
Thresholding  
 
Introduction  

Segmentation involves separating an image into regions (or their contours) 
corresponding to objects. We usually try to segment regions by identifying common 
properties. Or, similarly, we identify contours by identifying differences between 
regions (edges).  

The simplest property that pixels in a region can share is intensity. So, a natural 
way to segment such regions is through thresholding, the separation of light and dark 
regions.  

Thresholding creates binary images from grey-level ones by turning all pixels 
below some threshold to zero and all pixels about that threshold to one. (What you 
want to do with pixels at the threshold doesn’t matter, as long as you’re consistent.)  
If g(x, y) is a thresholded version of f (x, y) at some global threshold T.  
g is equal to 1 if  and zero otherwise. ( , )f x y T≥

 

Problems with Thresholding  

The major problem with thresholding is that we consider only the intensity, not any 
relationships between the pixels. There is no guarantee that the pixels identified by 
the thresholding process are contiguous.  

We can easily include extraneous pixels that aren’t part of the desired region, and 
we can just as easily miss isolated pixels within the region (especially near the 
boundaries of the region). These effects get worse as the noise gets worse, simply 
because it’s more likely that a pixels intensity doesn’t represent the normal intensity 
in the region.  

When we use thresholding, we typically have to play with it, sometimes losing 
too much of the region and sometimes getting too many extraneous background 
pixels. (Shadows of objects in the image are also a real pain—not just where they fall 
across another object but where they mistakenly get included as part of a dark object 
on a light background.) 



Optimal Global Thresholding 

• A threshold is said to be globally optimal if 
the number of misclassified pixels is 
minimum 
– Histogram is bimodal (object and background) 
– Ground truth is known OR the histograms of 

the object and the background are known 
 

 



Optimal Global Thresholding 

• If the individual (normalized) histograms are known as 
p1(z) and p2(z) 
– The (normalized) histogram of the overall image is 
    P1p1(z)+P2p2(z)  where P1=N1/(N1+N2) and P2=N2/(N1+N2) 
    Notice that P1+P2=1 



Probability of Error 

• Probability of erroneously classifying a class 1 pixel to 
class 2 is 
–    

• Probability of erroneously classifying a class 2 pixel to 
class 1 is 
–   

• Overall probability of error is then 
 

–                               E(T)=P2E1(T)+P1E2(T) 
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Minimization of Probability of Error 

• Let E’(T)=0 we have P1p1(T)=P2p2(T) 
– If p1(T), p2(T) are known, T can be determined 
– If P1=P2 (# of object pixels = # of background 

pixels), the optimum T is where the curves 
intersect 

– What if P1 is larger? P2 is larger?  



A Special Case 

• An analytical expression for T is available 
if both normalized histograms can be 
modeled as Gaussian distributions 

 
–     

 
–  T must satisfy the quadratic equation 
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Parameter Estimation 

• Parameters involved in an assumed 
functional form can be estimated using a 
minimization of mean-square-error 
approach  
 
 

•  The goal is to search for the parameters 
that minimizes the above quantity 
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Minimum Error Thresholding 

Assume object pixels are distributed (histogram) according to ( )Op x  and the 
background pixels by ( )Bp x . The error is misclassifying object pixels is 

 ( )
t

Op x dx
−∞
∫  

 
And misclassifying background pixels as object pixels is  

  ( )B
t

p x dx
∞

∫
Let θ  be the fraction of pixels in the object. Then the total error is 

 ( )( ) ( ) 1 ( )
t

O B
t
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To find the minimum we differentiate 
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Example: 
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Local Thresholding  

Another problem with global thresholding is that changes in illumination across the 
scene may cause some parts to be brighter (in the light) and some parts darker (in 
shadow) in ways that have nothing to do with the objects in the image.  

We can deal, at least in part, with such uneven illumination by determining 
thresholds locally. That is, instead of having a single global threshold, we allow the 
threshold itself to smoothly vary across the image. 

