
Fourier Series in Complex notation
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Sturm-Liouville

(*) � d

dx

�
p(x)

du

dx

�
+ q(x)u(x) = �m(x)u(x) a < x < b

p(x) > 0 q(x) � 0 m(x) > 0

and all quantities are real.

De�nition 1 � is the eigenvalue and u is the eigenfunction

De�nition 2 A homogeneous boundary condition is symmetric if

p [fg0 � f 0g]ba = 0

Examples:

� Dirichlet

� Neumann

� periodic

� Robin (?)

alu(a) + bl
du

dx
(a) = 0

aru(b) + br
du

dx
(b) = 0

then

p [fg0 � f 0g]ba = f(a)

�
�al
bl
g(a)

�
�
�
�al
bl

�
f(a)g(a) = 0

De�nition 3 Inner product

(u; v) =

Z b

a

m(x)u(x)v(x)dx m > 0
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Example

p = 1 q = 0 m = 1

Then with Dirichlet conditions we have

�d
2u

dx2
= �u(x) 0 < x < l

u(0) = u(l) = 0

If � > 0 then
u(x) = A cos(

p
�x) +B sin(

p
�x)

Using u(0) = 0 we get
u(x) = B sin(

p
�x)

and using u(l) = 0

� =
�n�
l

�2
u(x) = B sin(

n�

l
x)

So we have an in�nite number of eigenvalues/eigenfunctions.

Green�s Identities

First Identity:Z b

a

d

dx

�
p(x)

du

dx

�
v(x)dx+

Z b

a

p(x)
du

dx

dv

dx
dx =

�
p(x)

du

dx
v

�b
a

Second Identity:Z b

a

� d

dx

�
p(x)

du

dx

�
v(x)dx+

Z b

a

d

dx

�
p(x)

dv

dx

�
u(x)dx =

�
p(x)

�
�du
dx
v +

dv

dx
u

��b
a

In multi-dimensions this generalizes to (p = 1)

ZZZ
D

(ru � rv + v�u) dV =
ZZ

@D

v
@u

@n
dSZZZ

D

(v�u� u�v) dV =
ZZ

@D

�
v
@u

@n
� u@v

@n

�
dS
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Proof. From the divergence theoremZZZ
div(F )dV =

ZZ
F � ndS

div(v grad u) = ru � rv + v�u

So
ZZZ

(ru � rv + v�u) dV =
ZZZ

div(v grad u)dV

=

ZZ
v grad u � ndS =

ZZ
v
@u

@n
dS

Interchange u and v and subtract to get the second identity.
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From (*)

(1) � d

dx

�
p(x)

du

dx

�
+ q(x)u(x) = �1m(x)u(x)

(2) � d

dx

�
p(x)

dv

dx

�
+ q(x)v(x) = �2m(x)v(x)

Multiply (1) by v and (2) by u and subtract and integrate

Z b

a

�
�v(x) d

dx

�
p(x)

du

dx

�
+ u(x)

d

dx

�
p(x)

dv

dx

��
dx = (�1 � �2)

Z b

a

m(x)u(x)v(x)dx

Integrate by parts (Green�s theorem in multidimensions)

Z b

a

�
dv

dx

�
p(x)

du

dx

�
� du

dx

�
p(x)

dv

dx

��
dx+

�
p

�
du

dx
v � dv

dx
u

��b
a

= (�1 � �2)
Z b

a

m(x)u(x)v(x)dx�
p

�
du

dx
v � dv

dx
u

��b
a

= (�1 � �2)
Z b

a

m(x)u(x)v(x)dx

If the boundary conditions are symmetric then

(�1 � �2)
Z b

a

m(x)u(x)v(x)dx = 0

Hence, if �1 6=�2

Theorem 4 For symmetric boundary conditions , if �1 6=�2 then (u; v) = 0
If �1=�2 then we have a subspace and we can choose an orthogonal basis. This

is done by Gram Schmidt
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Gram-Schmidt

If f k(x)g is a linearly independent basis then we can construct an ortho-
normal basis that spans the same space.

� '1(x) =  1(x)

� '2(x) =  2(x)�
( 2; 1)
('1;'1)

'1

Then ('2; '1) = ( 2; '1)�
( 2;'1)
('1;'1)

('1; '1) = 0

� 'k(x) =  k(x)�
k�1X
j=1

( k;'j)

('j ;'j)
'j

Hence, we can consider all the solutions of (*) to be orthogonal to each other.
So consider a sequence of orthogonal solutions of (*) f'k(x)g :Then if

f(x) =
X
n

an'n(x)

(f; 'm) =
X
n

an ('n; 'm)

= am ('m; 'm)

So

am =
(f; 'm)

('m; 'm)
=

R b
a
m(x)f(x)'m(x)dxR b
a
m(x)'2m(x)dx

Theorem 5 If p,q,m are real and the boundary conditions are symmetric then
there are no complex eigenvalues

Proof.

