10.6 Nonlinear Averaging

The linear averaging filters discussed so far blur edges. Even worse, if the
mask of the smoothing operator crosses an object edge it contains pixels
from both the object and the background, giving a meaningless result
from the filter. The same is true if averages are performed when a certain
number of pixels in an image show erroneous values, e. g., because of a
transmission error. The question, therefore, is whether it is possible
to perform an averaging that does not cross object boundaries or that
ignores certain pixels. Such a procedure can only be applied, of course,
if we have already detected the edges or a distorted pixel. '

In this section, we discuss three types of nonlinear averaging fil-
ter: the classical median filter (Sect. 10.6.1); weighted averaging, also
known as normalized convolution (Sect. 10.6.2); and steerable averaging
(Sect. 10.6.3), where we control the direction and/or degre& of averaging
with the local content of the neighborhood.

10.6.1 Median Filter éﬂ? n

Linear filters effectively suppress Gaussiannoise but perform very poorly
in case of binary noise (Fig. 10.7). Using linear filters that weigh and sum
up, we assume that each pixel carries some useful information. Pixels
distorted by transmission errors have lost their original gray value. Lin-
ear smoothing does not eliminate this information but carries it on to
neighboring pixels. Thus the appropriate operation to process such dis-
tortions is to detect these pixels and to eliminate them.

This is exactly what a rank value filter does (Sect. 4.3). The pixels
within the mask are sorted and one pixel is selected. In particular, the
median filter selects the medium value. Since binary noise completely
changes the gray value, it is very unlikely that it will show the medium
gray value in the neighborhood. In this way, the medium gray value of
the neighborhood is used to restore the gray value of the distorted pixel.

The following examples illustrate the effect of a 1 x 3 median filter
M:

M[---123789 ---] = Joso D PBZEG ]
M[---12102456 ---] = [---124556 ---]
Mo D00399 5::] = [u=% 00090899 ]

As expected, the median filter eliminates runaways. The two other gray
value structures — a monotonically increasing ramp and an edge be-
tween two plateaus of constant gray value — are preserved. In this way



What are the mean and median filters?

Mean filter

The mean filter is a spatial filter that replaces the center value in the window with the
average of all the pixel values in the window. The window is usually square but can
be any shape. An example of mean filtering in a 3x3 window is shown below.

unfiltered values

5 3 6
2 1 9
8 4 7
5+3+6+2+1+9+8+4+7=45 45/9 =5.

mean filtered

* * *
* 5 *
* * *

Center value (previously 1) is replaced by the mean of all nine values (5).

Median filter

The median filter is also a spatial filter, but it replaces the center value in the
window with the median of all the pixel values in the window. The kernel is
usually square but can be any shape. An example of median filtering of a
single 3x3 window of values is shown below.

unfiltered values

6 2 0
3 | 97 4
19 3 10

in order: 0,2, 3,3,4,6, 10, 15, 97



median filtered

* * *
* 4 *
* * *

Center value (previously 97) is replaced by the median of all nine values (4).

Note that for the first (top) example, the median filter would also return a value
of 5, since the ordered values are 1, 2, 3, 4, 5, 6, 7, 8, 9. For the second
(bottom) example, though, the mean filter returns the value 16 since the sum
of the nine values in the window is 144 and 144 / 9 = 16. This illustrates one
of the celebrated features of the median filter: its ability to remove 'impulse’
noise (outlying values, either high or low). The median filter is also widely
claimed to be 'edge-preserving' since it theoretically preserves step edges
without blurring. However, in the presence of noise it does blur edges in
images slightly.

General Image Processing References

Kenneth R. Castleman, Digital Image Processing. Prentice Hall, 1996.

Anil K. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1989.
William K. Pratt, Digital Image Processing. Wiley, 1991.

|. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters: Principles and
Applications. Kluwer Academic, 1990.


http://www.adires.com/%7Ecastleman/
http://www.prenhall.com/allbooks/esm_0132114674.html
http://www.prenhall.com/
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a 3X3 neighborhood by skipping the two pixels whose brigly.
ness values are most different from the mean, ranking .
remaining seven values, and assigning the median to the cenyy
pixel. This has the effect of sharpening steps, and produces po.
terization when it is applied repeatedly.

Another modification to the median filter is used to overcome i
tendency to erase lines which are narrower than the half-widh
the neighborhood, and to round corners. The so-called hylyjg
median, or edge-preserving median, is actually a three-step rank.
ing operation (Nieminen et al., 1987). In a 5x5 pixel neighhor-
hood, pixels are ranked in two different groups as shown in
Figure 16. The median values of the “X” and “+” groups (both of
which include the central pixel) are compared to the centrl
pixel and the median value of that set is then saved as the new
pixel value. As shown in Figure 17, this method preserves lines
and corners which are erased or rounded off by the convention:l



irth the sampling frequma}an is computed over a three-point
i0od. In this example, the median filter removes the sinusoid completely, while
g the edge.
-eneral, light or dark objects having less than half the area of the median filter are
y eliminated, while larger objects are preserved approximately intact. Thus, the
tent of the median filter must be “tuned” to the problem at hand. There is much less
guide the design of median filters than there is to guide linear filter design. Exper-
n often substitutes for analysis.
e noise-reducing effect that a median filter has on an image depends on two related,
ly separate, things: the spatial extent of the neighborhood (mask), as mentioned
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Figure 11-33 Median filtering in one dimension: (a) input, (b) output
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Figure 8.17 Illustration of median filter’s tendency to preserve step discontinuities. (a) One-
dimensional step sequence degraded by random noise; (b) result of lowpass filtering the
sequence in (a) with a 5-point rectangular impulse response; (c) result of applying a 5-point
median filter to the sequence in (a).
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Figure 8.18 Illustration of a median filter's capability to remove impulsive values. (a) One-
dimensional sequence with two consecutive samples significantly different from surrounding
samples; (b) result of lowpass filtering the sequence in (a) with a 5-point rectangular impulse
response; (c) result of applying a 5-point median filter to the sequence in (a).
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Figure 8.19 Results of applying a median filter to the sequence in Figure 8.18(a) as a function
of window size. This illustrates that removal of impulsive values by a median filter depends
on the window size. (a) Window size = 3; (b) window size = 5; (c) window size = 7.
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{al (b}

