Definition 1 Fourier Transform
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Heisenberg Inequality

Let f(x) represent a probability density. Then
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Proof. By the Schwarz inequality
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Laplace Transform

F(s) = £(f)(s) = / f(t)etdt

y+ioco

f@) = QLTFZ / F(s)eftds
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~ is a vertical contour chosen so that all the singularities of F'(s) are to the left
of it.
The Laplace transform is linear

L(af +bg) = aL(f) +bL(g)

Definition 4 fis of exponential order if there exist positive numbers a and M
such that
[F(0)] < Ms*

Theorem 5 If f is piecewise continuous on 0 < t < co and is of exponential
order then L(f) exists for all s > a.
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Note: \Eis not of exponential order because of its behavior near the origin.
However, its Laplace transform exists. Hence the above condition is sufficient
but not necessary.
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L(e™) = /e_(s_“)tdt -1 < 00
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change variables p = st. Then

L(t“):sa+ /pe Pdp = a+1F(a—|—1)
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Theorem 6 Suppose f is continuous on 0 <t < oo and is of exponential order

then L(f) exists for all s > a. Also if f' is piecewise continuous on 0 <t < 0o
and is of exponential order then

L(f)=sL(f) = F0)
L(f) =s"L(f) =" 7Hf(0) = s 2f(0) .~ f D

Proof. integration by parts m



Similarly

L") = I'(n+1) _
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Theorem 7 Suppose f is of exponential order. Let o be a real number and a
the exponential bound. Then for s > a+ «

F(s) = L(f(1))
L (e f(t)) =F(s—a)



Some other Laplace transforms
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Inverse Laplace Transform

Instead of using the exact formula we "guess" the inverse transform.

Examples:
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Comparing with formula for e sin(kt) we see that

£t (4+(321)2> = e’ sin(2t)
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We know that

So
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e Second approach: Using above formulae
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multiple both sides by (s +1)? and evaluate at s = -1 = A, = 3.
multiple both sides by (s+ 1)?and differentiate with respect to s and
evaluate at s = -1 = A; = %

Substitute the values for A; and A and evaluateat s =0 = C =0

multiply both sides by s2 and evaulate at s =00 = B = —%
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As before

Again comparing coefficients we find
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Other properties of the Laplace Transform

Definition 8 Convolution

frg= [ f(t =7)g(r)dr
/

Theorem 9 If f and g are piecewise continuous and of exponential order, then

L(f xg) = L(f)L(g)

Definition 10 Heaviside step function

H(t—a) = 1 ift>a
“ =0 ift<a

So

fit—a) ift>a
0 ift<a

Hit—a)f(t—a)= {
Theorem 11 Shift

LH{E—a)f(t—a))(s) H(t—a)f(t —a)e *'dt = /f(t —a)e dt
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letp=t—a then L(F(t—a)) = /f(t)e_s(p+"')dp
0
=e “F(s)
Definition 12 delta function

Suppose f is continuous in [a,b] then

b

/f(t)5(t—to)dt: {f(tO) if to is in [a,b]

0 otherwise
a

Hence

L(t —t)) = /6(15 Ca)etdt = et if0<a< oo
0
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Applications to ODE/PDE

Consider the heat equation

ou 0%u
E_k@ O0<z<oo 0<t<o0
u(z,0) =0
u(0,t) = f(t)
We Laplace transform in time to get
0*U
sU(z,8) —u(z,0) = kw
2
or ka@% —sU(z,s) =0

This has the solution
U(z,s) = A(s)e\/%x + B(s)e_\/%”
Since the Laplace transform is bounded at infinity we have
U(zx,s) = B(s)ef\/%w
Using the boundary condition at = 0 and denoting the Laplace transform of
f(t) by F(s)
U(0,s) = F(s) = B(s)
So
U(z,s) = F(s)ef\/%x

Using the convolution theorem we have

u(z,t) = f(t)« L7} (e_ %x)

