
Thresholding

Introduction

Segmentation involves separating an image into regions (or their contours)
corresponding to objects. We usually try to segment regions by identifying common
properties. Or, similarly, we identify contours by identifying differences between
regions (edges).

The simplest property that pixels in a region can share is intensity. So, a natural
way to segment such regions is through thresholding, the separation of light and dark
regions.

Thresholding creates binary images from grey-level ones by turning all pixels
below some threshold to zero and all pixels about that threshold to one. (What you
want to do with pixels at the threshold doesn’t matter, as long as you’re consistent.)
If g(x, y) is a thresholded version of f (x, y) at some global threshold T.
g is equal to 1 if and zero otherwise. (,)f x y T≥

Problems with Thresholding

The major problem with thresholding is that we consider only the intensity, not any
relationships between the pixels. There is no guarantee that the pixels identified by
the thresholding process are contiguous.

We can easily include extraneous pixels that aren’t part of the desired region, and
we can just as easily miss isolated pixels within the region (especially near the
boundaries of the region). These effects get worse as the noise gets worse, simply
because it’s more likely that a pixels intensity doesn’t represent the normal intensity
in the region.

When we use thresholding, we typically have to play with it, sometimes losing
too much of the region and sometimes getting too many extraneous background
pixels. (Shadows of objects in the image are also a real pain—not just where they fall
across another object but where they mistakenly get included as part of a dark object
on a light background.)

Optimal Global Thresholding

• A threshold is said to be globally optimal if
the number of misclassified pixels is
minimum
– Histogram is bimodal (object and background)
– Ground truth is known OR the histograms of

the object and the background are known

Optimal Global Thresholding

• If the individual (normalized) histograms are known as
p1(z) and p2(z)
– The (normalized) histogram of the overall image is
 P1p1(z)+P2p2(z) where P1=N1/(N1+N2) and P2=N2/(N1+N2)
 Notice that P1+P2=1

Probability of Error

• Probability of erroneously classifying a class 1 pixel to
class 2 is
–

• Probability of erroneously classifying a class 2 pixel to
class 1 is
–

• Overall probability of error is then

– E(T)=P2E1(T)+P1E2(T)

∫
∞

=
T

dzzpTE)()(12

∫ ∞−
=

T
dzzpTE)()(21

Minimization of Probability of Error

• Let E’(T)=0 we have P1p1(T)=P2p2(T)
– If p1(T), p2(T) are known, T can be determined
– If P1=P2 (# of object pixels = # of background

pixels), the optimum T is where the curves
intersect

– What if P1 is larger? P2 is larger?

A Special Case

• An analytical expression for T is available
if both normalized histograms can be
modeled as Gaussian distributions

–

– T must satisfy the quadratic equation

2
2

2
2

2
1

2
1

2
)(

2

22
)(

1

1

22
)(σ

µ
σ
µ

σπσπ

−
−

−
−

+=
zz

ePePzp

)/ln(22

)2(B ,A
 where

0

2112
2
2

2
1

2
1

2
2

2
2

2
1

2
12

2
21

2
2

2
1

2

PPC

CBTAT

σσσσµσµσ

σµσµσσ

+−=

−=−=

=++

Parameter Estimation

• Parameters involved in an assumed
functional form can be estimated using a
minimization of mean-square-error
approach

• The goal is to search for the parameters
that minimizes the above quantity

∑
=

−=
n

i
iims zhzp

n
e

1

2)]()([1

Minimum Error Thresholding

Assume object pixels are distributed (histogram) according to ()Op x and the
background pixels by ()Bp x . The error is misclassifying object pixels is

 ()
t

Op x dx
−∞
∫

And misclassifying background pixels as object pixels is

 ()B
t

p x dx
∞

∫
Let θ be the fraction of pixels in the object. Then the total error is

 ()() () 1 ()
t

O B
t

E t p x dx p x dxθ θ
∞

−∞

= + −∫ ∫

To find the minimum we differentiate

()

()

0 () 1

or
() 1 ()

O B

O B

E ()p t p
t

p t p t

θ θ

θ θ

∂
= = − −

∂

= −

t

Example:

()

()

() ()