Figure 8.20 Illustration that a 2-D N x N-point median filter distorts 2-D step
discontinuities. (a) Unit step sequence u(n,, ny); (b) result of filtering u(n,, n.)
with a 5 X 5-point median filter.
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Median Filter

Median filtering is a non-linear signal enhancement technique for the
smoothing of signals, the suppression of impulse noise, and preserving of
edges. In the one-dimensional case it consists of sliding a window of an odd
number of elements along the signal, replacing the centre sample by the
median of the samples in the window. In the following picture we use window
sizes of 3 and 5 samples. The first two columns show a step function,
degraded by some random noise. The two last columns show a noisy straight
line, and in addition one and two samples, which are considerably different
from the neighbour samples.

MEDIAN MEAMN MEDIAMN MEDIAN
10 10 10 . 10
; ; ; ﬂﬂ ; m'
ol all
5 10 5 10 5 10 B 10
original original origanal original
10 10 ; 10 ] 10 1
5 5 5 5 TT Iﬂ‘
0 DLT
5 1D 5 1D 5 10 5 10
window = 3 window = 3 window = 3 window = 3
10 10 10 . 10
b b b b
D»rTTHm D..fﬂﬂm
5 10 5 10 5 10 B 10
window = & window = & window = & window = &

Whereas the median filter in the first column preserves the edge very well, the
low-pass filtering method in the second column smoothes the edge
completely. Columns 3 and 4 show the importance of the window size: one
sample out of range can be easily removed with a window size of 3, whereas
two neighboring samples can only be removed with a larger window.



Median Filter

Y (N) =med (X, 4, Xy reer Xy ee X i)

1. order X;
2. choose middle element

More general
2b. choose i-th element

Allows removal of salt and not pepper or reverse

Recursive

Y(n) = med(yn—k’ yn—k""’ yn—l’ Xn""xn+k)
i.e. is done "in place" . It now depends on the order of the sweep!!

Gives more smoothing but more distortion
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For a filter window of size 2K+1 and signal length L

typically 5-10 iterations is sufficient

Theorem

For a rank operator other than the median only the
constant is a root signal

Definition:

white noise: independent identically distributed
random variables with mean 4 and variance o>

1. The median is the maximum likelyhood estimate
of the signal level in the presence of uncorrelated
additive bi-exponential Gaussian distributed noise

2. The arithmetic average is the maximum likehood
estimate of the signal level in the presence of
uncorrelated additive Gaussian distributed noise



Properties of Median

For odd number of points only pre-existing values can be chosen
For even number of points average of two middle values are chosen
Preserves discontinuity in one dimension (depends on window size).
It is a one dimensional operator and so does NOT preserve two
dimensional discontinuity

rwnpE

Definition: an invariant subspace or root signal X = (X 4y Xy XXl

A constant neighborhood X, = X, =...= X p=K+1

p
An edge : Two constant neighborhoods with a discontinuity between them
An impulse: Two constant neighborhoods with K points between them

An oscillation: none of the above

Theorem: aroot signal consists of only constant neighborhoods and edges
Definition: an impulse: Two constant neighborhoods with K points between them

Theorem: Repeated median yields a root signal after a finite number of iterations

L-2

For a filter window of size 2K+1 and signal L the maximum number of iterations is BW.
+

Typically 5-10 is sufficient.
Theorem: Frorarank operator other than the median only the constant is a root signal

Definition: white noise = independent identically distributed random variables with mean 1

and variance o

Theorem: the arithmetic average is the maximum likelihood estimate of the signal level in the
presence of uncorrelated additive Gaussian distributed noise

Theorem: the median is the maximum likelihood estimate of the signal level in the presence of
uncorrelated additive biexponential Gaussian distributed noise
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W”d patterns used for median filtering:
gor n:q-:.r.:';'ggiﬂjm‘ cross: b) 3 x3 square containing nine pixels; ¢) 5 x35 octagonal region with 21

o s = S s e
Jf 1 d) 55 square containing 25 pixels; e) 7x7 octagonal region containing 37 pixels.

pr’.rt*-’s:

Mghborhnod ranking
he use of weighting kernels to average together pixels .in a
eighborhood is 4 convolution .Dperﬂtion, wl}ich hais a c!uect
ounterpart in frequency space image processing. It is a linear
' neration in which no information is lost from the original image.
fere are other processing operations that can be performed in
|¢ighlmrhnods in the spatial domain that also provide noise
moothing. These are not linear and do not utilize or preserve all

f the original data.

he most widely used of these methods is based on ranking of
he pixels in a neighborhood according to brightness. Then, for
xample, the median value in this ordered list can be used as
he brightness value for the central pixel. As in the case of the
ternel operations, this is used to produce a new image and only
he original pixel values are used in the ranking for the neigh-
»orhood around each pixel.

[he so-called median filter is an excellent rejector of certain
dnds of noise, for instance “shot” noise in which individual pix-
Is are corrupted or missing from the image. If a pixel is acci-
lentally changed to an extreme value, it will be eliminated from
he image and replaced by a “reasonable” value, the median
value in the neighborhood.

