Non-Intrusive Medical Diagnosis

Non-Intrusive Medical Diagnosis (cont'd)

- Observe a set of projections (integrations) along different angles of a cross-section
 - Each projection itself loses the resolution of inner structure
 - Types of measurements
 - transmission (X-ray), emission, magnetic resonance (MRI)
- Want to recover inner structure from the projections
 - "Computerized Tomography" (CT)

(From Bovik's Handbook Fig.10.2.1)

Emission tomography: measure emitted gamma rays by the decay of isotopes from radioactive nuclei of certain chemical compounds affixed to body parts.

MRI: based on that protons possess a magnetic moment and spin. In magnetic field => align to parallel or antiparallel. Apply RF => align to antiparallel. Remove RF => absorbed energy is remitted and detected by Rfdetector.

VERMIT:

M. Wu: ENEE631 Digital Image Processing (Fall'01)

<u>Radon Transform</u>

- A linear transform $f(x,y) \rightarrow g(s,\theta)$
 - Line integral or "ray-sum"
 - Along a line inclined at angle θ from y-axis and *s* away from origin
- Fix θ to get a 1-D signal $g_{\theta}(s)$

Projection imaging geometry in CT scanning.

(From Jain's Fig.10.2)

$$g(s,\theta) = \iint_{-\infty}^{+\infty} f(x,y) \delta(x\cos\theta + y\sin\theta - s) dxdy$$
$$= \int_{-\infty}^{+\infty} f(s\cos\theta - u\sin\theta, s\sin\theta + u\cos\theta) du$$
where
$$\begin{bmatrix} s\\ u \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$
(coordinate rotation)

Example of Image Radon Transform

[Y-axis] distance, [X-axis] angle

(From Matlab Image Processing Toolbox Documentation)

Figure 8-18: Radon Transform of Head Phantom Using 90 Projections

M. Wu: ENEE631 Digital Image Processing (Fall'01)

Lec22 – Medical Imaging / 2nd Course Review 11/27/01 [6]

Inverting A Radon Transform

- To recover inner structure from projections
- Need many projections to better recover the inner structure

Reconstruction from 18, 36, and 90 projections (~ every 10,5,2 degrees)

M. Wu: ENEE631 Digital Image Processing (Fall'01) Lec2

(From Matlab Image Processing Toolbox Documentation)

Lec22 – Medical Imaging / 2nd Course Review 11/27/01 [7]

Connection Between Radon & Fourier Transf.

Observations

- Look at 2-D FT coeff. along horizontal frequency axis
 - FT of 1-D signal
 - 1-D signal is vertical summation (projection) of original 2-D signal
- Look at FT coeff. along $\theta = \theta_0$ ray passing origin
 - *FT of projection of the signal perpendicular to* $\theta = \theta_0$

Lec22 – Medical Imaging / 2nd Course Review 11/27/01 [8]

(From Bovik's Handbook

Fig.10.2.7)

Inverting Radon by Projection Theorem

- (Step-1) Filling 2-D FT with 1-D FT of Radon along different angles
- (Step-2) 2-D IFT
- Need Polar-to-Cartesian grid conversion for discrete scenarios
 - May lead to artifacts

(From Jain's Fig.10.16)

Lec22 – Medical Imaging / 2nd Course Review 11/27/01 [9]

Back-Projection

• Sum up Radon projection along all angles passing the same pixels

$$f = \int_{-\infty}^{+\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - s) dx dy$$

$$\tilde{f}(x, y) = \int_{0}^{\pi} g(x \cos \theta + y \sin \theta, \theta) d\theta$$
(From Jain's Fig.10.6)
$$f(x, y) = \int_{0}^{\pi} g(x \cos \theta + y \sin \theta, \theta) d\theta$$

Back-projection = Inverse Radon ?