2 2
3

2
B

2
O

2 2

3() () for
4

 0 otherwise

8
9

a=1 b=5 for background
a=2 b=7 for object

3p () 24 10
4
3p () 45 14

32
1 3 8 324 10 45 14
9 4 9 32
so

21 5.25
4

p x a x b b a x b
a

t t t

t t t

t t t t

t

θ

⎡ ⎤= − − − ≤ ≤⎣ ⎦

=

= − − +

= − − +

− − + = − − +

= =

a+

Local Thresholding

Another problem with global thresholding is that changes in illumination across the
scene may cause some parts to be brighter (in the light) and some parts darker (in
shadow) in ways that have nothing to do with the objects in the image.

We can deal, at least in part, with such uneven illumination by determining
thresholds locally. That is, instead of having a single global threshold, we allow the
threshold itself to smoothly vary across the image.

Another way of dealing with illumination is to consider

(,) (,)* (,)

ln (,) ln (,) ln (,)
g x y r x y i x y

g x y r x y i x y
=
= +

Hysteresis Thresholding

Take into account neighbors.
1. Choose two thresholds and highT lowT
2. If the pixel is in the body. If highT T> lowT T< the pixel is in the background.
3. If the pixel is in the body only if a neighbor is already in the body low highT T T< <
4. Iterate

Automated Methods for Finding Thresholds

To set a global threshold or to adapt a local threshold to an area, we usually look at
the histogram to see if we can find two or more distinct modes—one for the
foreground and one for the background.
Recall that a histogram is a probability distribution:

p(g)=ng /n
That is, the number of pixels ng having grayscale intensity g as a fraction of the total
number of pixels n. Here are five different ways to look at the problem:

Known Distribution

If you know that the object you’re looking for is brighter than the background and
occupies a certain fraction 1/p of the image, you can set the threshold by simply
finding the intensity level such that the desired percentage of the image pixels are
below this value. This is easily extracted from the cumulative histogram:

c(g)= p(g)
Simply set the threshold T such that c(T)=1/p. If you’re looking for a dark object on
a light background, 1c(T)=1- p

Finding Peaks and Valleys

One extremely simple way to find a suitable threshold is to find each of the modes
(local maxima) and then find the valley (minimum) between them.

While this method appears simple, there are two main problems with it:

1. The histogram may be noisy, thus causing many local minima and maxima.
To avoid this, the histogram is smoothed before trying to find separate modes.
2. The sum of two separate distributions, each with their own mode, may not
produce a distribution with two distinct modes.

Clustering (K-Means Variation)

Another way to look at the problem is that we have two groups of pixels, one with
one range of values and one with another. What makes thresholding difficult is that
these ranges usually overlap. What we want to do is to minimize the error of
classifying a background pixel as a foreground one or vice versa. To do this, we try
to minimize the area under the histogram for one region that lies on the other
region’s side of the threshold. The problem is that we don’t have the histograms for
each region, only the histogram for the combined regions. (If we had the regions,
why would we need to do segmentation?)

Understand that the place of minimum overlap (the place where the misclassified
areas of the distributions are equal) is not is not necessarily where the valley occurs
in the combined histogram. This occurs, for example, when one cluster has a wide
distribution and the other a narrow one.

One way that we can try to do this is to consider the values in the two regions as
two clusters. The idea is to pick a threshold such that each pixel on each side of
the threshold is closer in intensity to the mean of all pixels on that side of the
threshold than the mean of all pixels on the other side of the threshold.
In other words, let ()B Tµ be the mean of all pixels less than the threshold and ()O Tµ be
the mean of all pixels greater than the threshold. We want to find a threshold such that the
following holds:
 :| () | | () |B Og T g T g Tµ µ∀ ≥ − > −

and
 :| () | | () |B Og T g T g Tµ µ∀ < − < −

The basic idea is to start by estimating ()B Tµ as the average of the four corner pixels
(assumed to be background) and ()O Tµ as the average of everything else. Set the
threshold to be halfway between ()B Tµ and ()O Tµ (thus separating the pixels according
to how close their intensities are to ()B Tµ and ()O Tµ respectively). Now, update the
estimates of ()B Tµ and ()O Tµ respectively by actually calculating the means of the pixels
on each side of the threshold. This process repeats until the algorithm converges.
This method works well if the spreads of the distributions are approximately equal, but it
does not handle well the case where the distributions have differing variance.