Figure 10 shows an example of this type of noise. Ten percent
of the pixels in the original image, selected randomly, are set to
black, and another ten percent to white. This is a rather extreme

imount of noise. However, a median filter is able to remove the
noise and renlaca the had nivele with reasnonahle values while



apply it directly to your image data using filter2, or you can rotate it 180
degrees and use conv2 or convn.

One simple filter fspecial can produce is an averaging filter. This type of filter
computes the value of an output pixel by simply averaging the values of its
neighboring pixels.

The default size of the averaging filter fspecial creates is 3-by-3, but you can
specify a different size. The value of each element is 1/1length(h(:)). For
example, a 5-by-5 averaging filter would be:

. 0400 0.0400 0.0400
.0400 0.0400 0.0400
. 0400 0.0400 0.0400
.0400 0.0400 0.0400
. 0400 0.0400 0.0400

0.0400 0.0400
0.0400 0.0400
0.0400 0.0400
0.0400 0.0400
0.0400 0.0400

o S o Y (Y o [

Applying this filter to a pixel is equivalent to adding up the values of that
pixel’s 5-by-5 neighborhood and dividing by 25. This has the effect of smoothing
out local highlights and blurring edges in an image.

This example illustrates applying a 5-by-5 averaging filter to an intensity
image:

I = imread('blood1.tif');

h = fspecial('average',5);

I2 = uint8(round(filter2(h,I)));
imshow(I)

figure imshow(IE]




First, read in the image and add noise to it.

I imread('eight.tif');

J imnoise(I,'salt & pepper',0.02);
imshow(I)

figure, imshow(J)

I

Now filter the noisy image and display the results. Notice that medfilt2 does
a better job of removing noise, with less blurring of edges.

K = filter2(fspecial('average',3),J)/255;
L = medfilt2(J,[3 3]);

imshow(K)

figure, imshow(L)

Median filtering is a specific case of order-statistic filtering. For information
about order-statistic filtering, see the reference entry for the ordfi1t2 function
in Chapter 11.



Problem

Usually need noise reduction before performing higher level processing
steps.



Spatial Filtering

1) Define a center point (X, y)

2) Perform an operation that involves only pixels in
a predefined neighborhood about that center
point

3) Let the result be the response of the process at
the point

4) Repeat the process for every point in the image
If operations performed is linear,

it is called linear filtering;
otherwise it is called nonlinear filtering.

*We are interested in filtering operations that are performed directly on the pixels on an
image. Frequency domain filtering may be covered by the professor.



Linear Filters: Weighted Averaging
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Linear Filters: Mean Filter

.. Filter

Input image Output image

When a mean filter is applied, it removes noise a little.
However, it gives BLURRY result.



Nonlinear Filters: Median Filter

* A non-linear combination of neighboring pixel
may give better results.

e Median Filter

— Similar to mean filter. It has a moving mask.
Instead of taking mean, it takes median.

— |t cannot be done with a convolution, instead we
need to sort all the pixels under mask, take the
value in the center*.

*For a more efficient algorithm, go to http://en.wikipedia.org/wiki/Median_search)



Nonlinear Filters: Median Filter

101 | 117 | 101 |O
109 | 140 | 140 |7
53 107 | 101 |7
85 |86 |85 |27
53 |8 |27 |O

144 | 117 | 214 | 140 | 147
48 |251 [101 | 195 |7/
109 |18 |30 |189 |2
53 |192 |4 107 | 120
100 |86 |85 |114 |27

Input Output



Nonlinear Filters: Median Filter

B Median
BRI Filter

Input image Output image

-Median filter is usually good to remove outlier pixels from an image.
-Such filters preserve edge information while removing noise.
-However, median filter reduces the quality of the image.
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(c) image with Gaussian noise

(d} 3 x 3 median filtered.

Figure 7.21 Median filtering.



Figure 4.23 (a) Original image; (b) image corrupted by impulse noise; (c) result of 3 %
neighborhood averaging; (d) result of 5 X 5 median filtering. (Courtesy of Martin Conn
Texas Instruments, Inc., Lewisville, Tex.)
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Figure 10. Removal of shot noise with a median filter:

a) original image;

b) imcge a with 10% of the pixels randomly selected and set to black. and another 10% randomi
el set to white;

c) dapplication of median filtering to image b using a 3 X3 square region:

d) application of median filtering to image b using a 5x3 oclagonal region.



Figure 13. Repected
application of a 5x5
octagonal median filter:

a) original inicge:

b) dfter 12 applications. The fii
details berve been erased ane
textured regions leveled to a
uniform shade of grey, but
bounderies bave not shified.




Figure 15. Application of the truncated
median filter to posterize the image from
Figure 10:

a) one application of the 3 x3 truncated median;
b) difference between Figure a and a conventiona.
3 x 3 median filter, showing the difference in

values along edges;
c) 12 applications of the truncated median filter.
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rAlgorithm 4.3: Efficient median filtering

1. Set o

Pl
2

2. Position the window at the beginning of a new row, and sort its contents. Construct a
histogram H of the window pixels, determine the median med, and record /t_med, the
number of pixels with intensity less than or equal to med.

3. For each pixel p in the leftmost column of intensity p,, perform
Hlpy] = H[py] — 1

Further, if p, < med, set
lt_med = lt_med — 1

4. Move the window one column right. For each pixel p in the rightmost column of intensity

pg, perform
H(pg] = Hpg] +1

If py < med, set
[t.med = lt_med + 1

5. If lt_med > th then go to 6.

Repeat
lt-med = lt-med+ H[med] -
med = med+1
until [{_med > th. Go to 7.
6. Repeat
med = med—1
ltimed = lt.med — H[med] (4.35)

until {t_med < th.

