Tomography

A Lecture for:
Inverse Problems Seminar

Asaf Zarmi

Dec. 2009

- Introduction
- The Radon Transform
- Projection Slice Theorem
- Inversion of Radon Transform
- Theory
- Aplication
- Cone Beam Transform
- Various problems in tomography

What is Tomography?

- Wikipedia:

Tomography is imaging by sections or sectioning, through the use of wave of energy.
A device used in tomography is called a tomograph, while the image produced is a tomogram.
The method is used in medicine, archaeology, biology, geophysics, oceanography, materials science, astrophysics and other sciences.

тоноб/тó $\mu о \varsigma$ - slice/section/cutting

- A. Cormack and G. Hounseld built the first computed tomography scanners in 1960s, won 1979 Nobel prize in medicine.

How is it done?

■ CT - Computerized Tomography

- CAT - Comp. Axial Tomo.
- SPECT - Single Particle Emission Tomo.
- PET - Positrion Emission Tomo.
- MRI - Magnetic Resonance Tomo.
- Optical Tomo.
- Thermal Tomo.
- Acoustic Tomo.

Radon Transform

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \vec{\theta} \in S^{n-1}, \quad \rho \in \mathbb{R} \\
& \mathbb{R}[f(\vec{\cdot})](\vec{\theta}, \rho)=\widetilde{f(\cdot)}(\vec{\theta}, \rho)=\widetilde{f}(\vec{\theta}, \rho) \\
& :=\int_{\vec{x} \cdot \vec{\theta}=\rho} f(\vec{x}) d \vec{x}=\int_{\mathbb{R}^{n}} \delta(\vec{x} \cdot \vec{\theta}-\rho) f(\vec{x}) d \vec{x}=\int_{\theta^{\perp}} f(\rho \vec{\theta}+\vec{y}) d \vec{y}
\end{aligned}
$$

Radon Transform in Freq. Domain Projection Slice Thm.

$\mathcal{F}[\tilde{f}(\vec{\theta}, \cdot)](\omega)=\widehat{\tilde{f}(\hat{\theta}, \cdot)}(\omega)=\hat{\tilde{f}}(\vec{\theta}, \omega)$
$=\frac{1}{2 \pi} \int_{\mathrm{R}}^{i p \omega} \tilde{f}(\vec{\theta}, \rho) d \rho=$

$=\frac{1}{2 \pi} \int_{\mathrm{R}^{\prime \prime}} e^{i \omega \bar{\theta} \vec{x}} f(\vec{x}) d \bar{x}=(2 \pi)^{\frac{\mu \pi}{2}} \widehat{f(\vec{F})}(\omega \vec{\theta})$
$\left.\widehat{\tilde{f}(\widehat{\theta}, \cdot)}(\omega)=(2 \pi)^{\frac{\mu t}{2}} \widehat{f(\vec{F}}\right)(\omega \bar{\theta})$

Radon Transform in Freq. Domain Projection Slice Thm.

$$
\widehat{\widetilde{f(\vec{\theta}}, \cdot)}(\omega)=(2 \pi)^{\frac{n-1}{2}} \widehat{f(\vec{\ddots})}(\omega \vec{\theta})
$$

Space Domain

The Backprojection Operator

R was defined on C^{n}. It can be extended to L_{2} (as a bounded operator). Thus there exist an adjoint:

$$
\begin{aligned}
& \mathcal{R}: L_{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{2}\left(S^{n-1} \times \mathbb{R}\right) \\
& \mathbb{R}^{*}: L_{2}\left(S^{n-1} \times \mathbb{R}\right) \rightarrow L_{2}\left(\mathbb{R}^{n}\right) \\
& \mathbb{R}^{*}[g(\cdot, \cdot \cdot)](\vec{x})=\int_{s^{-1}} g(\vec{\theta}, \vec{x} \cdot \vec{\theta}) d \vec{\theta}
\end{aligned}
$$

The Backprojection Operator

$$
\mathbb{R}^{*}[g(\stackrel{\rightharpoonup}{ }, \cdot)](\vec{x})=\int_{S^{n-1}} g(\vec{\theta}, \vec{x} \cdot \vec{\theta}) d \vec{\theta}
$$

So, does it work?

$$
\widehat{\widetilde{f}(\vec{\theta}, \cdot)}(\omega)=\widehat{\widetilde{f}}(\vec{\theta}, \omega)=(2 \pi)^{\frac{n+1}{2}} \hat{f}(\omega \vec{\theta})
$$

$$
\widetilde{f}(\vec{\theta}, \rho)=F^{-1}\left[(2 \pi)^{\frac{n-t}{2}} \widehat{f}(\cdot \vec{\theta})\right](\rho)=(2 \pi)^{-\frac{n}{2}} \int_{-\infty}^{\infty}(2 \pi)^{\frac{n-1}{2}} e^{i \rho \omega} \widehat{f}(\omega \vec{\theta}) d \omega
$$

