
7 Wave Equation in Higher Dimensions

We now consider the initial-value problem for the wave equation in n dimensions,




utt − c2∆u = 0 x ∈ Rn

u(x, 0) = φ(x)
ut(x, 0) = ψ(x)

(7.1)

where ∆u ≡ ∑n
i=1 uxixi

.

7.1 Method of Spherical Means

Ref: Evans, Sec. 2.4.1; Strauss, Sec. 9.2
We begin by introducing a method to solve (7.1) in odd dimensions. First, we introduce

some notation. For x ∈ Rn, let

• B(x, r) = Ball of radius r about x

• ∂B(x, r) = Boundary of ball of radius r about x

• α(n) = Volume of unit ball in Rn

• nα(n) = Surface Area of unit ball in Rn.

With this notation, the volume of the ball of radius r about x ∈ Rn, written as Vol(B(x, r)),
is given by α(n)rn and the surface area of the ball of radius r about x ∈ Rn, written as
S.A.(B(x, r)), is given by nα(n)rn−1.

For f : Rn → R, we define the average of f over B(x, r) as

−
∫

B(x,r)

f(y) dy ≡ 1

Vol(B(x, r))

∫

B(x,r)

f(y) dy =
1

α(n)rn

∫

B(x,r)

f(y) dy.

We define the average of f over ∂B(x, r) as

−
∫

∂B(x,r)

f(y) dS(y) ≡ 1

S.A.(B(x, r))

∫

∂B(x,r)

f(y) dS(y) =
1

nα(n)rn−1

∫

∂B(x,r)

f(y) dS(y),

where dS(y) denotes the surface measure of B(x, r) in Rn.

Example 1. For n = 3, Vol(B(x, r)) = 4
3
πr3. Therefore, for f : R3 → R, the average of f

over B(0, r) is given by

−
∫

B(0,r)

f(y) dy =
3

4πr3

∫ π

0

∫ 2π

0

∫ r

0

f(ρ, θ, φ)ρ2 sin φ dρ dθ dφ.

For n = 3, S.A.(B(x, r)) = 4πr2. Therefore, for f : R3 → R, the average of f over ∂B(0, r)
is given by

−
∫

∂B(0,r)

f(y) dS(y) =
1

4πr2

∫ π

0

∫ 2π

0

f(r, θ, φ)r2 sin φ dθ dφ =
1

4π

∫ π

0

∫ 2π

0

f(r, θ, φ) sin φ dθ dφ.

¦
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Our plan to solve (7.1) is the following. Fix a point x ∈ Rn. For r > 0, we define

u(x; r, t) ≡ −
∫

∂B(x,r)

u(y, t) dS(y),

the average of u(·, t) over ∂B(x, r). For r = 0, we define u(x; 0, t) = u(x, t). For r < 0, we
define u(x; r, t) = u(x;−r, t). We claim that for u smooth, u is a continuous function of r,
and, therefore,

lim
r→0+

u(x; r, t) = u(x, t).

In order to solve (7.1), we will assume u is a solution of (7.1) and look for an equation u
solves. Note: We will assume c = 1. For c 6= 1, we can make a change of variables to derive
the solution from the solution in the case c = 1.

Lemma 2. If u solves 



utt −∆u = 0, x ∈ Rn, t ≥ 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x),

then u(x; r, t) solves





utt − urr − (n− 1)

r
ur = 0, 0 < r < ∞, t ≥ 0

u(x; r, 0) = φ(x; r) ≡ −
∫

∂B(x,r)

φ(y) dS(y)

ut(x; r, 0) = ψ(x; r) ≡ −
∫

∂B(x,r)

ψ(y) dS(y)

for every x ∈ Rn.