7. If the right-hand column of the window is not at the right-hand edge of the image, go
R, S S S,

i )
8. If the bottom row of the window is not at the bottom of the image, go to step 2.
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ffect of median filtering is shown

in Figure 4.14.

re 4.14: Median filtering: (a) image corrupted with impulse noise (14% of image are
red with bright and dark dots); (b) result of 3 x 3 median filtering.

['he main disadvantage of median filtering in a rectangular neighborhood is its damagin
1in lines and sharp corners in the image—this can be avoided if another shape of neigl
100d is used. For instance, if horizontal/vertical lines need preserving, a neighborhoo

| as that in Figure 4.15 can be used.

Figure 4.15: Horizontal/vertical line preserving neighborhood for median filiering.

Median smoothing is a special instance of more general rank filtering techniques [Rose
. and Kak 82, Yaroslavskii 87], the idea of which is to order pixels in some neighborhoc
) sequence. The results of pre-processing are some statistics over this sequence, of whi
median is one possibility. Another variant is the maximum or the minimum values
sequence. This defines generalizations of dilation and erosion operators (Chapter 11)
1ges with more brightness values.
A similar generalization of median techniques is given in [Borik et al. 83]. Their meth:
alled order statistics (OS) filtering. Values in the neighborhood are again ordered ir



to the fact that the images are much larger than the masks, and these “wasted” rows
and columns are often filled with zeros (or cropped off the image). For example, with a
3 x 3 mask, we lose one outer row and column, a 5 x 5 loses two rows and columns—
this is not usually significant for a typical 256 x 256 or 512 x 512 image.

The maximum and minimum filters are two order filters that can be used for
elimination of salt-and-pepper (impulse) noise. The maximum filter selects the largest
value within an ordered window of pixel values, whereas the minimum filter selects the
smallest value. The minimum filter works when the noise is primarily of the salt-type
(high values), and the maximum filters works best for pepper-type noise (low values).
In Figures 3.3-2a, b, the application of a minimum filter to an image contaminated

jure 3.3-2 Minimum and Maximum Filters

1. Image with salt noise; probability of salt = .04. b. Result of minimum filtering image (a); masiq
size=3x3. X

Image with pepper noise; probability of pepper d. Result of maximum filiering image (c); mask
=.04. size = 3 » 3.



with salt-type noise is shown, and in Figures 3.3-2¢, d a maximum filter applied to a:
image corrupted with pepper-noise is shown. Here we see that these filters are exce!
lent for this type of noise, with minimal information loss. As the size of the window get
bigger, the more information loss occurs; with windows larger than about 5 x 5 th
image acquires an artificial, “painted,” effect (Figure 3.3-3).

In a manner similar to the median, minimum, and maximum filter, order filter:
can be defined to select a specific pixel rank within the ordered set. For example, wi
may find for certain types of pepper noise that selecting the second highest value
works better than selecting the maximum value. This type of ordered selection is ver:

‘igure 3.3-3 Various Window Sizes for Maximum and Minimum Filters

a. Result of minimum filtering Figure 3.3-2a; b. Result of minimum filtering Figure 3.3-2a;
mask size = 5 x 5. mask size =9 x 9,

¢. Result of maximum filtering Figure 3.3-2¢; d. Result of maximum filtering Figure 3.3-2c;
mask size =5 » 5. mask size=8x8



The final two order filters are the midpoint and alpha-trimmed mean filter
They are actually both order and mean filters because they rely on ordering the pix
values, but they are then calculated by an averaging process. The midpoint filter is tt
average of the maximum and minimum within the window, as follows:

ordered set -~ I, sl sl < .. < fﬁ.:
+ f'-.

Midpoint =
idpoin 2

The midpoint filter is most useful for gaussian and uniform noise, as illustrated 1
Figure 3.3-4.

The alpha-trimmed mean is the average of the pixel values within the windov
but with some of the endpoint-ranked values excluded. It is defined as follows:

ordered sét = L <L 5. 50

Alpha-trimmed mean = q; Z 1,

where T is the number of pixel values excluded at each end of the ordery,d—set—&nd car
range from 0 to (N? — 1).

igure 3.3-4 Midpoint Filter

a.lmage with gaussian noise—variance = 300: b. Result of midpoint filter; mask size = 3.
mean = 0,
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Figure 3.3-4 (Continued)

c. Image with uniform noise—variance = 300; d. Result of midpaoint filter; mask size = 3.
mean = 0.

The alpha-trimmed mean filter ranges from a mean to median filter, depending
on the value selected for the T’ parameter. For example, if T = 0, the equation reduces
to finding the average gray-level value in the window, which is an arithmetic mean fil-
ter. If T = (N? — 1)/2, the equation becomes a median filter. This filter is useful for
images containing multiple types of noise, such as gaussian and salt-and-pepper
noise. In Figure 3.3-5 are the results of applying this filter to an image with both gaus-
sian and salt-and-pepper noise.

Figure 3.3-5 Alpha-Trimmed Mean Filter

a. Image with gaussian and salt-and-pepper b. Result of alpha-trimmed mean filter; mask size =
noises—variance = 200; mean = 0. 3, trim size = 1.
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Figure 3.3-5 (Continued)

B~

c. Result of alpha-trimmed mean filter; mask size = d. Result of alpha-trimmeet fiican filter; mask size =
3, trim size = 4. 5, trim size = 5.

3.3.2 Mean Filters

The mean filters function by finding some form of an average within the N x
window, using the sliding window concept to process the entire image. The most bas
of these filters is the arithmetic mean filter, which finds the arithmetic average of tl
pixel values in the window, as follows:

Figure 3.3-6 Arithmetic Mean Filter

a.Image with gaussian noise—variance = 300; b. Image with gamma noise—variance = 300;
mean = 0. alpha = 1.
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applied to images with various types of noise. It can be seen that the larger th
mask size, the more pronounced the blurring effect. This type of filter works bes
with gaussian and uniform noise. The blurring effect, which reduces image detail:
is undesirable, arid the other mean filters are designed to minimize this loss of deta
information.