(1) � d

dx

�
p(x)

du

dx

�
+ q(x)u(x) = �m(x)u(x)

(2) � d

dx

�
p(x)

du

dx

�
+ q(x)u(x) = �m(x)u(x)

As before multiply �rst equation by u , the second by u, subtract and integrate.
Then

Z b

a

�
�u(x) d

dx

�
p(x)

du

dx

�
+ u(x)

d

dx

�
p(x)

du

dx

��
dx =

�
�� �

� Z b

a

m(x)u(x)u(x)dx
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Again integrate by parts and use the symmetry of the boundary conditions.

�
�� �

� Z b

a

m(x)ju(x)j2dx = 0

So � = � i.e. � is real

If u is complex then its real and imaginary components are solutions.

Negative Eigenvalues

(*) � d

dx

�
p(x)

du

dx

�
+ q(x)u(x) = �m(x)u(x) a < x < b

By Green�s �rst identity we have for all vZ b

a

d

dx

�
p(x)

du

dx

�
v(x)dx = �

Z b

a

p(x)
du

dx

dv

dx
dx+

�
p(x)

du

dx
v

�b
a

Choose v = u and assume symmetric boundary conditions. ThenZ b

a

u(x)
d

dx

�
p(x)

du

dx

�
dx = �

Z b

a

p(x)

�
du

dx

�2
dx � 0

Using the ODE we getZ b

a

u(x) [q(x)u(x)� �m(x)u(x)] dx = �
Z b

a

p(x)

�
du

dx

�2
dx

So

�

Z b

a

m(x)u2(x)dx =

Z b

a

q(x)u2(x)dx+

Z b

a

p(x)

�
du

dx

�2
dx

� =

R b
a
q(x)u2(x)dx+

R b
a
p(x)

�
du
dx

�2
dxR b

a
m(x)u2(x)dx

� 0

We can have equality only if q(x) = 0 and du
dx = 0

Note: All these proofs work equally well in multidimensions using Green�s
theorem instead of integration by parts.
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Completeness

Theorem 6 There are an in�nite number of eigenvalues for (*) and �n !1.
Furthermore

f(x) =
X

cn'n(x)

cn =
(f; 'n)

('n; 'n)

Convergence:

1X
n=1

'n(x)
?! f(x)

De�nition 7 Pointwise Convergence:

lim
N!1

�����f(x)�
NX
n=1

'n(x)

����� = 0 for every x

De�nition 8 Uniform Convergence:

lim
N!1

max
a�x�b

�����f(x)�
NX
n=1

'n(x)

����� = 0 for every x

De�nition 9 L2 (root mean square)

lim
N!1

Z b

a

�����f(x)�
NX
n=1

'n(x)

�����
2

dx = 0

Uniform convergence implies pointwise convergence.
Uniform convergence implies root mean square convergence.

Examples

�
f(x) = xn 0 � x � 1

Then

xn !
(
0 0 < x < 1

1 x = 1
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�

fn(x) = (1� x)xn�1 = xn�1 � xn
NX
n=1

fn(x) =
NX
n=1

(xn�1 � xn) = 1� xN ! 1 as N !1

so we have pointwise convergence.

However
max
0�x�1

��1� �1� xN��� = max
0�x�1

��xN �� = 1 6= 0
So we don�t have uniform convergence.

For L2 we have Z 1

0

��xN ��2 dx = 1

2N + 1
! 0

So we have L2 convergence.
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Theorem 10 If

� f; f 0; f 00 exist and are continuous in a � x � b i.e. f�C2[a; b]

� f satis�es the boundary conditions

then

f(x) =
1X
n=1

an'n(x) converges uniformly

Theorem 11 If
R b
a
f2(x)dx <1

then f(x) =
1P
n=1

an'n(x) converges in L2

Theorem 12 For sine and cosine series only.
If

� f is continuous on a � x � b

� f 0 is piecewise continuous
Then the series converges pointwise. If f and f

0
are piecewise continuous

then X
an'n(x)!

f(x+) + f(x�)
2

Theorem 13 Integration: If formally

f(x)$ A0
2
+

1X
n=1

An cos
�n�x

l

�
+Bn sin

�n�x
l

�
not necessarily convergent

Then
xR
�l
f(y)dy =

A0
2
(x+l)+

l

�

1X
n=1

�
An
n
sin

�
n�t

l

�
� Bn

n
cos

�
n�t

l

��x
�l

is convergent

We note that for di¤erentiation it is the opposite i.e. the derivative of a conver-
gent series may not converge.
Example: expanding x in a sine series we have

x = 2
1X
n=1

l

n�
(�1)n+1 sin

�n�x
l

�
0 � x � l

Di¤erentiating we get

1 = 2

1X
n=1

(�1)n+1 cos
�n�x

l

�
0 � x � l

This is certainly NOT the cosine series of 1 which is just 1 . In fact this series
does not converge!

