Averages

N^{2} is number of pixels in the window

1. Arithmetic Mean $=\frac{1}{N^{2}} \sum_{r, c} d(r, c) \quad$ low pass, blurs images
reduces all noise, best for Gaussian \& uniform
2. Geometric Mean: $=\left[\prod_{r, c} d(r, c)\right]^{\frac{1}{N^{2}}}$ best with Gaussian
sharper than arithmetic, doesn't work on pepper
3. Harmonic mean: $=\frac{N^{2}}{\sum_{r, c} \frac{1}{d(r, c)}} \quad$ good on salt - bad on pepper
4. Y_{p} mean $=\left[\sum_{r, c} \frac{d^{p}(r, c)}{N^{2}}\right]^{\frac{1}{p}}$ for $p>0$ good on salt - bad on pepper for $p<0 \mathrm{bad}$ on salt - good on pepper
5. Contra-harmonic mean $=\frac{\sum_{r, c} d^{R-1}(r, c)}{\sum_{r, c} d^{R}(r, c)} \quad R>0$ eliminates salt $R<0$ eliminates pepper
6. alpha - trim $(\mathrm{T})=\frac{1}{N^{2}-2 T-1} \sum_{j=T+1}^{N^{2}-T} I_{j} \quad$ between arithmetic and median
7. Nonlinear mean $=u^{-1}\left\{\frac{\sum a_{i j} u\left[g_{i j}\right]}{\sum a_{i j}}\right\}$

- Arithmetic mean $u(g)=g$
- Harmonic mean $u(g)=\frac{1}{g}$
- Geometric mean $u(g)=\log (g)$

8. Minimum Mean-Square Error (MMSE)

$$
M M S E=d(r, c)-\frac{\sigma_{n}^{2}}{\sigma_{l}^{2}}\left(d(r, c)-m_{l}(r, c)\right)
$$

- $\sigma_{n}^{2}=$ noise variance
- $\sigma_{l}^{2}=$ local variance inside window
- $m_{l}(r, c)=$ mean inside window

Bilateral Filter

Use some weighted average

$$
\widehat{x}_{k}=\frac{\sum_{n} w_{k n} g_{k-n}}{\sum_{n} w_{k n}}
$$

1. $w_{k n}^{s}=e^{-\frac{d_{k, k-n}^{2}}{2 \sigma_{s}^{2}}}$

Gaussian, physical distance
2. $w_{k n}^{r}=e^{-\frac{\left(g_{k}-g_{k-n}\right)^{2}}{2 \sigma_{r}^{2}}}$

Gaussian, gray value distance

$$
w_{k n}=w_{k n}^{s} w_{k n}^{r}
$$

σ_{s}, σ_{r} large implies uniform non-adaptive, degrades signal σ_{s}, σ_{r} small implies no smoothing

Weighted Least Squares

$\mathrm{X}=$ measured image
$Y=$ desired image

$$
\varepsilon_{\mathrm{WLS}}=\frac{1}{2}(X-Y)^{T}(X-Y)+\underbrace{\frac{\lambda}{2} L(X)^{T} W(Y) L(X)}_{\text {penalty }}
$$

$\mathrm{L}(\mathrm{X})$ can be first or second derivative

Robust Estmation:

$$
\varepsilon_{\mathrm{WLS}}=\frac{1}{2}(X-Y)^{T}(X-Y)+\underbrace{2}_{\text {nonlinear }} \underbrace{\rho(X)}
$$