The contra-harmonic mean filter works well for images containing salt OR per

per type noise, depending on the filter order R:

Figure 3.3-7 Contra-Harmonic Mean Filter

b. Result of contra-harmonic mean filter: mask size
= 3; order = -3.

d. Result of contra-harmonic mean filter; mask size
= 3; order = +3.

c. Image with pepper noise—probability = .04.
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Y dr o

L E W
dir, )

(rche W

Contra-Harmonic Mean =

where W is the N x N window under consideration.

For negative values of R, it eliminates salt-type noise, whereas for positive °
ues of R, it eliminates pepper-type noise. This is shown in Figure 3.3-7.

The geometric mean filter works best with gaussian noise and retains de
information better than an arithmetic mean filter. It is defined as the product of
pixel values within the window, raised to the 1/N® power:

Geometric Mean = [ [/(r, ¢)] "
(r,c)eW

In Figure 3.3-8 are the results of applying this filter to images with gaussian (a, b) a
pepper noise (¢, d). As shown in Figure 3.3-8d, this filter is ineffective in the preser
of pepper noise—with zero (or very low) values present in the window, the equati
returns a zero (or very small) number.

The harmonic mean filter also fails with pepper noise but works well for s:
noise. It is defined as follows:

N?
Harmonic Mean = :

(r.c}EW d(r, c)

This filter also works with gaussian noise, retaining detail information better th:
the arithmetic mean filter. In Figure 3.3-9 are the results from applying the harmon

Figure 3.3-8 Geometric Mean Filter

a. Image with gaussian noise—variance = 300; b. Result of geometric mean filter on image with

mean = 0.

gaussian noise; mask size = 3.
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Figure 3.3-8 (Continued)

]

c. Image with pepper noise—probability = .04. d. Result of geometric mean filter on image with
pepper noise; mask size = 3.

mean filter to an image with gaussian noise (a, b) and to an image corrupted with sa
noise (¢, d).
The Y, mean filter is defined as follows:

|
AP
}’p Mean = Z Ar,cy f} ]F
ire)cw  N-

Figure 3.3-9 Harmonic Mean Filter

a.Image with gaussian noise—variance = 300; b. Result of harmonic mean filter on image with
mean = 0. gaussian noise; mask size = 3.



“igure 3.3-9 (Continued)

c. Image with salt noise—probability = .04. d. Result of harmonic mean filter on image with
salt noise; mask size = 3.

This filter removes salt noise for negative values of P and pepper noise for negativ
values of P. Figure 3.3-10 illustrates the use of the Y, filter.



Figure 3.3-10 Y, Mean Filter

a. Image with salt noise—probability = .04,

b. Result of Yp mean filter on image with salt r
mask size = 3, order = -3.
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c. Image with pepper noise—probability = .04.

d. Result of ¥Yp mean filter on image with pepp:
noise; mask size = 3, order = +3.
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Non-linear mean filter

The non-linear mean filter is another generalization of averaging techniques [Pitas and Venet-
sanopulos 86]; it is defined by

250 ali, g) ulg(i, 5)] } (4.36)

m.n)=u"?t
f(m,n) { Sehco 06

where f(m,n) is the result of the filtering, g(¢,7) is the pixel in the input image, and O is
a local neighborhood of the current pixel (m,n). The function u of one variable has an inverse
function u™!; the a(i, j) are weight coefficients.

If the weights a(t, j) are constant, the filter is called homomorphic. Some homomorphic

filters used in image processing are
e Arithmetic mean, u(g) = g
e Harmonic mean, u(g) = 1/g
e Geometric mean, u(g) = logg

Yet another approach to image pre-processing performed in homogeneous pixel neighbor-
hoods is discussed in Section 4.3.9 in the context of several other adaptive-neighborhood

pre-processing methods.



a0 Image Enhancement Chap. ¢

1.4 IMAGE SMOOTHING

Image smoothing is used for two primary purposes: to give an image a softer or special
effect or to eliminate noise. In the previous chapter we discussed filtering to eliminate
noise, so here we will focus on creating a softer effect (see Image Processing exercise
#4 in Chapter 8). Image smoothing is accomplished in the spatial domain by consider-
ing a pixel and its neighbors and eliminating any extreme values in this group. This is
done by various types of mean and median filters (Chapter 3). In the frequency
domain, image smoothing is accomplished by some form of lowpass filtering. Because
the high spatial frequencies contain the detail, including edge, information, the elimi-
nation of this information via lowpass filtering will provide a smoother image. Any

‘igure 4.4-1 Mean Filters (3 x 3)

a. Criginal image. b. Aritmetic mean filter.

c. Alpha-trimmed mean filter—trim size = 0. d. Contra-harmonic mean filter—order = +1.
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jure 4.4-1 (Continued)

e. Geometric mean filter. f. Harmonic mean filter.

AT o

g. Y, mean filter—order = +1. h. Midpoint filter.

fast or sharp transitions in the image brightness will be filtered out, thus providir
the desired effect.



Figure 4.4-2 Image Smoothing with an Arithmetic Mean Filter

a. Original image. ; b. 3 = 3 arithmetic mean filter.
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Figure 4.4-3 Image Smoothing with a Median Filter

a. Original image. b. 3 x 3 median filter.

c. 5 x 5 median filter. d. 7 x 7 median filter.

data as we move across the image. A pseudo-median filter is explored in the
tumor application discussed in Chapter 7.



