Diffusion - half line
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u(z,0) = p(x) initial condition
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Note: Since u(z,t) is an odd function at ¢ = 0 it will remain odd for all ¢.
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Solve
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Note: Since u(z,t) is an even function at ¢ = 0 it will remain even for all ¢.

Also since u(z,t) is an even function % is an odd function
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Wave Equation - half line
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Tl =c E) ¢ constant x>0
u(z,0) = ¢(z)
ut(x,0) = () initial condition

Dirichlet: 4(0,t) =0  boundary conditions
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Consider the Dirichlet problem: As before we wish u(x,t) to be an odd function
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For small times we don’t feel the boundary condition. For large times there is
an odd reflection off the boundary
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Duhamel

Uy = kg + q(z,t) —o<zr<oo t>0
u(z,0) = ¢(z)

Split w into two parts. One satisfies the inhomogenous RHS and the other the
inhomeogenous initial conditions, Hence,
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For v we first consider the ODE case

du
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Define S(t) = e~4*. Then use the integrating factor e4* i.e.
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Returning to the diffusion, the solution to the homogenous problem (w) is given
by
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(S(t)p) (x) = / Sz — y.t)p(y)dy
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i.e. S denotes an operator that turns the function ¢ into the above integral.
Hence, we guess that the solution to (*) is given by
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We are only going to verify that this is indeed the solution. By linearity we
need only consider the case with zero initial conditions. Then
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Nonhomogenous boundary condition:
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i @—l—q(m‘,t) k constant x>0 t>0
u(z,0) = ¢()
u(0,t) = h(t) boundary condition

Define V(z,t) = u(x,t) — h(t) , wu(z,t) =V(z,t)+ h(t). Then
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or we have the following set

8@—‘; = k% + Q(xvt) - h,(t)
V(z,0) = ¢(x) — h(0)
V(0,£) =0

As before we now introduce ¢, 4(z) and godq(z,t).

Note: If ¢(0) # h(0) we have a discontinuity at the corner = 0,¢ = 0 which
disappears immediately, i.e. the solution is analytic in the interior.
Example: consider sticking hot iron bar into a cold bath



Waves with a Source
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Theorem:
The unique solution is
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where A is the triangle bounded by the intial line and the two characteristics.
So
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Note: we again include only the history between the characteristic lines, i.e.
causality principle.

If there are two boundaries and homogenous boundary conditions we have waves
that bounce off both ends reflecting forever.



