Heat /Diffusion Equation

=0 k constant

w(z,0) = ¢(x) initial condition

w(0,t) = w(l,t) =0  boundary conditions

Energy estimate:
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0 = w(wy — kwey) = (%) — (kwwy), + k(wy)?
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and therefore E(t) = [ %2dx is a non-increasing function of time or equivalently
0

0< E(t) < Eo

For the initial value problem if ¢(z) = 0 then E(0) = 0 and E(t) = 0 i.e.
uniqueness.

Stability
Consider  u; = kugy u(z,0) = p(x)
U = kvzm U(:E, O) w(l‘)



From the energy estimate we get

l
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/ (x,t) — v(x,t)] d;zcg/ Y(z,t)]? da
0
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So small changes in ¢ causes small changes in v in the L? norm.
The maximum principle will give us stability in the maximum norm.

Maximum Principle

Let

_7+Zau (z,t) (‘3 8$3+Zb mt +e(z,t)u=f

K2

Strong version: Assume Lu > 0, M = max(u). Assume v = M at an interior
point (zg,to) and one of the following is true

1. ¢=0and M arbitrary
2. ¢c<0and M >0

3. M =0 and c arbitrary

Then uw = M everywhere in the domain (i.e. w is constant).

Weak Version: If Lu > 0 and ¢(z,t) = 0 then the maxiumum occurs initially or
on the boundary.

Soif |[ul < M att =0,z =0,z =1 then u < M everywhere

.. . - —du %u
For a minimum p?mc%ple conélder St kg2 =0
Proof (weak version in one dimension)

ou 0%u

ot 02
Intuitively at a maximum the first derivatives are zero and g% < 0 so we have

a contradiction. The problem is that we may have a saddle point with % =0.
So instead we supply a perturbation argument.

Define:
v(x,t) = u(z,t) + ex? e>0

Wish: v(z,t) < M + el?> with M = max |u(x,t)| so u(z,t) < M + (I — 2?)



Formally:

v(z,t) < M + €l

ont=0and x=0and x =1

Also

(%) v — kvge = us — k(u + €x?)pp = up — kg, — 2ek < 0

Assume there is a maximum at (zg,%o) in the interior.

At such a maximum v; = 0 and v, <0 .

Hence, vy — kv, > 0 at (2o, t0).

This contradicts (*). Hence, v(z,t) < M + €l? .

Note that low order terms destroy this property. Consider

Ut = Uge +au  a >0
u(z,0) =sinme  u(0,t) =u(l,t) =0

has a solution u(z,t) = e(*=™ )t gin(rz) which grows in time if @ > 72,

Lemma:
oo
= / e dr = /7
— 00
proof:

One proof is by a complex integral and Cauchy’s Theorem.
Another proof is

122//6_(x2+yz)da:dy r’=a2>+y? z=rcosb

21T 00 [e’e]
:/ / e rdrdd = 2 / e~ rdr
0 —oo —0o0
T1d
=27 / Sar (67’”2) dr = —me™" =
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Properties of heat equation

du _ 1.0%u
Leta—ka$2

1.

orok W

u(x — y,t) is a solution (shift)

Any derivative of u is a solution

Any linear combinations of solutions is a solution
The integral [ S(z —y,t)g(y)dy is a solution

u(v/az,at) a >0 is a solution

u=u(p) p= ﬁ% Then u(y/az,at) = \/%\/a:: = u(z,t).

ﬁ



ou 0%u
® %% = o
u(@,0) = 6(a)

proof of #4: If S(x,t) is a solution of (*) then by linearity so is
owt) = [ S v gw)dy

Then

vy = / Si(x —y,t)g(y)dy

oo

Vgpx = / Sx;c(z - yat)g(y)dy

—00

vy — kvgy = / [Si(z —y,t) — kSypu(r — y, )] g(y)dy =0

— 00

proof of (5)

v = u(y/ax, at)
vy = au(vax, at)
Vgo = QUgg (Vaz, at)
vy — kvge = a(ur — ktge) =0



Define

Qt = kam

Q(z,0)=1 x>0
Q(z,00)=0 z<0

Assume Q(z,t) = g(p) p

Vakt
then:
_dgdp 1 x , p,
Q= R TRV (p) = th(p)
_dgop 1
Qs = por =~ v’ (p)
_ 1 "
Que = 779 (p)
50 17 1 1
_ _ — = ! _ 1
0=0Q: — kQquq t{ 5P9 (p) 19 (p)]
Therefore

We now take the limit as ¢t | 0. Then

Define
>0 I:Q(x,O):C’l/e’pgderCQ: QT |
0
<0 0=Q(z,0)=C / e P dp+Cy= - 4 0y
0
So
Cy = L C = =
T T 272
Therefore

[=p}



Error Function

Remember
o0 1 o0
[erw= [ era=g [ erap= T
0 —o0 —00
Define

erf(z) = /e*pzdp erf ¢(z) = 1 — erf(z)
0

S

erf(0) =0 erf(oco) =1 erf(—x)

—erf(z)

x 0 T
2 2 2 2 2 2
-p° g — —p 7 gy = 1 £
ﬁ/e dp ﬁ/e dp—&—ﬁ/e dp + erf(x)
Y Zo

— 00

Then

Q) 1 +erf2(\/zﬂ)



Define 90

Then S is also a solution and

ulir, 1) = / S(z — . )p(y)dy

is also a solution. Does it satisfy the initial condition u(zx,0) = ¢(z) ?