http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation/f5.4.gif
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation/f5.4.gif
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation/f5.4.gif

Iterative threshold selection

1. Initial guess of body – e.g. background is four corners

2. Compute mean background and mean object at step t

 , ,

(,) (,)

#background pixels # pixels
i j background i j objectst t

B O

g i j g i j

object
µ µ∈ ∈= =

∑ ∑

3. Set

 1

2

t t
t B OT µ µ+ +

=

4. If halt otherwise go to #2 1tT T+ = t

Clustering (The Otsu Method)

Another way of accomplishing similar results is to set the threshold so as to try to
make each cluster as tight as possible, thus (hopefully!) minimizing their overlap.
Obviously, we can’t change the distributions, but we can adjust where we separate
them (the threshold). As we adjust the threshold one way, we increase the spread of
one and decrease the spread of the other. The goal then is to select the threshold that
minimizes the combined spread.

We can define the within-class variance as the weighted sum of the variances of each
cluster:

 2 2
within () () () () ()B B O OT n T T n T Tσ σ= + 2σ

where

1

0
() ()

T

B
i

n T p i
−

=

= ∑

1

() ()
N

O
i T

n T p i
−

=

= ∑

2 ()B Tσ = the variance of the pixels in the background
(below threshold)

2 ()O Tσ = the variance of the pixels in the foreground
(above threshold)

and [0,N -1]is the range of intensity levels.
Computing this within-class variance for each of the two classes for each possible

threshold involves a lot of computation, but there’s an easier way.
If you subtract the within-class variance from the total variance of the combined

distribution, you get something called the between-class variance:

 [] []2 22 2 2
between () () () () ()Within B B O OT n T T n T Tσ σ σ µ µ µ µ= − = − + −

where σ

2
is the combined variance and µ is the combined mean. Notice that the

between-class variance is simply the weighted variance of the cluster means
themselves around the overall mean. Substituting µ = nB (T)µB (T)+ nO (T)µO (T)
and simplifying, we get

 []22
between () () () () ()B O B OT n T n T T Tσ µ= − µ

So, for each potential threshold T we

1. Separate the pixels into two clusters according to the threshold.
2. Find the mean of each cluster.
3. Square the difference between the means.
4. Multiply by the number of pixels in one cluster times the number in the other.

This depends only on the difference between the means of the two clusters, thus
avoiding having to calculate differences between individual intensities and the
cluster means. The optimal threshold is the one that maximizes the between-class
variance (or, conversely, minimizes the within-class variance).

This still sounds like a lot of work, since we have to do this for each possible
threshold, but it turns out that the computations aren’t independent as we change
from one threshold to another. We can update (T), (T), and the respective
cluster means

Bn On

Bµ (T)and Oµ (T)as pixels move from one cluster to the other as T
increases. Using simple recurrence relations we can update the between-class
variance as we successively test each threshold:

 ()

()

B B T

O O T

B B T
B

B

O O T
O

O

n (T +1)=n (T)+n
n (T +1)=n (T)-n

µ (T)n (T)+nµ (T +1)=
n 1

µ (T)n (T)-nµ (T +1)=
n 1

T
T

T
T

+

+

This method is called the Otsu method

Mixture Modeling

Another way to minimize the classification error in the threshold is to suppose that
each group is Gaussian-distributed. Each of the distributions has a mean (and
respectively) and a standard deviation (

Bµ Oµ

Bσ and Oσ respectively) independent of the
threshold we choose:

2 22 2 () / 2() / 2

model () O OB B gg
B Oh g n e n e µ σµ σ − −− −= +

Whereas the Otsu method separated the two clusters according to the threshold

and tried to optimize some statistical measure, mixture modeling assumes that there
already exists two distributions and we must find them. Once we know the
parameters of the distributions, it’s easy to determine the best threshold.

Unfortunately, we have six unknown parameters (, , , , ,B O B O B On n µ µ σ σ), so we
need to make some estimates of these quantities.