 
Another way of dealing with illumination is to consider 

 
( , ) ( , )* ( , )
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Hysteresis Thresholding  

Take into account neighbors. 
1. Choose two thresholds and  highT lowT
2. If  the pixel is in the body. If  highT T> lowT T<  the pixel is in the background. 
3. If  the pixel is in the body only if a neighbor is already in the body low highT T T< <
4.  Iterate 
 

 
Automated Methods for Finding Thresholds  

To set a global threshold or to adapt a local threshold to an area, we usually look at 
the histogram to see if we can find two or more distinct modes—one for the 
foreground and one for the background.  
Recall that a histogram is a probability distribution:  

p(g)=ng /n  
That is, the number of pixels ng having grayscale intensity g as a fraction of the total 
number of pixels n. Here are five different ways to look at the problem:  

Known Distribution  

If you know that the object you’re looking for is brighter than the background and 
occupies a certain fraction 1/p of the image, you can set the threshold by simply 
finding the intensity level such that the desired percentage of the image pixels are 
below this value. This is easily extracted from the cumulative histogram:  

c(g)= p(g)  
Simply set the threshold T such that c(T )=1/p. If you’re looking for a dark object on 
a light background, 1c(T )=1- p  



Finding Peaks and Valleys  

One extremely simple way to find a suitable threshold is to find each of the modes 
(local maxima) and then find the valley (minimum) between them.  

While this method appears simple, there are two main problems with it:  

1. The histogram may be noisy, thus causing many local minima and maxima. 
To avoid this, the histogram is smoothed before trying to find separate modes.  
2. The sum of two separate distributions, each with their own mode, may not 
produce a distribution with two  distinct modes.   
 
Clustering (K-Means Variation)  
 
Another way to look at the problem is that we have two groups of pixels, one with 
one range of values and one with another. What makes thresholding difficult is that 
these ranges usually overlap. What we want to do is to minimize the error of 
classifying a background pixel as a foreground one or vice versa. To do this, we try 
to minimize the area under the histogram for one region that lies on the other 
region’s side of the threshold. The problem is that we don’t have the histograms for 
each region, only the histogram for the combined regions. (If we had the regions, 
why would we need to do segmentation?)  

Understand that the place of minimum overlap (the place where the misclassified 
areas of the distributions are equal) is not is not necessarily where the valley occurs 
in the combined histogram. This occurs, for example, when  one cluster has a wide 
distribution and the other a narrow one. 

One way that we can try to do this is to consider the values in the two regions as 
two clusters. The idea is to pick a threshold such that each pixel on each side of 
the threshold is closer in intensity to the mean of all pixels on that side of the 
threshold than the mean of all pixels on the other side of the threshold.  
In other words, let ( )B Tµ be the mean of all pixels less than the threshold and ( )O Tµ  be 
the mean of all pixels greater than the threshold. We want to find a threshold such that the 
following holds:  
 :| ( ) | | ( ) |B Og T g T g Tµ µ∀ ≥ − > −  

 
and  
 :| ( ) | | ( ) |B Og T g T g Tµ µ∀ < − < −  
 
The basic idea is to start by estimating ( )B Tµ as the average of the four corner pixels 
(assumed to be background) and ( )O Tµ as the average of everything else. Set the 
threshold to be halfway between ( )B Tµ  and ( )O Tµ  (thus separating the pixels according 
to how close their intensities are to ( )B Tµ and ( )O Tµ  respectively). Now, update the 
estimates of ( )B Tµ and ( )O Tµ respectively by actually calculating the means of the pixels 
on each side of the threshold. This process repeats until the algorithm converges.  
This method works well if the spreads of the distributions are approximately equal, but it 
does not handle well the case where the distributions have differing variance. 

http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation/f5.4.gif
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation/f5.4.gif
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation/f5.4.gif