$$
\mathbb{R}^{*}[\widetilde{f}(\neg, \cdot \cdot)](\vec{x})=\mathbb{R}^{*}\left[(2 \pi)^{-\frac{n}{2}}(2 \pi)^{\frac{n-1}{2}} \int_{-\infty}^{\infty} e^{i(\cdot) \cdot \omega} \widehat{f}(\omega \cdot) d \omega\right](\vec{x})=
$$

$$
\int_{s^{n-1}}\left((2 \pi)^{\frac{n-1}{2}}(2 \pi)^{-\frac{n}{2}} \int_{-\infty}^{\infty} e^{\overline{\bar{x}} \vec{\omega}} \widehat{f}(\omega \vec{\theta}) d \omega\right) d \vec{\theta}=
$$

$$
2(2 \pi)^{\frac{n-1}{2}}(2 \pi)^{-\frac{n}{2}} \int_{s^{n-1}}^{\infty} \int_{0}^{\infty} e^{\vec{u} \vec{x} \omega} \frac{1}{\omega^{n-1}} \hat{f}(\omega \vec{\theta}) \omega^{n-1} d \omega d \vec{\theta}=2(2 \pi)^{\frac{n-1}{2}} F^{-1}\left[\frac{1}{\left.|\cdot|\right|^{n-1}} \hat{f}(\cdot)\right](\vec{x})=
$$

So, does it work?

$$
\mathcal{R}^{*}[\tilde{f}(\bar{f}, \cdot)](\bar{x})=2 \sqrt{2 \pi}\left(\frac{1}{|x|} \otimes f(\bar{x})\right)
$$

Blurring!

Inversion Formula

$$
\begin{aligned}
& f(\vec{x})=\frac{\pi}{(2 \pi)^{n}} \mathbb{R}^{*}\left[\mathcal{H}^{n-1}\left[\frac{\partial^{n-1}}{\partial(\cdots)^{n-1}} \widetilde{f}(\stackrel{\rightharpoonup}{2}, \cdots)\right](\stackrel{\rightharpoonup}{\prime} \cdot \cdot)\right](\vec{x}) \\
& \mathcal{H}[f(\cdot)](s)=\frac{1}{\pi} \int \frac{f(t)}{s-t} d t=f(t) \otimes \frac{1}{\pi t} \quad \widehat{\mathcal{H}[f(\cdot)]}(\omega)=-i \operatorname{sgn}(\omega) \hat{f}(\omega) \\
& \mathcal{H}^{n-1}\left[\frac{\partial^{n-1}}{\partial(\cdot)^{n-1}} \widetilde{f}(\vec{\theta}, \cdot)\right](\omega)=(-i \operatorname{sgn}(\omega))^{n-1} \frac{\partial^{n-1} \widetilde{\partial}(\cdot)^{n-1}}{}(\vec{\theta}, \cdot)(\omega)= \\
& =(-i \operatorname{sgn}(\omega))^{n-1}(2 \pi i \omega)^{n-1} \widehat{\widetilde{f}(\vec{\theta}, \cdot)}(\omega)=(2 \pi)^{n-1}(\omega \operatorname{sgn}(\omega))^{n-1} \widehat{\widetilde{f}}(\vec{\theta}, \omega)=(2 \pi|\omega|)^{n-1} \widehat{\widetilde{f}}(\vec{\theta}, \omega) \\
& \mathcal{H}^{n-1}\left[\frac{\partial^{n-1}}{\partial()^{n-1}} \widetilde{f}(\vec{\theta}, \cdot)\right](\vec{\theta}, s)=(2 \pi)^{n-1} b(s) \otimes \widetilde{f}(\vec{\theta}, s) \\
& b(s)=F^{-1}\left[|\cdot|^{n-1}\right](s)= \begin{cases}i^{n} \sqrt{\frac{2}{\pi}} \frac{\Gamma(n)}{s^{n}} & n \text { even } \\
i^{n-1} \sqrt{2 \pi} \delta^{(n-1)}(s) & n \text { odd }\end{cases}
\end{aligned}
$$

Inversion for 2D and 3D

$$
\begin{aligned}
& f_{2 \mathrm{D}}(\vec{x})=\frac{1}{4 \pi^{2}} \int_{S^{\prime} \mathbb{R}} \frac{\frac{\partial}{\partial \rho} \widetilde{f}(\vec{\theta}, \rho)}{\vec{x} \cdot \vec{\theta}-\rho} d \rho d \vec{\theta} \\
& f_{3 D}(\vec{x})=-\frac{1}{8 \pi^{2}} \int_{s^{2}} \frac{\partial^{2}}{\partial \rho^{2}} \widetilde{f}(\vec{\theta}, \vec{x} \cdot \vec{\theta}) d \vec{\theta}
\end{aligned}
$$

- For 3D inversion, only integrals of plains through x_{0} are needed to reconstruct $f\left(x_{0}\right)$
- For 2D inversion, the entire data of the Radon Transform is needed.