We begin with the proof of convergence in least squares. Restating the theorem
we have
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Theorem 14 If 'n are the eigenfunctions of a Sturm-Liouville problem with
symmetric boundary conditions and jjf jj <1. Then

jjf �
NX
n=1

an'njj ! 0 an =
(f; 'n)

('n; 'n)

Theorem 15 Let 'n be an orthogonal set and jjf jj < 1, Then the choice of
constants cn that minimizes jjf �

P
n�N

cn'njj is cn = an

Proof. Assume for simplicity that all quantities are real

EN = jjf �
X
n�N

cn'njj2 =
R
jf(x)�

X
n�N

cn'n(x)j2dx

=
R
jf(x)j2 � 2

X
n�N

cn
R
f(x)'n(x)dx+

P
n

P
m
cncm

Z
'n(x)'m(x)dx

= jjf jj2 � 2
X
n�N

cn(f; 'n) +
X
n�N

c2njj'n(x)jj2

= jjf jj2 +
X
n�N

jj'n(x)jj2
�
cn �

(f; 'n)

jj'n(x)jj2

�2
�
X
n�N

(f; 'n)
2

jj'n(x)jj2

To minimize we can only "play" with cn . Since the middle term is positive
we minimize EN if

cn =
(f; 'n)

jj'n(x)jj2
= an

Then

EN = jjf jj2 �
X
n�N

(f; 'n)
2

jj'n(x)jj2
= jjf jj2 �

X
n�N

A2njj'n(x)jj2 � 0

So we have Bessel�s inequality. If jjf jj2 <1 thenX
n�N

(f; 'n)
2

jj'n(x)jj2
� jjf jj2

Parseval�s Equality

Theorem 16 The Fourier Series converges to f(x) in L2 if and only ifX
n�N

(f; 'n)
2

jj'n(x)jj2
=
X
n�N

a2njj'n(x)jj2 = jjf jj2

De�nition 17 A sequence f'n(x)g is complete if Parseval�s equality holds when-
ever jjf jj2 <1
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Riemann-Lebesque Theorem

Theorem 18 If (a) f 2 C1
or (b) jjf jjL2 <1

Then

lim
n!1

lR
�l
f(x)

(
sin(n�xl )

cos(n�xl )
dx = 0

Proof.

1. integration by parts

2. In a Fourier series Bn =
lR
�l
f(x) sin(n�xl )dx by Bessel�s inequality Bn ! 0

Example

Consider f(x) = 1 on (0; �). We �nd that

1 =
P
n odd

4

n�
sin(nx)

So by Parseval�s equality

�R
0

12dx =
P
n odd

�
4

n�

�2
�

2P
n odd

1

n2
=
�2

8

Pointwise Convergence

If

f(x) =
A0
2
+

1X
n=1

An cos (nx) +Bn sin (nx)

An =
1

�

�R
��
f(y) cos(ny)dy n = 0; 1; 2; 3:::

Bn =
1

�

�R
��
f(y) sin(ny)dy n = 1; 2; 3:::

Dirichlet kernel
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Consider the partial sum

SN =
A0
2
+

NX
n=1

An cos (nx) +Bn sin (nx)

=
1

2�

�R
��

"
1 + 2

NX
n=1

(cos(nx) cos(ny) + sin(nx) sin(ny))

#
f(y)dy

=
1

2�

�R
��

"
1 + 2

NX
n=1

cos(nx� ny)
#
f(y)dy

=
1

2�

�R
��
KN (x� y)f(y)dy

where

KN (�) = 1 + 2
NX
n=1

cos(n�) =
sin(N + 1

2 )�

sin( �2 )

Proof. Use cos(�) = ein�+e�in�

2 and get geometric series.

Now let � = y � x. Then

SN =
1

2�

�R
��
KN (�)f(x+ �)d�

SN (x)� f(x) =
1

2�

�R
��
KN (�) [f(x+ �)� f(x)] d�

=
1

2�

�R
��
g(�) sin(N +

1

2
)� d� where g(�) =

f(x+ �)� f(x)
sin( �2 )

Let �n(�) = sin(N + 1
2 )�. By Bessel�s inequality we have

1X
n=1

j(g; �n)j
jj�njj2

=
1

�

1X
n=1

j(g; �n)j � jjgjj2 =
�R
��

[f(x+ �)� f(x)]2

sin2( �2 )
d�

By L�hopital�s rule the integrand is �nite at � = 0 . Hence it is bounded
everywhere and the integral exists. Since the sum converges each term much
approach zero and so

j(g; �n)j =
�R
��
g(�) sin(N +

1

2
)� d� ! 0

Gibbs Phenomena

If instead we are interested in uniform convergence we need to analyze

lim
N!1

max
x
jSN (x)� f(x)j

One can show that if the function f(x) has a discontinuity at x = x0 then in
fact this limit is nonzero and is about 9% of the size of the jump on either side.
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