Proof.

u(x; r, t) = −
∫

∂B(x,r)

u(y, t) dS(y)

= −
∫

∂B(0,1)

u(x + rz, t) dS(z).
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Therefore,

ur(x; r, t) = −
∫

∂B(0,1)

∇u(x + rz, t) · z dS(z)

= −
∫

∂B(x,r)

∇u(y, t) · y − x

r
dS(y)

= −
∫

∂B(x,r)

∂u

∂ν
(y, t) dS(y)

=
1

nα(n)rn−1

∫

∂B(x,r)

∂u

∂ν
(y, t) dS(y)

=
1

nα(n)rn−1

∫

B(x,r)

∆u(y, t) dy

=
1

nα(n)rn−1

∫

B(x,r)

utt(y, t) dy

by the Divergence Theorem, and using the fact that u solves the wave equation, utt−∆u = 0.
Therefore,

ur(x; r, t) =
1

nα(n)rn−1

∫

B(x,r)

utt(y, t) dy

which implies

rn−1ur(x; r, t) =
1

nα(n)

∫

B(x,r)

utt(y, t) dy.

Therefore,

(rn−1ur(x; r, t))r =
1

nα(n)

∫

∂B(x,r)

utt(y, t) dS(y)

=
rn−1

nα(n)rn−1

∫

∂B(x,r)

utt(y, t) dS

= rn−1 −
∫

∂B(x,r)

utt(y, t) dS(y)

= rn−1utt(x; r, t).

Therefore,
(rn−1ur(x; r, t))r = rn−1utt(x; r, t),

which implies
(n− 1)rn−2ur + rn−1urr = rn−1utt.

Therefore,

utt − urr − (n− 1)

r
ur = 0
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and

u(x; r, 0) = −
∫

∂B(x,r)

u(y, 0) dS = −
∫

∂B(x,r)

φ(y) dS = φ(x; r).

Similarly,
ut(x; r, 0) = ψ(x; r)

as claimed. ¤
Solution for n = 3.

We now consider the case of the wave equation in three dimensions. Assume u is a
solution of (7.1) for n = 3. As before define the function u(x; r, t) such that

u(x; r, t) = −
∫

∂B(x,r)

u(y, t) dS(y).

Next introduce a function v(x; r, t) such that

v(x; r, t) = ru(x; r, t)

and new functions g(x; r) and h(x; r) such that

g(x; r) = rφ(x; r) = r −
∫

∂B(x,r)

φ(r) dS(y)

h(x; r) = rψ(x; r) = r −
∫

∂B(x,r)

ψ(r) dS(y).

Lemma 3. For each x ∈ Rn, the function v(x; r, t) solves the one-dimensional wave equation
on the half-line with Dirichlet boundary conditions,





vtt − vrr = 0 0 < r < ∞, t ≥ 0
v(x; r, 0) = g(x; r) 0 < r < ∞
vt(x; r, 0) = h(x; r) 0 < r < ∞
v(x; 0, t) = 0 t ≥ 0.

Proof.

vtt = rutt

= r

[
urr +

2

r
ur

]

= rurr + 2ur

= (rur + u)r

= (ru)rr

= vrr.
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Next,

v(x; r, 0) = ru(x; r, 0)

= r −
∫

∂B(x,r)

u(y, 0) dS(y)

= r −
∫

∂B(x,r)

φ(y) dS(y)

= rφ(x, r)

= g(x; r)

Similarly,
vt(x; r, 0) = h(x; r).

Now,
v(x; 0, t) = 0 · u(x; 0, t) = 0.

Therefore, v(x; r, t) solves the one-dimensional wave equation on a half-line with Dirichlet
boundary conditions, as claimed.

Now we use this fact to construct the solution of (7.1). By d’Alembert’s formula, we
know that for 0 ≤ r ≤ t, the solution v(x; r, t) is given by

v(x; r, t) =
1

2
[g(x; r + t)− g(x; t− r)] +

1

2

∫ r+t

−r+t

h(x; y) dy.

Now
u(x, t) = lim

r→0+
u(x; r, t)

and
v(x; r, t) = ru(x; r, t).

Therefore,

u(x, t) = lim
r→0+

v(x; r, t)

r

= lim
r→0+

{
1

2r
[g(x; t + r)− g(x; t− r)] +

1

2r

∫ r+t

−r+t

h(x; y) dy

}

=
d

dt
g(x; t) + h(x; t).

Now
g(x; r) = rφ(x; r)

implies

g(x; t) = tφ(x; t) = t−
∫

∂B(x,t)

φ(y) dS(y).