 
Iterative threshold selection 

1. Initial guess of body – e.g. background is four corners 

2. Compute mean background and mean object at step t  

 , ,

( , ) ( , )

#background pixels #  pixels
i j background i j objectst t

B O

g i j g i j

object
µ µ∈ ∈= =

∑ ∑
 

3.  Set 

 1

2

t t
t B OT µ µ+ +

=  

4. If  halt otherwise go to #2 1tT T+ = t

 



Clustering (The Otsu Method)  

Another way of accomplishing similar results is to set the threshold so as to try to 
make each cluster as tight as possible, thus (hopefully!) minimizing their overlap. 
Obviously, we can’t change the distributions, but we can adjust where we separate 
them (the threshold). As we adjust the threshold one way, we increase the spread of 
one and decrease the spread of the other. The goal then is to select the threshold that 
minimizes the combined spread.  
 
We can define the within-class variance as the weighted sum of the variances of each 
cluster:  

  2 2
within ( ) ( ) ( ) ( ) ( )B B O OT n T T n T Tσ σ= + 2σ

 
where 
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2 ( )B Tσ =  the variance of the pixels in the background 
(below threshold)  

2 ( )O Tσ =  the variance of the pixels in the foreground 
(above threshold)  

  

and [0,N -1]is the range of intensity levels.  
Computing this within-class variance for each of the two classes for each possible 

threshold involves a lot of computation, but there’s an easier way.  
If you subtract the within-class variance from the total variance of the combined 

distribution, you get something called the between-class variance:  

 [ ] [ ]2 22 2 2
between ( ) ( ) ( ) ( ) ( )Within B B O OT n T T n T Tσ σ σ µ µ µ µ= − = − + −  

 
where σ

2 
is the combined variance and µ is the combined mean. Notice that the 

between-class variance is simply the weighted variance of the cluster means 
themselves around the overall mean.   Substituting µ = nB (T)µB (T)+ nO (T)µO (T) 
and simplifying, we get  

 [ ]22
between ( ) ( ) ( ) ( ) ( )B O B OT n T n T T Tσ µ= − µ  

 

 



So, for each potential threshold T we  

1. Separate the pixels into two clusters according to the threshold.  
2.  Find the mean of each cluster.  
3. Square the difference between the means.  
4. Multiply by the number of pixels in one cluster times the number in the other.  
 
This depends only on the difference between the means of the two clusters, thus 
avoiding having to calculate differences between individual intensities and the 
cluster means. The optimal threshold is the one that maximizes the between-class 
variance (or, conversely, minimizes the within-class variance).  

This still sounds like a lot of work, since we have to do this for each possible 
threshold, but it turns out that the computations aren’t independent as we change 
from one threshold to another. We can update (T ), (T ), and the respective 
cluster means 

Bn On

Bµ  (T )and Oµ  (T )as pixels move from one cluster to the other as T 
increases. Using simple recurrence relations we can update the between-class 
variance as we successively test each threshold:  

 ( )

( )

B B T

O O T

B B T
B

B

O O T
O

O

n (T +1)=n (T )+n  
n (T +1)=n (T )-n

µ (T)n (T )+nµ (T +1)= 
n 1

µ (T)n (T )-nµ (T +1)= 
n 1

T
T

T
T

+

+

 

 
This method is called the Otsu method

Mixture Modeling  

Another way to minimize the classification error in the threshold is to suppose that 
each group is Gaussian-distributed. Each of the distributions has a mean ( and  
respectively) and a standard deviation (

Bµ Oµ

Bσ  and Oσ  respectively) independent of the 
threshold we choose:  

  
2 22 2 ( ) / 2( ) / 2

model ( ) O OB B gg
B Oh g n e n e µ σµ σ − −− −= +

 
Whereas the Otsu method separated the two clusters according to the threshold 

and tried to optimize some statistical measure, mixture modeling assumes that there 
already exists two distributions and we must find them. Once we know the 
parameters of the distributions, it’s easy to determine the best threshold.  