Figure 32. Constructing a background image with a rank operation:
a) an image of rice grains with nomuniform illumination:
b) cach pixel replaced with the darkest neighboring pixel in an octagonal 5 x5 neighborbood:

<) another repetition of the “dearkest neighbor™ or grey scale erosion operation:
d) afier four repetitions only the background remeins:

e) result of subtracting d from a:

) the leveled result with contrast expenided.
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Weighted Median Filters
Definition: WoX =X, X, X,.X W times

Definition: median of X, X,,...X, with weights W,,W,,..W.
Y = mEd{\Nlaxl,WZDXZ,...\NnDXn}

NOte: The usual weighted average can be written as
Y = mean{\Nlqu,quXZ,...Wnan}

Example: x=[-15811-2]
W=[123 2 1]

ThenWoX =med{l1 11 8 8 8 5 5 -1 -2}=8
Note that med{X}=5

Theorem: The weighted median chooses £ to minimize

L(,B):Z\Ni |Xi _,B|

2

N OtE€: the arithmetic mean chooses £ to minimize () = iWi (% —28)

i=1



Calculation of weighted mean

1. Order the x
2. add the corresponding w, from the upper end until half the sum.

1y
e.=> w
22"
3. WMs=last sample
Example: X=[1 5 8 11 2] Ww=[0.1 0.2 0.3 0.2 0.1]

1.Sort X=[11 8 5 2 1]
W=[0.2 0.3 0.2 0.1 0.1] > w, =09

2. add weights until we get at least half way, i.e. 0.45
3. 0.2+0.3=0.5>0.45
4. WM=8

As before we can consider a recursive weighted median

Center Weighted Mean Smoother

Choose all the weights = 1 except for the center one which is W,

w, =1= Median
w, >N = Identity

Adaptive version: choose W, =1 for an impulse and W, > N for smooth regions



Negative Weights

Until now we have considered W, >0
We first begin with averages. We saw that

| wy [ sign(wy)xy)

So analogously we define the weighted median as

weighted —med (w) = median (W, X,,,, Wy Xy )
= median (| w, | (sign(w,)x,),..,| w, | (sign(wy)xy ))

Computation:
1 N
LT,=2 > Iw|
273
2. sort y, =sgn(w,)x
3.sum w, corresponding to y, beginning with largest values

4. output is signed sample which causes sum to be greater or equal to T,



negative weighted median

-1 -1 -1
-1 8 -1
-1 -1 -1

Let g. be the gray value of the central pixel. We order the gray values as

— Jlargests --- — Ysmallest, ey Jey ---Ge
—_—

8

Since we have an even number (16) of values we take the average of the two

middle ones
WM — ge — Gsmallest

2

Note: we get different results if we go from black to white or white to black
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URE 3 Effects of increasing the center weight of a CWM smoother of window size N = 9
rating on the voiced speech “a”. The CWM smoother output is shown for W, = 2w + 1, with
- 0, 1, 2, 3. Note that for W, = 1 the CWM reduces to median smoothing, and for W, = 9 it

ymes the identity operator.
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FIGURE 9 Impulse noise cleaning with a 5 x 5 CWM smoother: (a) original gray-scale “portrait” image,
(b} image with salt-and-pepper noise, (¢} CWM smoother with W, = 13, (d) CWM smoother with W, = 5.
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FIGURE 10 Impulse noise cleaning with a 5 x 5 CWM smoother: (a) original “portrait” image, (b) image with
salt- and-pepper noise, (c) CWM smoother with W, = 16, (d) CWM smoother with W, = 5. {See color section,
p-C-3.)
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FIGURE 11 (Enlarged) Noise-free image (left), 5 = 5 median smoother output {center), and 5 x 5 mean
smoother (right). (See color section, p. C—4.)
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FIGURE 12  [Enlarged) CWM smoother output (left), recursive CWM smoother output (center), and per-
mutation CWM smoother output (right). Window size is 5 x 5. {See color section, p- C-4.)



NAME medtrunc

DESCRIPTION
Performs the Truncated median filter. This filter is an approximation of the 'mode filter'. The mode of
the distribution of brightness values in each neighborhood is, by definition, the most likely value.
However, for a small neighborhood, the mode is poorly defined. For any asymmetric distribution,
such as
would be obtained at most locations near but not precisely straddling an edge, the mode is the highest
point, and the median lies closer to the mode than the mean value. The truncated median filter first
calculates the mean in each 3x3 region. Then it calculates the median of the 7 values in each 3x3
region which are closest to the mean value.

This has the effect of sharpening steps, and produces posterization when it is applied repeatedly.

EXAMPLE

Original i age _ Truncated median filter
‘ Execution time: 3.224ms (RVS-10G), 2.399ms (RVS-DX-10G)




NAME medhybrid

DESCRIPTION

Performs the Hybrid Median filter. This is a edge-preserving median filter. It's a three-step ranking
operation. In a 5x5 area pixels are ranked in two different groups as shown below. The median value
of group 'a’ and 'b' and the central pixel ‘ab' is used as the new pixel value.

This filter can be used to remove "shot™ noise (in which individual pixels are corrupted or missing
from an image) or to reduce random noise in the context of averaging. This median filter overcomes
the tendancy of the other median filters (median3, mediannn, medtrunc) to erase lines which are
narrower than the half-width of the neighborhood and to round corners.

aa bb aa
aa bb aa

bb bb ab bb bb
aa bb aa

aa bb aa

EXAMPLE

Originl Imae | Hybrid Median filter




~on-Linear Filters

A variety of smoothing filters have been developed that are not linear. While they cannot, in general, be subm
to Fourier analysis, their properties and domains of application have been studied extensively.