Similarly,

h(x; t) = tψ(x; t) = t−
∫

∂B(x,t)

ψ(y) dS(y).
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Therefore, the solution of the wave equation in R3 (with c = 1) is given by

u(x, t) =
∂

∂t

[
t−
∫

∂B(x,t)

φ(y) dS(y)

]
+ t−

∫

∂B(x,t)

ψ(y) dS(y).

If φ is smooth, the solution can be simplified further. In particular, for φ smooth, we
have

d

dt
g(x; t) =

d

dt

(
t−
∫

∂B(x,t)

φ(y) dS(y)

)

=
d

dt

(
t−
∫

∂B(0,1)

φ(x + tz) dS(z)

)

= −
∫

∂B(0,1)

φ(x + tz) dS(z) + t

∫

∂B(0,1)

∇φ(x + tz) · z dS(z)

= −
∫

∂B(x,t)

φ(y) dS(y) + t−
∫

∂B(x,t)

∇φ(y) ·
(

y − x

t

)
dS(y)

= −
∫

∂B(x,t)

φ(y) dS(y) +−
∫

∂B(x,t)

∇φ(y) · (y − x) dS(y).

And,

h(x; t) = tψ(x; t) = t−
∫

∂B(x,t)

ψ(y) dS(y).

Therefore, we have

u(x, t) = −
∫

∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y).

We note that in R3,

−
∫

∂B(x,t)

=
1

nα(n)tn−1

∫

∂B(x,t)

=
1

4πt2

∫

∂B(x,t)

.

Therefore, the solution of the IVP for the wave equation in R3 (with c = 1 and φ smooth)
is given by

u(x, t) =
1

4πt2

∫

∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y). (7.2)

This is known as Kirchoff’s formula for the solution of the initial value problem for the
wave equation in R3.

Remark. Above we found the solution for the wave equation in R3 in the case when c = 1.
If c 6= 1, we can simply use the above formula making a change of variables. In particular,
consider the initial-value problem





vtt − c2∆v = 0 x ∈ Rn

v(x, 0) = φ(x)

vt(x, 0) = ψ(x).

(7.3)
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though a point, its information is immediately forgotten. This property, the
strong version of Huygens’ principle, is valid not only for n = 3, but in all odd-
dimensional spaces. It does not apply, however, to the wave equation in spaces
of even dimensionality. There, even though information still propagates at speed
one, it does not do it through sharp fronts, leaving instead a trace behind as it
passes through a point. Hence, when a tsunami shakes the (2D) ocean, it leaves
significant wave action behind its leading front. We shall see now that this is
the case in two dimensions, through an application of Hadamard’s method of

descent. The same methodology applies in all even dimensions n = 2d, once we
have the general solution to the initial value problem in the odd-dimensional
space n = 2d+ 1.

3.5 The method of descent

The method of descent, also due to Hadamard, consists simply in thinking of
any solution to the wave equation in even (n = 2d) dimensions as a solution in
one more dimension which does not depend on one of the space variables. In
two dimensions, in particular, we can write

u(x, y, t) = ũ(x, y, z, t) ,

where ũ is a solution to the three–dimensional wave equation with initial data
that do not depend on z:

ũ(x, y, z, 0) = g̃(x, y, z) = g(x, y) , ũt(x, y, z, 0) = h̃(x, y, z) = h(x, y) .

For ũ we have the exact formula (53), so the same applies to u. However, by
definition, the corresponding G̃(x, r) and H̃(x, r) are the spherical means over
three–dimensional balls of functions g̃(x) and h̃(x) that do not depend on z.
Then we have

G̃(x, r) =

∫

B(x,r)

g̃(s) dSr =

∫

S(x,r)

g(s)J dA ,

where B is the surface of a three–dimensional sphere, S is the surface of a
two–dimensional circle, and J is the Jacobian

J =
r

|s− x|

that projects one area element onto the other. For our purposes, it is enough
to notice that now the formula for u involves integrals over the interior of
circles of radius t, not just their circumference. Hence the strong version of
Huygens principle does not apply in two dimensions: the solution to the wave
equation at point x and time t depends on all the initial data within a circle of
radius t around x, not just on their values and derivatives on the circumference
|y − x| = t.
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Suppose v is a solution of (7.3). Then define u(x, t) ≡ v(x, 1
c
t). Then

utt −∆u =
1

c2
vtt −∆v = 0

implies u is a solution of 



utt − uxx = 0 x ∈ Rn

u(x, 0) = φ(x)

ut(x, 0) =
1

c
ψ(x).

