
Second Order equations
Type

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G(x; y)

De�nition 1 Elliptic: B2 < AC uxx+uyy
Hyperbolic: B2 > AC uxx�uyy
Parabolic: B2 = AC uxx�uy

Canonical Forms

We can divide the equation by A or equivalently assume A = 1. Since low
order terms don�t a¤ect the type we choose D = E = F = G = 0. Then
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CASE II: hyperbolic B2 > C

uxx + 2Buxy + Cuyy = 0
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Similarly for systems. Consider
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Let A = (aij)

De�nition 2 elliptic: The eigenvalues of A are all positive (or all negative)
hyperbolic: one is negative and the others positive (or the opposite)
ultrahyperbolic : 2 are negative and the others positive
parabolic: one eigenvalue is zero and the others have the same sign
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(�) L [u] = auxx + 2buxy + cuyy + dux + euy + fu = g(x; y)

Consider a general change of variables � = �(x; y) � = �(x; y) Then

Au�� + 2Bu�� + Cu�� +Du� + Eu� + Fu = G

A(�; �) = a�2x + 2b�x�y + c�
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�
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�
. J = �x�y � �y�x.

Hence, the type of equation is invariant under nonsingular transformations.
This leads to a second canonical form for hyperbolic equations given by �xy = 0
i.e. we choose � and � so that
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by factoring we have two solutions.
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We designate one as � and the other as �
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These are again called characteristic curves. So these obey
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CASE III: parabolic B2 = C

uxx + 2Buxy + Cuyy = 0
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