Flt) ¥ e
= f(t) * e 4kt
Akmts
¢
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or wu(z,t)= a: /() e~ = dr

V 4km 0 (t — 7—)%
If f(t) =Tp then

—_ 3’2
e WGE-n) dr

u(zx,t) =

[

T ' 1
mT‘Jlu_T)

Define z = z dr and

2\/E(zt77) and dz = 4Vk(t—7)
t

2 2 T
u(x,t) = —=1¢ e *dz="Tyerfc| —
@t =—=n | ! (2 ﬁkt)

x

2V kt
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Now consider the wave equation

Pu_ o0

wfcagﬂJrf(t) 0<z<oo 0<t<oo
u(z,0) =0
Ou
0)=0
ot (,0)
u(0,t) =0
Again Laplace transform in time yielding
2
s2U(x, s) — su(z,0) — %(z,()) = 02% + F(s)
: 20%U
using the IC we get —c¢"—— +s°U(z,s) = F(s)

Ox?

We now have an inhomogenous second order ODE with constant coefficients.
The general solution is the general solution to the homogenous part plus a
particular solution to the inhomogenous equation.

So the homogenous part gives:

Uhomo = A(S)e_ix + B(S)efr

However, F'(s) is independent of . so a particular solution is U = FS(QS ) So the
general solution is
s s F
Uz, s) = A(s)e™ 5 + B(s)e® + £
s

As before the transform is bounded at infinity and so B(s) =0

Ule,s) = Alg)e#* + T
Using the BC at z =0
0=U(0,s) = A(s) + Fs(;) . As) = _Fs(;)
So
U(z,s) = F;;) (1 _ e—fz)

Again using the convolution theorem

u(z,t) = f(t)« L7} <1e2$>

= )« [t— (= D)HE-2)]
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where H is the Heaviside step function
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Vibrations of a string subject to gravity

If the only force on a string is gravity we have

0%u , 0%u
u(z,0) =0
ou
u(0,t) =0
So
t
T T
u(z,t) = —g/ [T— (r— Z)H(T— E)} dr

If z > ct then 7 — % is always negative and the Heaviside function is zero.

So we only need consider the case © < ct . Then

t t
z _ _ LTy
/(T—Z)H(sz)de/(sz)de2(t c)
0 °
So
—9 (42 — ( — )2 i
(i, t) = 2(215 (t—%)?) Tf0<x<ct
—4t ifx>ct
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Hankel Transform

H,(f)(s) = / T OV usrrdr 530
I

f

| ol < o

0
Then

H(H(1)(s) = £2)
Thus the Hankel transform is its own inverse !
Properties
~sHo(f)(s) = Hu(#)(s)
o (714 1) = st

Hy (f” +1 ) — P H(f)(s)

r

example:
Consider an infinitely long hanging chain fastened at oo.
We label the vertical axis as x pointing up.
The free motion of the chain is described by

9%u 9%u  Ou
=g + O0<z<oo O0<t<oo

a2~ 9 |"0a2 T Bz
u(z,0) = f(z)
%(xﬂ) = v(x)
Change variables
2=z so  2zdz =dx
Then
Pu g [0*u 10u
81&2:4[(’9224_2(‘32} O0<z<oo 0<t<@
u(:2,0) = £(:2)
S0 = o)
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Denote the zeroeth order Hankel transform of u(z2,t) by U(s,t).
Then we transform the equations to get

PU _ s’ %u
otz 4 Ox2
U(s,0) = Ho(f(2%))

U )
G (5:0) = Ho(v(=*)

As in the previous cases we solve the second order ODE to get

Ul(s,t) = A(s) cos(gst) + B(s) sin(gst)
2
R

Using the inverse transform we get

A(s) = Ho(f(2)  Bl(s) Ho(v(2%))

u(z,t) = /000 [A(s) cos(gst) + B(s) sin(gst) Jo(sv/r)sds
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