Therefore, u is given by Kirchoff’s formula above. Now by making the change of variables
t̃ = 1

c
t, we see that

v(x, t̃) = u(x, ct̃),

and we arrive at the solution for (7.3),

v(x, t) =
1

4πc2t2

∫

∂B(x,ct)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y).

7.2 Method of Descent

In this section, we use Kirchoff’s formula for the solution of the wave equation in three
dimensions to derive the solution of the wave equation in two dimensions. This technique
is known as the method of descent. This technique can be used in general to find the
solution of the wave equation in even dimensions, using the solution of the wave equation in
odd dimensions.
Solution for n = 2.

Suppose u is a solution of the initial value problem for the wave equation in two dimen-
sions, 




utt −∆u = 0, x ∈ R2, t ≥ 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x).

We will find a solution in the 2-D case, by using the solution to the 3-D problem. Let
u(x1, x2, t) be the solution to the 2-D problem. Define

ũ(x1, x2, x3, t) ≡ u(x1, x2, t).

Therefore,

ũ(x1, x2, x3, 0) ≡ u(x1, x2, 0) = φ(x1, x2)

ũt(x1, x2, x3, 0) ≡ u(x1, x2, 0) = ψ(x1, x2).

Clearly, ũ(x1, x2, x3, t) is a solution of the 3D wave equation with initial data φ(x1, x2) and
ψ(x1, x2), 




ũtt − ũx1x1 − ũx2x2 − ũx3x3 = 0

ũ(x1, x2, x3, 0) = φ̃(x1, x2, x3) = φ(x1, x2)

ũt(x1, x2, x3, 0) = ψ̃(x1, x2, x3) = ψ(x1, x2).
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Now we can solve the 3D wave equation using Kirchoff’s formula. In particular, our
solution is given by

ũ(x1, x2, 0, t) = −
∫

∂B(x,t)

[φ̃(y) +∇φ̃(y) · (y − x) + tψ̃(y)] dS(y)

where B(x, t) is the ball of radius t in R3 about the point x = (x1, x2, 0). Now we note that

−
∫

∂B(x,t)

φ̃(y) dS(y) =
1

4πt2

∫

∂B(x,t)

φ̃(y) dS(y)

=
1

2πt2

∫

B(x,t)

φ(y)(1 + |∇γ(y)|2)1/2 dy

where B(x, t) is the ball in R2 of radius t about the point x = (x1, x2) and γ(y) = (t2− |y−
x|2)1/2. Therefore,

∇γ(y) = − y − x

(t2 − |y − x|2)1/2

which implies

(1 + |∇γ(y)|2)1/2 =

(
t2

t2 − |y − x|2
)1/2

.

Therefore,

−
∫

∂B(x,t)

φ̃(y) dS(y) =
1

2πt2

∫

B(x,t)

tφ(y)

(t2 − |y − x|2)1/2
dy.

Similarly,

−
∫

∂B(x,t)

tψ̃(y) dS(y) =
1

2πt2

∫

B(x,t)

t2ψ(y)

(t2 − |y − x|2)1/2
dy

and

−
∫

∂B(x,t)

∇φ̃(y) · (y − x) dS(y) =
1

2πt2

∫

B(x,t)

t∇φ(y) · (y − x)

(t2 − |y − x|2)1/2
dy.

Therefore, the solution of the initial-value problem for the wave equation in R2 (with c = 1)
is given by

u(x, t) =
1

2πt2

∫

B(x,t)

tφ(y) + t2ψ(y) + t∇φ(y) · (y − x)

(t2 − |y − x|2)1/2
dy. (7.4)

Again, by making a change of variables, we see that the solution of the wave equation in
two dimensions is given by

u(x, t) =
1

2πc2t2

∫

B(x,ct)

ctφ(y) + ct2ψ(y) + ct∇φ(y) · (y − x)

(c2t2 − |y − x|2)1/2
dy.

