Fourier Series in Complex notation
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Sturm-Liouville

O -4 (s ) + dlehute) = m(oute)  a<o <
p(z) >0 g¢g(z) >0 m(z)>0

and all quantities are real.

Definition 1 ) is the eigenvalue and u is the eigenfunction

Definition 2 A homogeneous boundary condition is symmetric if

plfd — f'gl. =0

Examples:

e Dirichlet

e Neumann

e periodic
e Robin (?)
du
aju(a) + bl%(a) =0
du
aru(b) + b,,.%(b) =0
then

Ut = £l = )|~ fhat)| = (- 5£) riata) =0

Definition 3 Inner product

b
(u,v) = / m(z)u(x)v(z)de m >0



Example

p=1 ¢g=0 m=1

Then with Dirichlet conditions we have

d?u
u(0) =u(l) =0

If A > 0 then
u(z) = Acos(VAz) + Bsin(v\x)

Using u(0) = 0 we get

u(z) = Bsin(vV\z)

and using u(l) =0

- (Y
u(z) =B sin(nTﬂx)

So we have an infinite number of eigenvalues/eigenfunctions.

Green’s Identities
First Identity:
/ab % (p(a:)ji) v(x)dx + /abp(;c);lzi:dm = [p(m)flzv} b
Second Identity:

/ab —% (p(:zr)jl;) v(x)dm+/ab % (p(z)ij) w(z)da

In multi-dimensions this generalizes to (p =1)
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Proof. From the divergence theorem

[ - s

div(v grad ) = Vu - Vv + vAu

So // (Vu - Vo 4+ vAu)dV = // div(v grad w)dV
//U grad u - ndS = //v—dS

Interchange u and v and subtract to get the second identity.



From (*)

W - 5 (r0) + o) = Aim(eyute

2) —d(mm“)+mmww=&mmwm

Multiply (1) by v and (2) by u and subtract and integrate

/ab {—v(x);; (M@g) + u(a:)di (p(x);izﬂ dz = (A — \2) /abm(a:)u(x)v(a:)dx

Integrate by parts (Green’s theorem in multidimensions)
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If the boundary conditions are symmetric then

b
(M — o) / m(@)u(z)o(z)ds = 0

Hence, if A\ £ )Xo

uﬂb = (A1 —Aa) / bm(x)u(:c)v(w)dx

)l

b

= (A1 —A2)

/ab m(x)u(z)v(z)dz

Theorem 4 For symmetric boundary conditions , if A1 # g then (u,v) =0
If A1 = Ao then we have a subspace and we can choose an orthogonal basis.

is dome by Gram Schmidt

This



Gram-Schmidt

If {4, (z)} is a linearly independent basis then we can construct an ortho-
normal basis that spans the same space.

i <P1(33) = ¢1($)
o (@) = Po(w) — {220,

Then (g, 1) = (¥g, 1) — Elﬁf:; (p1,1) =0
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[ )
o () ;00,0 ¥i
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Hence, we can consider all the solutions of (*) to be orthogonal to each other.
So consider a sequence of orthogonal solutions of (*) {¢;(z)} .Then if

(z) = Zan%(ﬂf)
(f,Pm) Zan Prs Prm)

= 0m (@m? @m)

So
(o om) _ Ju ml@)f (@) (2)de
(P> Pm) [, m(z)p?, (z)dx

Ay =

Theorem 5 If p,q,m are real and the boundary conditions are symmetric then
there are no complex eigenvalues

Proof.

W - (r0 ) +ateue) = (oo

@ - (05 +a@te) = Fmyate)

As before multiply first equation by @ , the second by u, subtract and integrate.
Then

/ab [_u(x)di (p(x)f;) +u(x)% (P(@ZZ)] do = (A=) /ab m(z)u(z)u(x)de



Again integrate by parts and use the symmetry of the boundary conditions.

b

So A=\ i.e. A is real

]
If u is complex then its real and imaginary components are solutions.

Negative Eigenvalues

* —-— <p(x)dm) + q(x)u(z) = dm(z)u(x) a<z<b
By Green’s first identity we have for all v

/ o (p<x>j;‘) va)de =~ | o) g [p(@jzv]b

a

Choose v = u and assume symmetric boundary conditions. Then

/abuu)j; (r ) o= _/abp@) (le)zdx .

Using the ODE we get

/ " (o) fae)ule) — m(z)u(e)] d = - / (@) (jﬁ) s

)\/ab m(z)u?(z)de = /ab q(z)u?(z)dz + /abp(x) <§Z>2d$

Jy a(@)u (@)dz + [} plw) (%) dw
f: m(z)u?(z)dx B

So

A= 0

We can have equality only if g(z) =0 and 4% =0
Note: All these proofs work equally well in multidimensions using Green’s
theorem instead of integration by parts.



Completeness

Theorem 6 There are an infinite number of eigenvalues for (*) and A, — oo.
Furthermore

F(@) =) cnpn(@)

_ (fi0n)
Cp = —
(n> ©n)
Convergence:

S enl@) 5 @)

Definition 7 Pointwise Convergence:

N
]\}Enoo fz)— Zl o(z) =0 for every x
Definition 8 Uniform Convergence:
N
I\}Enoo Jnax, flz)— Z:l o, (z)| =0 for every x

Definition 9 Ly (root mean square)

lim
N —o0 a

Uniform convergence implies pointwise convergence.
Uniform convergence implies root mean square convergence.