u(w,t) /Sx—y, )dy—/%(x—y,t)w(y)dy

— 00

) ) ,
- / ai;@—y,tw(y)dy e FQ_ af

o0

/Q T —y,t ( )y — Q(x —y,1)e(y)| =

Assume ¢ is zero at infinity then

oo

u(z,t) /Q:ﬂ—y, ai( )dy
Using

Q(s,0)=1 s>0
Q(s,0)=0 s<0

We have

o0

u(e,0) = / Q(x—y,m%j(y)dy



Conclusion

001 g
Ox Vakrt

S(z,t)

e~ 4kt

u(z,t) = ﬁ /e

— 00

oo 1 o0 )
= — -Pp =
/S(x,t)dmfﬁ/e dp=1
lim S(z,t) = §(x)



Importance of Limiting Process

ou_ ot
ot 0x?
u(x,0) =0
Then a possible solution is
1 22
u(x,t) = e 1t
(1) 4/ t3

For z fixed and ¢ — 0 then u(z,t) — 0.
IEZ
At
is NOt a legitimate solution

However, for

10

constant and ¢ — 0 the solution is not bounded !! Hence, this



Main Theorem

Theorem: Assume

W B
ot 0x2
u(z,0) =¢(x)  [¢(z)] < oo
Then
1 T (2—9)?
u(x,t e~ Akt dy
(z,t) = Tlmrt e(y)
o ucC'™ —o<r<oo 0<t< oo
e cach derivative of u(z,t) satisfies (x)
o limyo u(z,t) = ¢(z)
proof
u(z,t) /Sw—y, dy—/Szt (x — 2)dz
2,t) = e 4kt
VAakmt

Let p= \/ZH z = Vktp. Then

u(z,t) = \/% [e_pf@(x — pVkt)dp

Assume |p(x)] < M . Then

MO e
lu(z,t)| < —= [ e Tdp=M
Vanm



Differentiating we get

ou [0S 1 [ o e
e %(x—y,t)go(y)dy:—m / ST "oz — z)dz
2 . -
t 2
= ch; /pe*%@(x—pvk't)dp
const p? const
M e 4dp < M
Y / pe =T
Similarly
0"u _ const 2 const
< M e T d
8x7l < \/{‘; /p e “dp \/.E

Remembering that / S(z,t)dx =1 we get

u(a, ) — p(z) = / Sz — 4.8) [o(y) — (o)) dy

_ \/%T / e ol — pVRD) — ()] dp

We assume that ¢(z) is continuous. Hence,
le(y) — ¢(z)| <& when |z —y| < 4. So

)

v
lu(z,t) — p(z)| = / ..dp+ / dp

o S
v Ip1> 7

B

—_—— ————
€ €
bounded b - —
ounded by 5 5
because ¢ is small t is small

g
So  p(y) —e@)| < 5 P
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Backward heat equation

ou  0%u

ot o
This gives growth in time and is not well posed. Equivalently we are trying to
solve the heat equation backward in time, i.e. given distribution of temperature

at time T find original temperature.

Consider
un(x,0) = —sin(nz) -0 as n— oo
n
up(z,t) = — sin(nx)e”%t is unbounded
n
Black Scholes
2.2
%VSS—I—TSVS—TV—I—V} =0
s=market value of asset being optioned
t=time

o=constant volatility

r=constant interest rate

Given the final value we wish to determine how to price it initially. So we
have backward problem ! - but we have additional minus sign = well posed
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Exercise

p(z,0) =0 |z[>1
Then

1 % (z—y)2
u(z,t) = —— e~ akt d
(2,1) T e(y)dy

1 l

z—yz
— e_( 4kt) dy

x+1
Vakt
z—1 x41
oy Vakt Vakt
o 1 _ 2 1 _
:t——/eqdq:— e 1 dg
Vi V2%
x+1 x—1
Vakt Vakt

Note: Solution is different from zero for all x when ¢ > 0.
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Lower Order Terms

Ut = KUgy — YU

u(z,0) = p(z)

Let v(z,t) = e"'u(z,t) so u(z,t) = e Mv(z,t)  v(x,0) = ¢(z)

Ox? 0x?
So )
ef'yt% —ye My = ef'yt% —ye My
or
vy = kUgy
v(z,0) = o(z)
Hence,
o0

1 _(z—y)?
vt = = [ T

oo
oo

t) = — - p(y)dy

et _
u(z, e
(%) Vakrt /

15



Convection - Diffusion

U + Cly = ktlgy

u(z,0) = p(z)
Let v(z,t) = u(z + ct,t) or u(x,t) =v(x —ct,t) =v(y,7)
~——
y
Then using the chain rule
o _ wor ooy _ov v
ot arot " ayot  or oy
ou _ ovor owoy o
or Ot oz Oyoxr Oy
So
o0 o o
or 8y C@y T oy?
o0 _
or Oy
Therefore
1 y (@w—y)?
v(z,t) = e ikt d
(z,t) Varwt /. o(y)dy
1 T (z—ct—y)?

u(z,t) = T}m e p(y)dy

For example choose

_Ja x<0
p(z) = { 8 |z >0
Then
0 [e%s)
u(a,t) = — {06 / e(mit’“yﬂ@(y)dyﬂLﬁ/e(mit’cfy)Qw(y)dy}
VAkrt g /
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Define p = ==Y  Then y = V4ktp+z — ct.

Vakt
u(z,t) = L e / e*p2dy+ﬁ / e*p2dy+
ﬁ —o0 z—ct
ikt
1 0 f/;% 0 f/szi
= ﬁ o / + / e_pzdy + B /— / e_pZdy
—00 0 0
a+8 a-p T —ct
= + erf
2 2 ( \/4kt)
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Comparison: Wave Equation — Diffusion Equation

Property Wave Diffusion
speed finite infinite
singularity along characteristics disappear
well posed t > 0 v v
well posed t < 0 v X
maximum principle X v
Energy conserved decays
information transported decays
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