Unfortunately, we have six unknown parameters ( , , , , ,B O B O B On n µ µ σ σ ), so we 
need to make some estimates of these quantities.  

If the two distributions are reasonably well separated (some overlap but not too 
much), we can choose an arbitrary threshold T and assume that the mean and 



standard deviation of each group approximates the mean and standard deviation of 
the two underlying populations. We can then measure how well a mix of the two 
distributions approximates the overall distribution:  

 
image

N-1
2

model
0

F = h (g)-h (g)  ⎡ ⎤
⎣ ⎦∑  

 
Choosing the optimal threshold thus becomes a matter of finding the one that 

causes the mixture of the two estimated Gaussian distributions to best approximate 
the actual histogram (minimizes F ). Unfortunately, the solution space is too large to 
search exhaustively, so most methods use some form of gradient descent method. 
Such gradient-descent methods depend heavily on the accuracy of the initial 
estimate, but the Otsu method or similar clustering methods can usually provide 
reasonable initial estimates.  

Mixture modeling also extends to models with more than two underlying 
distributions (more than two types of regions). For example, segmenting CT images 
into gray matter, white matter, and cerebral spinal fluid (CSF).  



Multispectral Thresholding  

We are interested in a technique for segmenting images with multiple components 
(color images, Landsat images, or MRI images with T1, T2, and proton-density 
bands). It works by estimating the optimal threshold in one channel and then 
segmenting the overall image based on that threshold. We then subdivide each of 
these regions independently using properties of the second channel. We repeat it 
again for the third channel, and so on, running through all channels repeatedly until 
each region in the image exhibits a distribution indicative of a coherent region (a 
single mode).  
e.g. 
1. Compute histogram for each channel separately. 
2. Find the peak in each histogram 
     Select two thresholds corresponding to some valley on each side of these peaks. 
     Segment image into two regions. One between these thresholds and one outside. 
3. Project into multi-spectral representation 
 
 
Thresholding Along Boundaries  

If we want our thresholding method to give stay fairly true to the boundaries of the 
object, we can first apply some boundary-finding method (such as edge detection 
techniques) and then sample the pixels only where the boundary probability is high.  

Thus, our threshold method based on pixels near boundaries will cause 
separations of the pixels in ways that tend to preserve the boundaries. Other scattered 
distributions within the object or the background are of no relevance.  

However, if the characteristics change along the boundary, we’re still in trouble. 
And, of course, there’s still no guarantee that we’ll not have extraneous pixels or 
holes. 



Adaptive Thresholding 
• Uneven illumination  

– An image can be modeled as the product of a 
reflectance component r(x,y) and an illumination 
component i(x,y) as 
 
 
 

–  i(x,y): the amount of source illumination incident on 
the scene being viewed 

– r(x,y): the amount of illumination reflected by the 
object  

1),(0        and           ),(0
 where                              

),(),(),(                    
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Adaptive Thresholding 
• Uneven illumination 

makes an originally 
perfectly 
segmentable image 
into an image that 
can not be 
segmented 
satisfactorily using a 
single threshold    



Adaptive Thresholding 

• One way to overcome the uneven illumination problem 
is to first estimate the uneven illumination and then 
correct it accordingly (rectification)  
– Upon correction, global thresholding can be employed 

• Another way is to use adaptive thresholding by partition 
the original image into several subimages and utilize 
global thresholding techniques for each subimage 
– Key issues are how to partition the image and how 

to estimate the threshold for each subimage 



Adaptive Thresholding 
Examples 



Adaptive Thresholding 
Examples 



Adaptive Thresholding 
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Adaptive Thresholding 
Examples 

• Major procedures used for this 
example  
– Dividing the image into 

subimages  
– Testing for bimodality for each 

subimage 
– Apply Optimal Global 

Thresholding for each identified 
image with bimodal histogram 
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