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Figure 12.1: Examples of textures: a curtain;, b wood; ¢ dog fur; d woodchip
paper; e, f clothes.

Textures may be organized in a hierarchical manner, i.e., they may
look quite different at different scales. A good example is the curtain
shown in Fig. 12.1a. On the finest scale our attention is focused on the
individual threads (Fig. 12.2a). Then the characteristic scale is the thick-
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Figure 12.2: Hierarchical organization of texture demonstrated by showing the
image of the curtain in Fig. 12.1a at different resolutions.

the local orientation is well distributed. Finally, at an even coarser level,
we no longer recognize the individual meshes, but observe the folds of
the curtain (Fig. 12.2¢). They are characterized by yet another character-
istic scale, showing the period of the folds and their orientation. These
considerations emphasize the importance of multiscale texture analysis.
Thus multiscale data structures as discussed in the first part of this book
(Chap. 5) are essential for texture analysis.

Generally, two classes of texture parameters are of importance. Tex-
ture parameters may or may not be rotation and scale invariant. This
classification is motivated by the task we have to perform.

Imagine a typical industrial or scientific application in which we want
to recognize objects that are randomly oriented in the image. We are not
interested in the orientation of the objects but in their distinction from
- each other. Therefore, texture parameters that depend on orientation
are of no interest. We might still use them but only if the objects have
a characteristic shape which then allows us to determine their orienta-
tion. We can use similar arguments for scale-invariant features. If the
objects of interest are located at different distances from the camera,
the texture parameter used to recognize them should also be scale in-
variant. Otherwise the recognition of the object will depend on distance.
However, if the texture changes its characteristics with the scale — as
in the example of the curtain in Fig. 12.1a — the scale-invariant texture
features may not exist at all. Then the use of textures to characterize
objects at different distances becomes a difficult task.

In the examples above, we were interested in the objects themselves

but not in their orientation in space. The orientation of surfaces is a
key feature for another image processing task, the reconstruction of a
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In the simplest case, we can select a mask and compute the param-
eters only from the pixels contained in this window W. The variance
operator, for example, is then given by

1 . 2
Vi = 5——= > (Gm-mn-n — (Ghmn)" - (12.1)
Pl =
m o eWw
The sum runs over the P image points of the window. The expression
(G)myn denotes the mean of the gray values at the point [m, n1]t, com-

puted over the same window W:

1
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It is important to note that the variance operator is nonlinear. However,
it resembles the general form of a neighborhood operation — a convo-
lution. Combining (12.1) and (12.2), we can show the variance operator
is a combination of linear convolution and nonlinear point operations

)
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m',neM mw' neM
or, in operator notation,
V=R(I-1)— (R -R). (12.4)

The operator R denotes a smoothing over all the image points with a
~ box filter of the size of the window W. The operator 7 is the identity
operator. Therefore the operator 7 - 7 performs a nonlinear point oper-
ation, namely the squaring of the gray values at each pixel. Finally, the
variance operator subtracts the square of a smoothed gray value from
the smoothed squared gray values.

From discussions on smoothing in Sect. 10.3 we know that a box filter
is not an appropriate smoothing filter. Thus we obtain a better variance
operator if we replace the box filter R with a binomial filter B

YV =8B(1-17)-(B-B). (12.5)

We know the variance operator to be isotropic. It is also scale inde-
pendent if the window is larger than the largest scales in the textures
and if no fine scales of the texture disappear because the objects are lo-
cated further away from the camera. This suggests that a scale-invariant
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Figure 12.3: Variance operator applied to different images: a Fig. 10.6a; b
Fig. 12.1e; ¢ Fig. 12.1f- d Fig. 12.1d.

out to be an isotropic edge detector, since the original image contains
areas with more or less uniform gray values.

The other three examples in Fig. 12.3 show variance images from tex-
tured surfaces. The variance operator can distinguish the areas with
the fine horizontal stripes in Fig. 12.1e from the more uniform surfaces.
They appear as uniform bright areas in the variance image (Fig. 12.3b).
The variance operator cannot distinguish between the two textures in
Fig. 12.3c. Since the resolution is still finer than the characteristic repe-
tition scale of the texture, the variance operator does not give a uniform
estimate of the variance in the texture. The chipwood paper (Fig. 12.3d)
also gives a non-uniform response to the variance operator since the
pattern shows significant random fluctuations. )

12.2.2 Higher Moments
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Figure 12.4: Coherence of local orientation of a piece of cloth with regions of

horizontal stripes (Fig. 12.1e), b dog fur (Fig. 12.1c), ¢ curtain (Fig. 12.1a), and

d woodchip wall paper (Fig. 12.1d) (For a complete analysis of the local orienta-
tion, see exercise 12.2). |

tion. The significance of this approach may be illustrated with examples
of two quite different gray value distributions, a normal and a bimodal
distribution:

_ 1 _g_<g> 7 _1 - .
plg) = T XD | ~Z5 5 P9 =5 (6(g) +0) +6({g) - 0)).

Both distributions show the same mean and variance but differ in higher-
order moments.

12.3 Rotation and Scale Variant Texture Features

12721 Tanral Drientatinon
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Figure 12.5: Determination of the characteristic scale of a texture by computa-
tion of the local wave number: a original texture, b directional bandpass using the
levels one and two of the vertical component of a directiopyramidal decomposi-
tion, c estimate of the local wave number (all structures below a certain threshold
are masked to black), d amplitude of the local wave number, and e histogram of
the local wave number distribution (units: number of periods per pixel).
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Figure 12.6: Determination of the characteristic scale of a texture by computa-
tion of the local wave number: a original texture, b directional bandpass using the
levels one and two of the vertical component of a directiopyramidal decomposi-
tion, c estimate of the local wave number (all structures below a cevtain threshold
are masked to black), d amplitude of the local wave number, and e histogram of
the local wave number distribution (units: numbey of periods per pixel).
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Figure 12.7: Application of the variance operator to levels O to 3 of the Laplace
pyramid of the image from Fig. 12.1f.

the areas in which no significant amplitudes of the bandpass filtered
image are present. If the masking is not performed, the estimate of the
Jocal wave number will be significantly distorted. With the masking a
quite narrow distribution of the local wave number is found with a peak
at a wave number of 0.085.

12.3.3 Pyramidal Texture Analysis

The Laplace pyramid is an alternative to the local wave number opera-
tor, because it results in a bandpass decomposition of the image. This
decomposition does not compute a local wave number directly, but we
can obtain a series of images which show the texture at different scales.
The variance operator takes a very simple form with a'Laplace pyra-
mid, since the mean gray value, except for the coarsest level, is zero:

VvV =R(r® . ple)y, (12.6)