- Not exactly ~ Back-projection gives a blurred recovery
 - $\mathcal{B}(\mathcal{R} f) = conv(f, h1)$
 - Bluring func. h1 = $(x^2 + y^2)^{-1/2}$, FT(h1) ~ 1 / $|\xi|$ where $\xi^2 = \xi_x^2 + \xi_y^2$
 - Intuition: most contribution is from the pixel (x,y), but still has some tiny contribution from other pixels
- Need to apply inverse filtering to fully recover the original
 - Inverse filter for "sharpening"
 - multiplied by $|\xi|$ in FT domain

Inverting Radon via Filtered Back Projection

M. Wu: ENEE631 Digital Image Processing (Fall'01) Lec22 – Medical Imaging / 2nd Course Review 11/27/01 [12]

Filtered Back Projection (cont'd)

- Convolution-Projection Theorem
 - Radon[f1 (*) f2] = Radon[f1] (*) Radon[f2]
 - Radon and filtering operations are interchangeable
 - can prove using Projection Theorem
 - Also useful for implementing 2-D filtering using 1-D filtering
- Another view of filtered back projection
 - Change the order of filtering and back-proj.
 - Back Projection => Filtering
 - Filtering => Back Projection

Other Scenarios of Computerized Tomography

- Parallel beams vs. Fan beams
 - Faster collection of projections via fan beams
 - involve rotations only

(From Bovik's Handbook Fig.10.2.1)

FIGURE 1 (a) Schematic representation of a first-generation CT scanner that uses translation and rotation of the source and a single detector to collect a complete set of 1-D parallel projections. (b) The current generation of CT scanners uses a fan X-ray beam and an array of detectors, which require rotation only. (From Bovik's Handbook Fig.10.2.1)

- Recover from projections contaminated with noise
 - MMSE criterion to minimize reconstruction errors

See Jain's book and Bovik's Handbook for details

<u>Summary</u>

- Medical Imaging Topic
 - Radon transform
 - Inverse Radon transform
 - by Projection Theorem
 - by filtered back-projection
- 2nd Review

Summary of Lecture 11 ~ 21

<u>Overview</u>

- Digital Video Processing
 - Basics
 - Motion compensation
 - Hybrid video coding and standards
 - Brief intro. on a few advanced topics ~ *object-based*, *content analysis*, *etc*.
 - Interpolation problems for video
 - sampling lattice

Image Manipulation / Enhancement / Restoration

- Pixel-wise operations
- Coefficient-wise operations in transform domain
- Filtering: FIR, nonlinear, Wiener, edge detection, interpolation
- Geometrical manipulations: RST, reflection, warping
- Morphological operations on binary images

Video Formats, etc.

- Video signal as a 3-D signal
- FT analysis and freq. response of HVS
- Video capturing and display
- Analog video format
- Digital video format

Motion Estimation

- 3-D and projected 2-D motion models
- Optical Flow Equation for estimating motion
- General approaches of motion compensation & key issues
- Block-Matching Algorithms
 - Exhaustive search
 - Fast algorithms
 - Pros and Cons
- Other motion estimation algorithms basic ideas

Hybrid Video Coding and Standards

- Transf. Coding + Predictive Coding
- Key points of MPEG-1
- Scalability provided in MPEG-2
- Object-based coding idea in MPEG-4

Pixel-wise Operations for Enhancement

- Specified by Input-Output luminance or color mapping
- Commonly used operations
 - Contrast stretching
 - Histogram equalization

Simple Filters of Finite-Support

- Convolve an image with a 2-D filter of finite support
- Commonly used FIR filters
 - Averaging and other LPFs for noise reduction
 - Use LPF to construct HPF and BPF
 - for image sharpening
- Nonlinear filtering
 - Median filter ~ remove salt-and-pepper noise

• Edge Detection

- Estimate gradient of luminance or color
 - Equiv. to directional HPF or BPF
- Common edge detectors

<u>Wiener Filtering</u>

- Inverse filtering and pseudo-inverse filtering
 - De-blurring applications
- Wiener filtering for restoration in presence of noise
 - MMSE criterion
 - Orthogonal principle
 - Wiener filter (in terms of auto/cross-correlation and PSD)
 - Relations of Wiener filter with inverse and pseudo-inverse filters
- Basic ideas of blind deconvolutions

Interpolation

- 1-D sampling rate conversion
 - Ideal approach and frequency-domain interpretation
 - Practical interpolation approaches
- 2-D interpolation for rectangular sampling lattice
 - Ideal approach and practical approaches
- Sampling lattice conversion
 - Basic concepts on sampling lattice
 - Ideal approach for sampling lattice conversion
 - Applications in video format conversion
 - practical approaches and their pros & cons

Geometrically Manipulations

- Rotation, Scale, Translation, and Reflection
 - Homogeneous coordinates
 - Interpolation issues in implementation: forward v.s. backward transform
- Polynomial warping
- Line-based warping and image morphing