8



7.3 Huygen’s Principle

Note that for the initial-value problem for the wave equation in three dimensions, the value
of the solution at any point (x, t) ∈ R3×(0,∞) depends only on the values of the initial data
on the surface of the ball of radius ct about the point x ∈ R3; that is, on ∂B(x, ct). That is
to say, disturbances all travel at exactly speed c. This is known as Huygens’s principle.
In contrast, in two dimensions, the value of the solution u at the point (x, t) depends on the
initial data within the ball of radius ct about the point x ∈ R2. Signals don’t all travel at
speed c. In fact, as we will see, for n ≥ 3 and odd, Huygens’s principle holds. That is, all
signals travel at exactly speed c. In even dimensions, however, that is not the case.

7.4 Wave Equation in Rn, n > 3

Ref: Evans, Sec. 2.4.1
Note: In this section, we assume c = 1. For c 6= 1, we can make a change of variables to

find the solution.

Odd dimensions.
For the case of odd dimensions, we use the method of spherical means as we did for the

case of n = 3. Let n = 2k + 1. Let x ∈ Rn. Define

v(x; r, t) ≡
(

1

r

∂

∂r

)k−1

(r2k−1u(x; r, t))

g(x; r) ≡
(

1

r

∂

∂r

)k−1

(r2k−1φ(x; r))

h(x; r) ≡
(

1

r

∂

∂r

)k−1

(r2k−1ψ(x; r)).

Notice that for k = 1, these definitions reduce to those functions introduced in the case
n = 3.

First, we will show that v(x; r, t) solves the wave equation on the half-line with Dirichlet
boundary conditions.

Lemma 4. For each integer k ≥ 1, for each x ∈ Rn, the function v(x; r, t) defined above
solves 




vtt − vrr = 0 r > 0

v(x; r, 0) = g(x; r)

vt(x; r, 0) = h(x; r)

v(x; 0, t) = 0.

The proof relies on the following lemma.

Lemma 5. Let φ : R→ R be Ck+1. Then for k = 1, 2, . . .

1. (
d2

dr2

)(
1

r

d

dr

)k−1 (
r2k−1φ(r)

)
=

(
1

r

d

dr

)k (
r2k dφ

dr
(r)

)
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15. Wave equationOne of the \holy Trinity" of partial di�erential equations is the second{order wave equation, thecanonical example of a hyperbolic PDE. In n dimensions the equation takes the formutt = �u; (1)where � is the Laplacian operator, @2=@x21 + � � � + @2=@x2n. A wave speed c can be included by afactor c2 on the right-hand side. Since (1) is of second order in t, a well-posed initial-value problemfor this equation would normally involve two initial conditions such as u(x; 0) and ut(x; 0).
t = 2Fig. 1: Propagationof a circular pulset = 0

The wave equation describes linear, nondispersive wave propa-gation. For example, Figure 1 presents a pair of imagesthat show the outward spread of a circular pulsein 2D. At t = 0 we begin with a coneof radius 0:1 with ut(0) = 0.At t = 2, the cone has spreadto a concentric ring ofouter radius ex-actly 2:1.
The wave equation arises in numerous applications. The classical 1D example is the vibration of anideal string (! ref ), and in 2D this becomes the vibration of an ideal membrane or drum (! ref ).In 3D, the most famous example is the propagation of sound waves in a gas or liquid. Indeed,equation (1) is often called the acoustic wave equation to distinguish it from the more complicatedelastic wave equation (! ref ), where the presence of sti�ness as well as compressibility leads tothe appearance of two distinct kinds of waves.Being hyperbolic, the wave equation has �nite speed of propagation for all information|namely 1,for the equation as written in (1). A curious property known as Huygens' principle is as follows.In dimensions n = 3; 5; 7; 9; : : : ; all information propagates under (1) at speed exactly 1, neverslower. Thus, the light from a bulb ashed at t = 0 passes the observer at a later time as a puredelta function. In dimensions n = 1; 2; 4; 6; 8; : : : ; on the other hand, a �nite fraction of the energymay travel more slowly than at speed 1, so the observer sees a delta function ash followed by adecaying tail. To illustrate this phenomenon, Figure 2 shows the result at time t = 1 of the initialcondition ut(x; 0) = maxf0; 1 � 10jxjg in dimensions 1; 2; 3; 4; 5; 6, where jxj = (x21 + � � �+ x2n)1=2.In an unbounded domain, the wave equation is readily investigated by Fourier analysis. Separationof variables leads to the observation that for any n-vector k, known as the wave number, there are28 February 2001: Kathryn Harriman and Nick Trefethen