* Median filter - The median statistic was described in Section 3.5.2. A median filter is based upon moving a
window over an image (as in a convolution) and computing the output pixel as the median value of the
brightnesses within the input window. If the window is J = K'in size we can order the J'K pixels in brightness v
from smallest to largest. If J*Kis odd then the median will be the (J*K+1)/2 entry in the list of ordered
brightnesses. Note that the value selected will be exactly equal to one of the existing brightnessas so that no
roundoff error will be involved if we want to work exclusively with integer brightness values. The algorithm as |
described above has a generic complexity per pixel of O(J*K*log(J*K)). Fortunately, a fast algorithm (due to u
et al. ) exists that reduces the complexity to O(K) assuming J>= K.

A useful variation on the theme of the median filter is the percentile filter. ere the center pixel in the window is
replaced not by the 50% (median) brightness value but rather by the p% brightness value where p% ranges fr
0% (the minimum filter) to 100% (the maximum filter). Values other then (p=50)% do not, in general, correspol
to smoothing filters.

* Kuwahara filter - Edges play an important role in our perception of images (see Figure 15) as well as in the
analysis of images. As such it is important to be able to smooth images without disturbing the sharpness and,
possible, the position of edges. A filter that accomplishes this goal is termed an edge-preserving filter and one
particular example is the Kuwahara filter . Although this filter can be implemented for a variety of different wine
shapes, the algorithm will be described for a square window of size J= K= 4L + 1 where L is an integer. The
window is partitioned into four regions as shown in Figura 29.

Regon 1

e —

L]
HEN e
N B R
L
L

Region 3 . . -
Center Pixel
L. ’

Region 4

Figure 29: Four, square regions defined for the Kuwahara filter. In this example L=1 and thus J=K=5. Each rac
is [(J+1)/2] x [(K+1)/2].

In each of the four regions (/=1,2,3.4), the mean brightness, m;in eq. , and the variance sf?in eq. , are

measured. The output value of the center pixel in the window is the mean value of that region that has the
smallest variance.



NAME kuwahara

DESCRIPTION

Performs the Kuwahara Filter. This filter is an edge-preserving filter.

(aaab bb

(aaab bb

(ac ac abcd bd bd)

(ccecd dd

(ccecd dd

In each of the four regions (a, b, ¢, d), the mean brightness and the variance are calculated.
The output value of the center pixel (abcd) in the window is the mean value of that region that
has the smallest variance.

This filter is an edge-preserving filter, which smoothes the images without disturbing the
sharpness and the position of edges.

EXAMPLE

Original Image - Kuwahara Filter




Original Image Img after Kuwahara Filter




3.3.3 Adaptive Filters—Minimum Mean-Square Error Filter

The previously described filters are adaptive in the sense that their outpu
depends on the underlying pixel values. Some, such as the alpha-trimmed mean, car
vary between a mean and median filter, but. this change in filter behavior is fixed for :
given value of the T parameter. However, an adaptive filter alters its basic behavior a.
the image is processed; it may act like a mean filter on some parts of the image and :
median filter on other parts of the image. The typical criteria used to determine th
filter behavior are the local image characteristics, usually measured by the local gray
level statistics. The minimum mean-square error (MMSE) filter is a good example o
an adaptive filter, which exhibits varying behavior based on local image statistics. Th:
MMSE filter works best with gaussian or uniform noise and is defined as follows:

g 2
MMSE =d(r, ¢) - —"[d(r, c) - m(r, c}]
o

where
o, = noise variance
GIE = local variance (in the window under consideration)
m, = local mean (average in the window under consideration)

With no noise in the image, the noise variance equals zero, and this equation wil
return the original unfiltered image. In background regions of the image, areas ¢
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are weighted by the noise to local variance ratio, 6, %c,%. As this ratio increases, imply-
ing primarily noise in the window, the filter returns primarily the local average. As
this ratio goes down, implying high local detail, the filter returns more of the original
unfiltered image. By operating in this manner, the MMSE filter adapts itself to the
local image statistics, preserving image details while removing noise. Figure 3.3-11
illustrates the use of the MMSE filter on an image with added gaussian noise. Here
we specify the window (kernel) size and the noise variance to be used. More informa-
tion on adaptive filters can be found in the references.

jure 3.3-11 MMSE Filter

a. Original image. b. Image with gaussian noise—variance = 300;
mean = 0.

c. Result of MMSE filter—kernel size = 3; noise d. Result of MMSE filter—kernel size = 9; noise
variance = 300, variance = 300,



Averaging using a rotating mask

Averaging using a rotating mask is a method that avoids edge blurring by searching for
the homogeneous part of the current pixel neighborhood and the resulting image is in fact
sharpened [Nagao and Matsuyama 80]. The brightness average is calculated only within this
region; a brightness dispersion ¢? is used as the region homogeneity measure. Let n be the
number of pixels in a region R and g be the input image. Dispersion ¢? is calculated as

o

{gm}—% )3 g{s:,_-r'}]
(

LiJER

2 2

G2 (4.33)

7,

(i.j)eR

The computational complexity (number of multiplications) of the dispersion calculation
can be reduced if equation (4.33) is expressed another way:
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Figure 4.12: Fight possible rotated 3 x 3 masks.

Having computed region homogeneity, we consider its shape and size. The eight possible 3
X 3 masks that cover a 5 x 5 neighborhood of a current pixel (marked by the small cross) are

e



shown in Figure 4.12. The ninth mask is the 3 x 3 neighborhood of the current pixel itself.
Other mask shapes can also be used. Figure 4.13 shows another set of eight masks covering
a 5 x 5 neighborhood of the current pixel. Again the ninth mask is the 3 x 3 neighborhood
of the current pixel. Another possibility is to rotate a small 2 x 1 mask to cover the 3 x 3

I ] I ] 1 i ] ] 1 I 1 i i I

T T e

RS RN R i

ST i i i
1 2 Gak o 8

Figure 4.13: Alternative shape of eight possible rotated masks.

neighborhood of the current pixel.
Image smoothing using the rotating mask technique uses the following algorithm.