If the two distributions are reasonably well separated (some overlap but not too
much), we can choose an arbitrary threshold T and assume that the mean and

standard deviation of each group approximates the mean and standard deviation of
the two underlying populations. We can then measure how well a mix of the two
distributions approximates the overall distribution:

image

N-1
2

model
0

F = h (g)-h (g) ⎡ ⎤
⎣ ⎦∑

Choosing the optimal threshold thus becomes a matter of finding the one that

causes the mixture of the two estimated Gaussian distributions to best approximate
the actual histogram (minimizes F). Unfortunately, the solution space is too large to
search exhaustively, so most methods use some form of gradient descent method.
Such gradient-descent methods depend heavily on the accuracy of the initial
estimate, but the Otsu method or similar clustering methods can usually provide
reasonable initial estimates.

Mixture modeling also extends to models with more than two underlying
distributions (more than two types of regions). For example, segmenting CT images
into gray matter, white matter, and cerebral spinal fluid (CSF).

Multispectral Thresholding

We are interested in a technique for segmenting images with multiple components
(color images, Landsat images, or MRI images with T1, T2, and proton-density
bands). It works by estimating the optimal threshold in one channel and then
segmenting the overall image based on that threshold. We then subdivide each of
these regions independently using properties of the second channel. We repeat it
again for the third channel, and so on, running through all channels repeatedly until
each region in the image exhibits a distribution indicative of a coherent region (a
single mode).
e.g.
1. Compute histogram for each channel separately.
2. Find the peak in each histogram
 Select two thresholds corresponding to some valley on each side of these peaks.
 Segment image into two regions. One between these thresholds and one outside.
3. Project into multi-spectral representation

Thresholding Along Boundaries

If we want our thresholding method to give stay fairly true to the boundaries of the
object, we can first apply some boundary-finding method (such as edge detection
techniques) and then sample the pixels only where the boundary probability is high.

Thus, our threshold method based on pixels near boundaries will cause
separations of the pixels in ways that tend to preserve the boundaries. Other scattered
distributions within the object or the background are of no relevance.

However, if the characteristics change along the boundary, we’re still in trouble.
And, of course, there’s still no guarantee that we’ll not have extraneous pixels or
holes.

Adaptive Thresholding
• Uneven illumination

– An image can be modeled as the product of a
reflectance component r(x,y) and an illumination
component i(x,y) as

– i(x,y): the amount of source illumination incident on
the scene being viewed

– r(x,y): the amount of illumination reflected by the
object

1),(0 and),(0
 where

),(),(),(

<<∞<<

=

yxryxi

yxryxiyxf

Adaptive Thresholding
• Uneven illumination

makes an originally
perfectly
segmentable image
into an image that
can not be
segmented
satisfactorily using a
single threshold

Adaptive Thresholding

• One way to overcome the uneven illumination problem
is to first estimate the uneven illumination and then
correct it accordingly (rectification)
– Upon correction, global thresholding can be employed

• Another way is to use adaptive thresholding by partition
the original image into several subimages and utilize
global thresholding techniques for each subimage
– Key issues are how to partition the image and how

to estimate the threshold for each subimage

Adaptive Thresholding
Examples

Adaptive Thresholding
Examples

Adaptive Thresholding
Examples

Adaptive Thresholding
Examples

• Major procedures used for this
example
– Dividing the image into

subimages
– Testing for bimodality for each

subimage
– Apply Optimal Global

Thresholding for each identified
image with bimodal histogram

	threshold2.pdf
	CSE6366 Digital Image Processing
	Thresholding
	Global Thresholding
	Global Thresholding
	Global Thresholding
	Slide Number 6
	Otsu’s Algorithm
	Slide Number 8
	Optimal Global Thresholding
	Optimal Global Thresholding
	Probability of Error
	Minimization of Probability of Error
	A Special Case
	Parameter Estimation
	Adaptive Thresholding
	Adaptive Thresholding
	Adaptive Thresholding
	Adaptive Thresholding�Examples
	Adaptive Thresholding�Examples
	Adaptive Thresholding�Examples
	Adaptive Thresholding�Examples
	Region-Based Segmentation�Region Growing
	Region Growing Example
	Region Splitting and Merging
	Region Splitting and Merging
	Example
	MATLAB Exercise