propagation of light and soundPSfrag replacements n = 1 n = 2n = 3 n = 4n = 5 n = 6

jxj = 0 !
Fig. 2: Huygens' principle: zero tails in odd dimensions n � 3plane wave solutions of (1) of the form u(x; t) = ei(!t+k�x); (2)where k � x = k1x1 + � � �+ knxn, so long as ! = �jkj. This condition relating the frequency to thewave number is the dispersion relation for (1). By a Fourier integral, general solutions to (1) canbe obtained by the superposition of plane waves (2), and under suitable technical assumptions, allsolutions can be written this way.In a bounded domain 
, separation of variables in (1) leads to oscillatory solutions of the formei!jt�j(x), where the functions �j(x) are eigenfunctions of the Laplacian operator for 
 (! ref ).The allowed frequencies !j now belong to a discrete set, and general solutions can be obtained viasuperpositions as series rather than integrals. If 
 is a rectangle, a disk, or a ball, the eigenfunctionsare trigonometric functions, Bessel functions, or spherical harmonics, respectively.Another technique in the study of the wave equation is Hadamard's method of descent. The ideahere is that any solution in dimension n can be thought of as a solution in dimension n + 1 thathappens to be invariant with respect to one coordinate. In particular, solutions in even dimensionscan be obtained from solutions in the odd dimension one higher, which are relatively elementarysuperpositions of expanding spheres thanks to Huygens' principle.In applications of the wave equation, boundaries and variable coe�cients are important, includingdiscontinuities in the sound speed. Among the phenomena that arise are reection, refraction, anddi�raction. Just as the �eld of uid mechanics can be described without too much exaggerationas the study of the Navier{Stokes equations (! ref ), so the �eld of acoustics is more or less thestudy of the wave equation. There are enough subtleties here to �ll books, and careers|even if wecon�ne our attention to the fascinating sub�eld of the physics of musical instruments.ReferencesN. H. Fletcher and T. D. Rossing, The physics of musical instruments, Springer-Verlag, 1991.G. B. Folland, Introduction to partial di�erential equations, Princeton, 1976.F. John, Partial di�erential equations, Springer-Verlag, 1982.P. M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill, 1953.Lord Rayleigh, The theory of sound , 2 vols., Dover, 1945. c1999



2. (
1

r

d

dr

)k−1 (
r2k−1φ(r)

)
=

k−1∑
j=0

βk
j rj+1djφ

drj
(r)

where each βk
j is independent of φ.

3.
βk

0 = 1 · 3 · 5 · · · (2k − 1).

Proof. Use induction.

Proof of Lemma 4.

vrr = ∂2
r

[(
1

r

d

dr

)k−1

(r2k−1u(x; r, t))

]

=

(
1

r

d

dr

)k

(r2kur(x; r, t)) by Lemma 5

=

(
1

r

d

dr

)k−1 (
1

r

d

dr

)
(r2kur(x; r, t))

=

(
1

r

d

dr

)k−1 (
1

r
[2kr2k−1ur + r2kurr]

)

=

(
1

r

d

dr

)k−1 (
r2k−1

[
2k

r
ur + urr

])

=

(
1

r

d

dr

)k−1 (
r2k−1

[
n− 1

r
ur + urr

])

=

(
1

r

d

dr

)k−1 (
r2k−1utt

)

= ∂2
t

(
1

r

d

dr

)k−1 (
r2k−1utt

)

= vtt

Clearly, v(x; r, 0) = g(x; r), vt(x; r, 0) = h(x; r) and v(x; 0, t) = 0. Therefore, the lemma is
proved. ¤

Now v(x; r, t) is a solution of the one-dimensional wave equation on the half-line with
Dirichlet boundary condition implies for 0 ≤ r ≤ t, the solution is given by

v(x; r, t) =
1

2
[g(x; r + t)− g(x; t− r)] +

1

2

∫ t+r

t−r

h(x; y) dy.