Reconstruction algorithms

Filtered Backprojection
Fourier methods

Filtered Backprojection

$$
\begin{aligned}
& f(\vec{x})=\frac{\pi}{(2 \pi)^{n}} \mathbb{R}^{*}\left[\mathcal{H}^{n-1}\left[\frac{\partial^{n-1}}{\partial(\cdots)^{n-1}} \widetilde{f}(\overrightarrow{2}, \cdots)\right](\overrightarrow{2}, \cdot \cdot)\right](\vec{x}) \\
& \mathcal{H}^{n-1}\left[\frac{\partial^{n-1}}{\partial(\cdot)^{n-1}} \widetilde{f}(\vec{\theta}, \cdot)\right](\vec{\theta}, s)=(2 \pi)^{n-1} b(s) \otimes \widetilde{f}(\vec{\theta}, s) \\
& b(s)=F^{-1}\left[|\cdot|^{n-1}\right](s)= \begin{cases}i^{n} \sqrt{\frac{2}{\pi}} \frac{\Gamma(n)}{s^{n}} & n \text { even } \\
i^{n-1} \sqrt{2 \pi} \delta^{(n-1)}(s) & n \text { odd }\end{cases}
\end{aligned}
$$

Filtered Backprojection

$$
\begin{aligned}
& \mathbb{R}^{*}[\tilde{g}(\neg, \cdot \cdot)](\vec{x}) \otimes f(\vec{x})=\mathbb{R}\left[{ }^{*}[\tilde{g}(\overrightarrow{ }(\cdot \cdot) \otimes \tilde{f}(\vec{\cdot}, \cdot)](\vec{x})\right. \\
& \mathbb{R}^{*}[\tilde{g}(\neg, \cdot \cdot)](\vec{x})=2(2 \pi)^{\frac{n-1}{2}} \mathcal{F}^{-1}\left[\frac{1}{\mid \cdot F^{n-1}} \hat{g}(\cdot)\right](\vec{x}) \\
& \mathbb{R}^{*}[\tilde{g}(\neg, \cdot \cdot)](\vec{x}) \approx \delta(\vec{x}) \Rightarrow \\
& \Rightarrow 2(2 \pi)^{\frac{n-1}{2}} \frac{1}{|\vec{\omega}|^{n-1}} \hat{g}(\vec{\omega}) \approx(2 \pi)^{-\frac{n}{2}} \Rightarrow \\
& \Rightarrow \hat{g}(\vec{\omega}) \approx \frac{(2 \pi)^{\frac{1}{2}-n}}{2}|\vec{\omega}|^{n-1} \Rightarrow \hat{g}(\vec{\omega})=\frac{(2 \pi)^{\frac{1}{2}-n}}{2}|\vec{\omega}|^{n-1} \cdot \text { low_pass_ }_{-} \text {filter }(\vec{\omega})
\end{aligned}
$$

Fourier Methods

$$
\widehat{\widetilde{f}(\vec{\theta}, \cdot)}(\omega)=(2 \pi)^{\frac{n-1}{2}} \widehat{f(\vec{\cdot})}(\omega \vec{\theta})
$$

$$
\widetilde{f}(\vec{\theta}, \rho) \xrightarrow{\mathrm{fft}} \widehat{\widetilde{f}(\vec{\theta}, \cdot)}(\omega)=(2 \pi)^{\frac{n-1}{2}} \widehat{f(\vec{\cdot})}(\omega \vec{\theta}) \xrightarrow{\mathrm{ifft}} f(\vec{x})
$$

$$
\downarrow_{\text {interpolation }}
$$

$$
\widehat{f(\cdot)}(u, v) \quad \xrightarrow{\mathrm{ifft}} f(\vec{x})
$$

Cone-Beam Transform

$$
C[f(\bar{x})](\bar{a}, \vec{\theta})=\int_{0}^{\infty} f(\bar{a}+t \bar{\theta}) d t \quad \vec{\theta} \in S^{2}
$$

Our work was not in vain...

$$
\frac{\partial}{\partial \rho} \widetilde{f}(\vec{\theta}, \vec{a} \cdot \vec{\theta})=\int_{\vec{\theta}^{\star} \cap s^{2}} \frac{\partial}{\partial \vec{\theta}} C[f](\vec{a}, \vec{\phi}) d \vec{\phi}
$$

Kirilov-Tuy Condition

$$
\begin{aligned}
& f_{3 D}(\vec{x})=-\frac{1}{8 \pi^{2}} \int_{s^{2}} \frac{\partial^{2}}{\partial \rho^{2}} \tilde{f}(\theta, \vec{x} \cdot \vec{\theta}) d \vec{\theta}
\end{aligned}
$$

- If each plane through supp(f) intersects the source curve transversally, then f is uniquely (and stably) determined by the Cone-Beam Transform.

Various Problems in Tomography

- Limited Data
- Angular
- Radial
- Local Tomography
- Inner
- Outer
- Noise
- Motion
- reflection
- Other technologies
- MRI
- PET
- Thermal \backslash Acoustic Tomo.

Inner Tomography

- Reducing radiation dosage
- And other costs (money, time) etc.

Outer Tomogrpahy

Metal blocks X-Rays

