
Object recognition of Glagolitic characters using Sift and Ransac

Images in database: Glagolitic alphabet characters.

Algorithm

1) Prepare a database of images.

 Images characteristics :

1. Scale changed images

2. Rotation images

3. Blurred images

2) Apply SIFT method on the images in the database.

3) Matching the images.

4) Apply RANSAC - RANdom SAmple Consensus,

 in order to estimate the parameters of the Sift model.

Input images - sample:

‘glag.jpg’:

‘mislete.jpg’

SIFT method (David Lowe)

[image, descriptors, locs] = sift(imageFile)

This function reads an image and returns its SIFT keypoints.

Output:

image: the image array in double format

descriptors:

a K-by-128 matrix, where each row gives an invariant

descriptor for one of the K keypoints. The descriptor is a vector

of 128 values normalized to unit length.

locs:

 K-by-4 matrix, in which each row has the 4 values for a

keypoint location (row, column, scale, orientation). The

orientation is in the range [, ] radians.

Drawing Sift keypoints:

Showkeys (image, locs)

This function displays an image with SIFT keypoints overlayed.

Input parameters:

image: the file name for the image (grayscale)

locs: matrix in which each row gives a keypoint location

(row,column, scale, orientation)

50 100 150 200 250

20

40

60

80

100

120

140

160

180

Match function

[matchLoc1 matchLoc2] = match(img1, img2);

This function reads two images, finds their SIFT features,

 and displays lines connecting the matched keypoints.

50 100 150 200 250

20

40

60

80

100

120

140

160

180

 A match is accepted only if its distance is less than distRatio times

the distance to the second closest match. (distRatio = 0.6)

Examples of rotation invariance:

Rotation of 180 degrees:

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Another example:

50 100 150 200 250 300 350 400 450

20

40

60

80

100

120

140

160

180

200

This example shows that the invariance to rotation leads to problems

when recognizing characters.

In the above example, glagolitic vede has the same topology as

glagolitic dobro , rotated by 180 degrees.

Sift method cannot differentiate between them.

Scale invariance example:

Tests on various sizes of glagolitic characters.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

50 100 150 200 250

50

100

150

Blurred images example:

match('cyrilic.jpg','slovo.jpg')

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

RANSAC - RANdom SAmple Consensus

Is an iterative method to estimate parameters of a mathematical model from a set of observed

data which contains outliers. Ransac rejects inconsistent matches.

Outliers - an observation that is numerically distant from the rest of the data.

Ransac input and output

INPUT:

X = input data. The data id provided as a matrix that has

 dimesnsions 2dxN where d is the data dimensionality

 and N is the number of elements

options = structure containing the following fields:

 sigma = noise std

 P_inlier = Chi squared probability threshold for inliers

 (i.e. the probability that an point whose squared

 error is less than T_noise_squared is an inlier)

 (default = 0.99)

 T_noise_squared = Error threshold (overrides sigma)

 epsilon = False Alarm Rate (i.e. the probability we never

 pick a good minimal sample set) (default = 1e-3)

 Ps = sampling probability (1 x size(X, 2))

 (default: uniform, i.e. Ps is empty)

 ind_tabu = logical array indicating the elements that should

 not be considered to construct the MSS (default

 is empty)

 validateMSS_fun = function that validates a MSS

 Should be in the form of:

flag = validateMSS_foo(X, s)

 validateTheta_fun = function that validates a parameter vector

 Should be in the form of:

 flag = validateTheta_foo(X, Theta, s)

 est_fun = function that estimates Theta.

 Should be in the form of:

 [Theta k] = estimate_foo(X, s)

man_fun = function that returns the residual error.

 Should be in the form of:

 [E T_noise_squared] = man_fun(Theta, X)

 mode = algorithm flavour

 'RANSAC' -> Fischler & Bolles

 'MSAC' -> Torr & Zisserman

 max_iters = maximum number of iterations (default = inf)

 min_iters = minimum number of iterations (default = 0)

 max_no_updates = maximum number of iterations with no updates

 (default = inf)

 fix_seed = true to fix the seed of the random number

 generator so that the results on the same data

 set are repeatable (default = false)

 reestimate = true to resestimate the parameter vector using

 all the detected inliers

 (default = false)

 verbose = true for verbose output

 (default = true)

 notify_iters = if verbose output is on then print some

 information every notify_iters iterations.

 If empty information is displayed only for

 updates (default = [])

OUTPUT:

 results = structure containing the following fields:

 Theta = estimated parameter vector

 E = fitting error obtained from man_fun

 CS = consensus set (true -> inliers, false -> outliers)

 r = rank of the solution

 iter = number of iterations

 time = time to perform the computation

 options = options (including the defaults set by the algorithm)

Homography

To compute the Theta, we compute the homography between the point pairs X1, X2 by

calling:

[H A] = HomographyDLT(X1, X2, mode)

Theta = H(:)

A homography is an invertible transformation from the real projective plane to the projective

plane that maps straight lines to straight lines.

Marco Zuliani (Ransac toolbox) uses The Normalized Direct Linear Transform (nDLT)

Algorithm.

Homography

An invertible transformation from the real projective plane to the projective plane that maps

straight lines to straight lines.

Key stages in runSift driver program:

[matchLoc1 matchLoc2] = match(img1, img2);

Match function calls sift function for both images.

Set RANSAC options.
Form the input data pairs:
X1 = matchLoc2'; - The transpose of matchLoc1

X2 = matchLoc1'; - The transpose of matchLoc2

X = [X1; X2];

Run Ransac :
[results, options] = RANSAC(X, options);

Ransac estimates the vector of parameters Theta.

Ransac results:

Starting RANSAC

Minimal sample set dimension = 4

Squared noise threshold = 73.563766, (assuming Gaussian noise, for sigma =

1.000000)

Iteration = 1/ 1361. Inliers = 5/ 12 (rank is r = -82.21007017)

Iteration = 2/ 449. Inliers = 6/ 12 (rank is r = -78.86619437)

Iteration = 3/ 26. Inliers = 10/ 12 (rank is r = -32.87832753)

Iteration = 4/ 26. Inliers = 10/ 12 (rank is r = -32.42028464)

Iteration = 114/ 26. Inliers = 10/ 12 (rank is r = -32.28285257)

Estimating the parameter vector... Done

Final number of inliers = 10/12

Converged in 1001 iterations (1.727473 seconds)

Usage Example:

Use Ransac for choosing the best distance ratio in matching process.

distRatio parameter: Only keep matches in which the ratio of vector

angles from the nearest to second nearest neighbor is less than

distRatio.

Table with results for various distRatio:

Distance

ratio

0.55 0.6 0.66

Number of

inliers

(correct

matches)

9/10

10/12

10/15

Discussion of results

The results show that Sift method is invariant to scale changes,

rotation changes and blur. In the case of glagolitic characters, the sift

produces relatively few matches. The sift method still produces too

many outliers (false matches).