Recall:
u(x, t) = lim

r→0
u(x; r, t).
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Now

v(x; r, t) =

(
1

r

d

dr

)k−1 (
r2k−1u(x; r, t)

)

=
k−1∑
j=0

βk
j rj+1 ∂j

∂rj
u(x; r, t)

= βk
0ru(x; r, t) + βk

1r2ur(x; r, t) + . . . + βk
k−1r

k ∂k−1

∂rk−1
u(x; r, t).

Therefore,

βk
0ru(x; r, t) = v(x; r, t)− βk

1r2ur(x; r, t)− . . .− βk
k−1r

k ∂k−1

∂rk−1
u(x; r, t),

which implies

u(x; r, t) =
v(x; r, t)

βk
0r

− βk
1

βk
0

rur(x; r, t)− . . .− βk
k−1

βk
0

rk−1 ∂k−1

∂rk−1
u(x; r, t).

Therefore,

u(x, t) = lim
r→0

[
v(x; r, t)

βk
0r

− βk
1

βk
0

rur(x; r, t)− . . .− βk
k−1

βk
0

rk−1 ∂k−1

∂rk−1
u(x; r, t)

]

= lim
r→0

v(x; r, t)

βk
0r

= lim
r→0

1

βk
0

[
g(x; t + r)− g(x; t− r)

2r
+

1

2r

∫ t+r

t−r

h(x; y) dy

]

=
1

βk
0

[∂tg(x; t) + h(x; t)]

where βk
0 = 1 · 3 · 5 · · · (2k − 1). Recall

g(x; r) =

(
1

r

∂

∂r

)k−1

(r2k−1φ(x; r)).

Now n = 2k + 1 implies k = (n− 1)/2, and, therefore,

g(x; t) =

(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

φ(y) dS(y)

)
.

And,

h(x; r) =

(
1

r

∂

∂r

)k−1

(r2k−1ψ(x; r)).

Therefore,

h(x; t) =

(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

ψ(y) dS(y)

)
.
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Therefore,

u(x, t) =
1

γn

[∂tg(x; t) + h(x; t)]

implies

u(x, t) =
1

γn

(
∂

∂t

)(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

φ(y) dS(y)

)

+
1

γn

(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

ψ(y) dS(y)

)

where γn = 1 · 3 · 5 · · · (n− 2).

Even dimensions.
As in the case of n = 2 dimensions, we use the method of descent. In particular, suppose

u(x1, . . . , xn, t) is a solution of the wave equation in Rn with initial data u(x1, . . . , xn, 0) =
φ(x1, . . . , xn) and ut(x1, . . . , xn, 0) = ψ(x1, . . . , xn). Then define

ũ(x1, . . . , xn+1, t) ≡ u(x1, . . . , xn, t)

φ̃(x1, . . . , xn+1) ≡ φ(x1, . . . , xn)

ψ̃(x1, . . . , xn+1) ≡ ψ(x1, . . . , xn).

Therefore, ũ is a solution of the wave equation in Rn+1, where now n + 1 is odd. Therefore,
from the formula above for the case when the dimension is odd, our solution at the point
(x, t) = (x1, . . . , xn, 0, t) is given by

ũ(x, t) =
1

γn+1

(
∂

∂t

) (
1

t

∂

∂t

)n−2
2

(
tn−1 −

∫

∂B(x,t)

φ̃(y) dS(y)

)

+
1

γn+1

(
1

t

∂

∂t

)n−2
2

(
tn−1

∮

∂B(x,t)

ψ̃(y) dS(y)

)

where γn+1 = 1 · 3 · 5 · · · (n− 1), and where B(x, t) is the ball in Rn+1 of radius t about the
point x = (x1, . . . , xn, 0).

