Second Order equations
Type

Atgy + 2Bugy + Cuyy + Duy + Euy + Fu = G(z,y)

Definition 1 Elliptic: B? < AC Ugz+yy
Hyperbolic: B?2 > AC Ugz —Uyy
Parabolic: B? = AC Uz —Uy

Canonical Forms

We can divide the equation by A or equivalently assume A = 1. Since low
order terms don’t affect the type we choose D = F = F = G = 0. Then

Upz + 2BUgy + Ctyy =0

o 9., N

CASE I: elliptic B2 < AC
let b=+C —B? >0

we now change variables
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CASE II: hyperbolic B? > C

Ugz + 2BUgy + Cuyy =0
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let b =+v/B2 — C > 0 we now change variables
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Similarly for systems. Consider

i=1 j=1
Let A= (aij)

Definition 2 elliptic: The eigenvalues of A are all positive (or all negative)
hyperbolic: one is negative and the others positive (or the opposite)
ultrahyperbolic : 2 are negative and the others positive
parabolic: one eigenvalue is zero and the others have the same sign



(%) L [u] = augy + 2bugy + cuyy + dug + euy + fu = g(z,y)
Consider a general change of variables & = £(z,y) 17 =n(z,y) Then
Auge + 2Bugy + Cuyy + Due + Euy + Fu=G

A1) = a&; + 2bE,€, + €,
B(&,n) = a&,m, + b (§,m, +E,n,) + &,
C(&,m) = ani + 2bn,n, + cn)
and AC — B? = J? (ac — b?). J =&y — &y
Hence, the type of equation is invariant under nonsingular transformations.

This leads to a second canonical form for hyperbolic equations given by ¢, =0
i.e. we choose £ and 7 so that

agl + 26,8, + & =
any + 2bn,n, + cni, =

by factoring we have two solutions.

[afm + (b +Vb? — ac) fy] [aﬁw + (b —Vb% — ac) fy]

ag; + 26E,€, + &y = -

We designate one as £ and the other as

ag, + (b+ VP —ac)g, = 0
anw—|—<b—\/b2—ac)ny =0

These are again called characteristic curves. So these obey
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CASE III: parabolic B> = C
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Ugz + 2BUgy + Cuyy =0
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