c
d
c

FIGURE 9.30
(a) A gray-scale
scan line.
{(b) Positions of
rolling ball for
opening.
(c) Result of

b opening.
(d) Positions of
rolling ball for

feb closing, {e) Result
of closing.
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Opening and closing of “horse image”:

ab

FIGURE 9.31 (a) Opening and (b) closing of Fig. 9.29(a). (Courtesy of Mr. A. Morris.
Leica Cambridge, Ltd.)

9.6.4 Some applications of grey-scale morphology
Morphological smoothing

Opening followed by closing ~» remove or attenuate bright and
dark artifacts or noise

FIGURE 9.32 Morphological smoothing of the image in Fig. %.29(a). (Courtesy ol Mr. AL
Morris. Leica Cambridge. Lid.)
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Morphological gradient

Definition: ¢ = (f ®b) — (f S b)

.-} % ) i
FIGURE 9.33 Morphologival gradient ol the image in Fig. 9.29(a). (Courtesy of Mr. A.
Morris, Leica Cambridge, Ltd.)

Top-hat transformation

Definition: h = f — (f o b)

FIGURE 9.34 Result of performing a top-hat transformation on the image of Fig, 9.29(a).
(Courtesy of Mr. A. Morris, Leica Cambridge, Ltd.)
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4.5.2 Application to the correction of uneven illumination

An illumination gradient occurs when a scene is unevenly illuminated. There
is a need for correcting this effect because grey scale measurements and global
threshold techniques cannot be applied to images of unevenly iluminated
scenes. The best solution is to optimise the lighting system so as to acquire
evenly illuminated images but still this is impossible in many practical situ-
ations. For instance, the background ‘illumination’ of an x-ray image of a
manufactured metallic part of uneven width is directly proportional to the
width of this part and is therefore uneven: the larger the width, the darker the
output intensity level. If the image objects have all the same local contrast,
i.e., if they are either all darker or brighter than the background, top-hat
transforms can be used for mitigating illumination gradients. Indeed, a top-
hat with a large isofropic structuring element acts as a high-pass filter. As
the ilumination gradient lies within the low frequencies of the image, it is
removed by the top-hat. White top-hats are used for dark backgrounds and
black top-hats for bright backgrounds. For example, the upper left image
of Fig. 4.18 presents an increasing illumination from left to right. Global

Thresholded original image Thresholded white top-hat

Fig. 4.18. Use of top-hat for mitigating inhomogeneous illumination. The perform-
ance of this technique is illustrated by the thresholds on the original and top-hat
Imnages.

thresholding techniques fail to extract a mask of the rings and crosses on this
image as shown in the bottom left image. Au opening of the orviginal tmage
with a large square SE removes all relevant image structures hut preserves the




4.5 Top-hats 1:

g
(W]

lumination function. The white top-hat of the original image or subtraction
of the illumination function from the original image outputs an image with a
homogeneous itlumination. A global threshold of the white top-hat succeeds
in extracting relevant image structures as shown in the bottom left image.
The removal of the uneven illumination function of the watermark shown in
table 1.1, p. 5, has been achieved with the same technique,

If the contrast between the objects and the background is decreasing
when the background is darkening, a better visual rendering may be obtained
by dividing the input image by the closing (or opening). This is illustrated
in Fig. 4.19 for a very badly illuminated image of seeds. A closing with a
large structuring element removes the seeds but preserves the illumination
function. The black top-hat or subtraction of the original image from the
closing provides us with an evenly illuminated image (Fig. 4.19¢). A more
contrasted image can be obtained by dividing the original image with its
closing (Fig. 4.19d).

.

{a) Original image f (courtesy of Frof. {b) Closing of f with a large square: ¢(f)
B. Jihne, University of Heidelberg).

~~~~~

2 By

=
13
™

(¢) Black top-hat: BTH{f) = &(f) — f- (d) Division of f by ¢{f).

Fig. 4.19. Use of top-hat for mitigating inhomogeneous illumination. In this ex-

ampie, a better rendering is obtained by dividing the original image by the closed
mage,

Note that in quality control applications where a series of objects are
acquired at a fixed position, another solution consists in first capturing an




nding the bright detail and by the shape and amphtude values of the
uring element itself.

ray-scale dilation and erosion are duals with respect to function comple-
tation and reflection. That is,

(f©Db)(s,1)
- __f(xv y) andl;

ik tnc Ul sl Ul LWLVl Deidlly UCLCiliuaea iy oes

= (f<®b)(s,1) (9.6-3)
= b(—x, —y). Except as needed for clarity, we simplify

of a parallelepiped of unit heloht and size 5 X 5 pixels. Based on the pre-
";} discussion, dilation is expected to produce an image that is brighter than
bhe original and in which small, dark details have been reduced or eliminated.

EXAMPLE 9.9:
MMustration of
dilation and
erosion on a gray
scale image.

ab

<
FIGURE 9.29
(a) Original
image. (b) Resul
of dilation.
(c) Result of
erosion.
(Courtesy of
Mr. A. Morris,
Leica Cambrid;
Ltd.)






