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Figure 1.11

Figure 1.12
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horizontal displacements of particles of the string are negligible compared with vertical
displacements; that is, displacements may be taken as purely transverse, representable

in the form y{x.t). 3
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To find a PDE for y(x, 1), we analyze the forces on a segment of the string from a
fixed position x = a to an arbitrary position x (Figure 1.12). We denote by t(x, t) the
magnitude of the tension in the string at position x and time 1. Because the string is
perfectly flexible, tension in the string is always in the tangential direction of the string.
This means that the y-component of the resulting force due to tension at the ends of the
segment is (tsin ), ., — (sin ), ... We group all other forces acting on the segment
into one function by letting F(x, ) be the y-component of the sum of all external forces
acting on the string per unit length in the x-direction. The total of all external forces
acting on the segment then has y-component

J‘ F(l,ndC.

Newton’s second law states that the time rate of change of the momentum of the
segment of the string must be equal to the resultant force thereon:

é ay(f.1) . éy(l,1)
£([ 25 o5
= (18in0) 4y — (T8INO) 10y + J.IF{L 1de, (34)

where p(x,f) is the density of the string (mass per umit length). The guantity
V1 + [éy(l,1)/fx]? dl is the length of string that projects onto a length d{ along the
x-axis. Multiplication by p({,0)dy((,1)/0t gives the momentum of this infinitesimal
length of string, and integration yields the momentum of that segment of the string
from x = a to an arbitrary position x, If we differentiate this equation with respect
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to x, we obtain

er( }\f ( )) E{Tsmﬁ",l-r—F{xr} (35)

When vibrations of the string are such that the slope of the displaced string, dy/dx, is
very much less than unity (and this is the only case that we consider), the radical may be
dropped from the equation and sin # approximated by tand = ¢y/éx. The resulting

PDE for pix,t)1s
& Jy il dy
— | p= — 1+ Fix,t (36)
E‘r(pﬁr) ix (r.x) (.t

For most applications, both the density of and the tension in the string may be taken as
constant, in which case (36) reduces to

gty d*y F T
laplRal el (37)
ot dxs  p P

This is the mathematical model for small transverse vibrations of a taut string; it is
called the one-dimensional wave equation. In its derivation we have assumed that the
slope of the string at every point is always very much less than 1 and that tension and
density are constant.

When the only external force acting on the string is gravity, Fix, 1) takes the form

F = pg, g = (. (38)

Other possibilities include a damping force proportional to velocity,
By
F= —ﬁ%:, p=0 (39)
2

and a restoring force proportional to displacement,
F=—ky k=0 {40)

Accompanying the wave equation will be initial and/or boundary conditions.
Initial conditions describe the displacement and velocity of the string at some initial
time (usually ¢ = 0):

¥lix 0= fix), xinl, (41a)
dvlx, 0

o

= ylx, 00" = g(x), xinl, (41h)

where I 1s the interval over which the string is stretched, In Figure 111, 150 < x < L,
but other intervals are also possible. Interval [ also dictates the number of boundary
conditions. There are three possibilities, depending upon whether the string is of finite

' Subscripts are often used to denote partial derivatives. In [41b), v, denotes Sy/8r. In & similar way, we may
use the notation y, in place of §2y/8%
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length. of “semi-infinite” length, or of “infinite” length. If the string is of finite length,
the interval [ is customarily taken as 0 < x < L and two boundary conditions result,
one at each end. The string is said to be of semi-infinite length, or the problem is
semi-infinite, if the string has only one end that satisfies some prescribed condition.
The interval I in this case is always chosen as 0 < x < oo, and the one boundary
condition is at x = 0. The string is said to be of infinite length, or the problem is
infinite, if the string has no ends. In this case interval [ becomes —oo < x < oo and
there are no boundary conditions,

It might be argued that there is no such thing as a semi-infinitely long or infinitely
long string, and we must agree. There are, however, situations in which the model of a
semi-infinite or infinite string is definitely advantageous. For example, suppose a fairly
long string (with ends at x = 0 and x = L)is initially at rest along the x-axis. Suddenly,
something disturbs the string at its midpoint, x = L/2 (perhaps it is struck by an
object). The effect of this disturbance travels along the string in both directions toward
x =0 and x = L. Before the disturbance reaches x = 0 and x = L, the string reacts
exactly as if it had no ends whatsoever. If we are interested only in these initial
disturbances. and consideration of the “infinite” problem provides straightforward
explanations, it is an advantage to analyze the “infinite™ problem rather than the finite
one.

We consider only three types of boundary conditions at an end of the string—
Dirichlet, Neumann, and Robin. When the string has an end at x = 0, a Dirichlet
boundary condition takes the form

¥o 8= fi(e), t=0. (42a)

It states that the end x = 0 of the string 15 caused by some external mechanism to
perform the vertical motion described by f,(r). Similarly, if the string has an end at
x = L, a Dirichlet condition

viL,ty=f3t), t=0 {42b)

indicates that this end has a vertical displacement described by f5(¢). For the string in
Figure L11, f,(t) = fy(t) = 0.

Instead of prescribing the motion of the end x = 0 of the string, suppose that this
end is attached to a mass m (Figure 1.13) and, furthermore, that motion of the mass is
restricted to be vertical by a containing tube. The vertical component of the tension
of the string acting on m at x =0 is 7(0,t)sin 8, which for small slopes can be
approximated by

(0, £)sin © = (0, t)tan B = (0, 1) E}Iéi‘ I}. (43)

Consequently, when Newton’s second law is applied to the motion of m,

ﬁz_l
m? »o8)

dy(0, ¢
200 _ 10,920 )

ax

+ filt), >0, (44)

where f,(r) represents the y-component of all other forces acting on m.
If m is sufficiently small that it may be taken as negligible (for instance, as with a
very light loop arcund a vertical rod), this equation takes the form
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f'.*y[ﬂ.r}_' e 1
ax (0,1

N =0, (45)

a Neumann boundary condition. In particular, if the massless end of the string is free to
slide vertically with no forces acting on it except tension in the string, it satisfies a
homogeneous Neumann condition

cyl0, £) B
&x

0. (46)

What this equation says is that when the end of a taut siring is free of external forces,
the slope of the string there will always be zero.
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Similarly, if the string has a massless end at x = L that is subjected to a vertical
force with component f,(t), the boundary condition there is once again Neumann:
dp(L,t) 1

éx  t(L,1)

L, >0 (47)

What we have shown, then, is that Neumann boundary conditions result when the ends
of the string, taken as massless, move vertically under the influence of forces that are
specified as functions of time,

Robin boundary conditions, which are linear combinations of Dirichlet and
Neumann conditions, arise when the ends of the string are attached to springs that are
unstretched on the x-axis (Figure 1.14). When this is the case at x = 0, equation (44)
becomes

823(0, 1) ay(0, 1)
m e = 1(0,1) o — ky(0, 1) + file), (48)

where fi(f) now represents all external forces acting on m other than the spring and
tension in the string. For a massless end (m = 0) and constant tension t, (48) takes the
form
dy .
_r:';‘_x + ky = filt) x=10, t=>0 {49a)

Similarly, attaching the end x = L to a spring gives the Robin condition

r% vky=folth, x=L, t>0. (49b)