Examples

flz)=2a" 0<z<1

Then

0 O0<z<1
Ty —
1 z=1



N N
an(x):Z(x"—l—x")zl—xNﬁl as N — o0
n=1 n=1

so we have pointwise convergence.

However

1—(1-2V)| = NM=1#0
@ax |1 - (1-2%)] = max [¢"]=1#

So we don’t have uniform convergence.

! 2 1
/0 o e = 5

So we have Ly convergence.

For Lo we have




Theorem 10 If
o . f',f" exist and are continuous in a < x < b i.e. feC?[a,b
e f satisfies the boundary conditions
then -
flx) = Z an o, () converges uniformly

n=1
Theorem 11 If fab f2(x)dr < 0o
then f(x) = io:l anp, () converges in Loy
e
Theorem 12 For sine and cosine series only.
If
o f is continuous ona < x <b

!, . . .
e f is piecewise continuous

. . - ’ - . .
Then the series converges pointwise. If f and f are piecewise continuous

then
3 flz4) + f(z—)
afn@n(£) - 2

Theorem 13 Integration: If formally

A o0
f(z) < 70—&—2 A, cos (”lﬂ) + B, sin (?) not necessarily convergent
n=1

Then
flf(y)dl/ = 70(%1-1)4-% Z [n sin (nlﬁt) — -, cos (Tl?t)} y is convergent

n=1

We note that for differentiation it is the opposite i.e. the derivative of a conver-
gent series may not converge.
Example: expanding = in a sine series we have

T = 2i %(—1)”+1sin (?) 0<z<]

n=1

Differentiating we get

1=2 io:(—l)"+1 cos (@) 0<z<I
n=1

This is certainly NOT the cosine series of 1 which is just 1 . In fact this series
does not converge!

We begin with the proof of convergence in least squares. Restating the theorem
we have
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Theorem 14 If ¢, are the eigenfunctions of a Sturm-Liouville problem with
symmetric boundary conditions and ||f|| < co. Then

N
=Yl =0 =P
n=1 (‘pna 9011)
Theorem 15 Let ¢, be an orthogonal set and ||f|| < oo, Then the choice of
constants cy, that minimizes ||f — > cnp,|| is cn = ap,

n<N

Proof. Assume for simplicity that all quantities are real

By =IIf = 3 capnl? = [ /(@) = 3 capn(a)Pde

n<N n<N
— @ =23 e[ f(2) dw+22cncm/ (2o (@)de
n<N
=2 Y el + 3 Ellpn @)
n<N n<N
AP+ S llpna |2[n ”fof””np} ZHf’“"nHQ
n<N " n<N

To minimize we can only "play" with ¢, . Since the middle term is positive
we minimize En if
(f, )

oo ()11

Cp — = anp

Then

(fsn)?
En =l - ZII s =|If11? - ZAQH% )? >0

n<N || n<N

So we have Bessel’s inequality. If || f||> < oo then

Z |f790n |2 < ||f”2

n<N

Parseval’s Equality
Theorem 16 The Fourier Series converges to f(x) in Lo if and only if
AL S e @I = 11717
Ten@IP ~ &, o =
n<N SO” n<N
Definition 17 A sequence {p,,(x)} is complete if Parseval’s equality holds when-

ever ||f]]? < oo
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Riemann-Lebesque Theorem

Theorem 18 If (a) f € C!
or (b) [[f]l2 <00
Then

sin(%) de =0

l
nh—>n<;lo fl I(@) {cos(” L)
- 1

Proof.

1. integration by parts
l

2. In a Fourier series B, = [ f(x)sin(®%)dz by Bessel’s inequality B,, — 0
~1
Example

Consider f(z) =1 on (0,7). We find that

1= > isin(nz)

n odd N7

So by Parseval’s equality

Pointwise Convergence

It
Fa) = 224 3 A cos (ne) + Buysin (na)
2 n=1 ! "
1 s
A, == [ f(y)cos(ny)dy n=0,1,2,3..
Tr —1Tr
1 T
B, == [ f(y)sin(ny)dy  n=1,23..
T —x

Dirichlet kernel
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Consider the partial sum

A | v .
Sy = > + ;An cos (nx) + By, sin (nx)

. N
L 1+2 Z (cos(nx) cos(ny) + sin(nz) sin(ny)) | f(y)dy

n=1

3

N
142 Z cos(nx —ny) | f(y)dy

n=1

Kn(z —y)f(y)dy

F= ¥l=

where
sin(N + 1)6

sin(§)

N
Ky@)=1+2 Z cos(nf) =

n=1
Proof. Use cos(f) = Mand get geometric series. m

Now let 8 =y — z. Then

Sy = 2i } flx+6)dé
Sn(z) = f(2) = 5~ : }KN f(z+0)— f(z)]do
- i } g(0) sin(N + )9 d9  where g(0) = w
2T n sin(§)
Let ¢,,(0) = sin(N %)9 By Bessel’s inequality we have
- |(gv¢ 1 i 9 ™ [f(m+9)_f(m)]2
n; 164 ||2 %Z:: W= gl = J ==

By L’hopital’s rule the integrand is finite at # = 0 . Hence it is bounded
everywhere and the integral exists. Since the sum converges each term much
approach zero and so

™

(g, ¢,)l = | g(8)sin(N + )9d0 =0

—T

Gibbs Phenomena

If instead we are interested in uniform convergence we need to analyze
lim max |Sn(z) — f(x)]
N—oo
One can show that if the function f(x) has a discontinuity at = xo then in

fact this limit is nonzero and is about 9% of the size of the jump on either side.
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