Algorithm 4.2: Smoothing using a rotating mask

1. Consider each image pixel (i, 7).

2. Calculate dispersion in the mask for all possible mask rotations about pixel (i, 7) ac-
cording to equation (4.33).

3. Choose the mask with minimum dispersion.

4. Assign to the pixel f(7,7) in the output image f the average brightness in the chosen
mask.

Algorithm 4.2 can be used iteratively; the iterative process converges quite quickly to
the stable state (that is, the image does not change any more). The size and shape of
masks influence the convergence—the smaller the mask, the smaller are the changes and
more iterations are needed. A larger mask suppresses noise faster and the sharpening effect
is stronger. On the other hand, information about details smaller than the mask may be lost.
The number of iterations is also influenced by the shape of regions in the image and noise
properties.



Bilateral Filter

in one dimension use weighted average

- Z nykn

Xk =
Zwkn
n
where
_dzk,lé—n
1. ws_=e #°s  physical distance

_dz(ykyk_n) _(yk_yk—nj2

2 2 .
2.WR _=e %% _e %% graylevel distance

WS oS
Then Wy = W2 o WS

Note: when
os and o are large = uniform non-adaptive; degrades signal
os and o, are small = no smoothing



Nonlinear Filters: Bilateral Filter

 Combines the idea of weighted filtering with
an outlier rejection

* Similar to Gaussian filter, it is also defined as a
weighted average of pixels.

e The difference is that the bilateral filter takes
into account the variation of intensities to
preserve edges.



Nonlinear Filters: Bilateral Filter

* The output pixel value again depends on a
weighted combination

g(?' ]) _ Zk,i f(k?, Z)w(zﬁjjj K, g)
jj Zk":‘f u‘}(?"ﬁja kg ])

ik D Ja-
w is a product of two weights: domain and range.
-Domain component is a usual Gaussian which penalizes distant pixels
-Range component penalizes pixels with a different intensity



Nonlinear Filters: Bilateral Filter

bilateral filter weights of the central pixel

spatial weight range weight

input result

multiplication of range
and spatial weights




Results

(h)

Figure 3.17: Median and bilateral filtering: (a) image with Gaussian noise; (b) Gaussian filtered;
(c) median filtered; (d) bilaterally filtered; (e) image with shot noise, (f) Gaussian filtered; (g)
median filtered; (h) bilaterally filtered. Note that for shot noise, the bilateral filter fails to remove
the noise, because the noisy pixels are too different from their neighbors to get filtered.
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Weighted Least Squares (WLYS)

Let Y = measured image
X = desired image

then

S s(X) :%(X =Y)T(X =Y)+ 5 (X -DX)T(X-DX)

penalty

If D is left shift the X-DX is a first difference
Choose W diagonal

Robust Estimation

%(X ~Y)T(X=Y)+%p(x-DX|

CRE =



B e e T -

Averaging according to inverse gradient

The convolution mask is calculated at each pixel according to the inverse gradient [Wang and
Vagnucci 81], the idea being that the brightness change within a region is usually smaller than
between neighboring regions. Let pixel location (m,n) correspond to that of a central pixel
of a convolution mask with odd size; the inverse gradient § at the point (z, j) with respect to
(m,n) is then

1
Ig{m: ﬂ') i Q‘(E,j”

If g(m,n) = g(i, ), then we define 4(i, j) = 2; the inverse gradient d is then in the interval
(0,2], and § is smaller on the edge than in the interior of a homogeneous region. Weight
coefficients in the convolution mask h are normalized by the inverse gradient, and the whole
term is multiplied by 0.5 to keep brightness values in the original range. The constant 0.5
has the effect of assigning half the weight to the central pixel (m,n), and the other half to

(4.31)

8(,7) =

. neighborhood.
6(3, 5)
h(i,j) = 0.5 — (4.32)
! Z{m,n]é(‘_’? 5[:?-,}]
1e convolution mask coefficient corresponding to the central pixel is defined as h(7, j) = 0.5.
This method assumes sharp edges. When the convolution mask is close to an edge, pixels
m the region have larger coefficients than pixels near the edge, and it is not blurred.
lated noise points within homogeneous regions have small values of the inverse gradient;
ints from the neighborhood take part in averaging and the noise is removed.




LI Filters
7:(x1,x2,...,xn)

reform as an ordered sequence

Tz{x(l),x(z),...,x(n)J

where
x[l] < X[Z]' W< x(nj
Then
M
d=>cz

17
1=1

|f Z;=X; and M =n then we have a linear estimator

This filter includes the median,alpha-trim, midpoint,
etc.

Let the weight ¢, depend on the distance from the

median. Then define the N2 dimensional vector
2= Xpq - XN

X1 XN

X(N),l X(N),N



where

Xi).i ={xj J-th element in i-th rank
0 otherwise

example:

'7:@342)

then

7r=(uLzs)

and

z= 1000
0010

0002
0300

Now do linear estimation on z



Recursive Filters
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Taking the Fourier transform we get
S . ! R .
Zale—zmklg (k)= Z he—kalg(k)
(=0 I==R
Transfer Function

R .
| e—2rikl
h(k) = 9(K) _ I:Z—:Rn
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A polynomial of degree p has p complex roots.

Hence,

(=0 1
S s( d
>z =[[|1-7
(=0 E
and so
2R
=
hiz-h,zSRI=L
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