Now,

−
∫

∂B(x,t)

φ̃(y) dS(y) =
1

(n + 1)α(n + 1)tn

∫

∂B(x,t)

φ̃(y) dS(y).

But, notice ∂B(x, t)∩{yn+1 ≥ 0} is the graph of the function γ(y) ≡ (t2−|y−x|2)1/2. And,
similarly, ∂B(x, t) ∩ {yn+1 ≤ 0} is the graph of −γ. Therefore,

1

(n + 1)α(n + 1)tn

∫

∂B(x,t)

φ̃(y) dS(y) =
2

(n + 1)α(n + 1)tn

∫

B(x,t)

φ(y)(1 + |∇γ(y)|2)1/2 dy

Now
(1 + |∇γ(y)|2)1/2 = t(t2 − |y − x|2)−1/2.
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Therefore,

−
∫

∂B(x,t)

φ̃(y) dS(y) =
2

(n + 1)α(n + 1)tn

∫

B(x,t)

tφ(y)

(t2 − |y − x|2)1/2
dy

=
2tα(n)

(n + 1)α(n + 1)α(n)tn

∫

B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy

=
2tα(n)

(n + 1)α(n + 1)
−
∫

B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy.

Therefore, our solution formula is given by

u(x, t) =
1

γn+1

(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn−1 −

∫

∂B(x,t)

φ̃(y) dS(y)

)

+
1

γn+1

(
1

t

∂

∂t

)n−2
2

(
tn−1 −

∫

∂B(x,t)

ψ̃(y) dS(y)

)

=
1

γn+1

· 2α(n)

(n + 1)α(n + 1)

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn −

∫

∂B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy

)

+

(
1

t

∂

∂t

)n−2
2

(
tn −

∫

∂B(x,t)

ψ(y)

(t2 − |y − x|2)1/2
dy

)]
.

Now γn+1 = 1 · 3 · 5 · · · (n− 1) and

α(n) =
πn/2

Γ
(

n+2
2

) ,

where Γ(n) is the gamma function,

Γ(n) =

∫ ∞

0

e−xxn−1 dx.

Therefore,

1

γn+1

· 2α(n)

(n + 1)α(n + 1)
=

1

1 · 3 · 5 · · · (n− 1)
·

2 πn/2

Γ(n+2
2

)

(n + 1)π(n+1)/2

Γ(n+3
2

)

=
1

1 · 3 · 5 · · · (n + 1)
· 1

π1/2
· Γ(n+3

2
)

Γ(n+2
2

)
.

Using properties of the gamma function, namely that

Γ(m + 1) = mΓ(m)

and
Γ(1/2) = π1/2,
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we can conclude that

Γ

(
n + 3

2

)
=

(
n + 1

2

)
·
(

n− 1

2

)
· · ·

(
1

2

)
Γ

(
1

2

)

and

Γ

(
n + 2

2

)
=

(n

2

)
·
(

n− 2

2

)
· · ·

(
2

2

)
.

And, therefore,
1

γn+1

· 2α(n)

(n + 1)α(n + 1)
=

1

2 · 4 · · · (n− 2) · n
Therefore, the solution of the wave equation in even dimensions is given by

u(x, t) =
1

γn

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn −

∫

B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy

)

+

(
1

t

∂

∂t

)n−2
2

(
tn −

∫

B(x,t)

ψ(y)

(t2 − |y − x|2)1/2
dy

)]

where γn ≡ 2 · 4 · · · (n− 2) · n.

7.5 Wave Equation in Rn with a source.

In this section, we consider the inhomogeneous wave equation in Rn. First, recall Duhamel’s
Principle. If S(t) is the solution operator for the first-order initial-value problem

{
Ut + AU = 0

U(0) = Φ,

then the solution of the inhomogeneous problem

{
Ut + AU = F

U(0) = Φ

“should” be given by

U(t) = S(t)Φ +

∫ t

0

S(t− s)F (s) ds.

Now consider the initial-value problem for the wave equation in Rn,





utt −∆u = f(x, t) x ∈ Rn

u(x, 0) = φ(x)

ut(x, 0) = ψ(x).

(7.5)
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