
Summary Wiener Filter
• The Wiener filter is the MSE-optimal stationary linear

filter for images degraded by additive noise and blurring. 
• Calculation of the Wiener filter requires the assumption 

that the signal and noise processes are second-order 
stationary (in the random process sense).

• Wiener filters are often applied in the frequency domain. 
Given a degraded image x(n,m), one takes the Discrete 
Fourier Transform (DFT) to obtain X(u,v). The original 
image spectrum is estimated by taking the product of 
X(u,v) with the Wiener filter G(u,v): 



The inverse DFT is then used to obtain the image estimate from its spectrum. 
The Wiener filter is defined in terms of these spectra:

The Wiener filter is: 

Dividing through by   makes its behaviour easier to explain: 



Dividing through by   

The term   can be interpreted as the reciprocal of the signal-to-noise ratio. 
Where the signal is very strong relative to the noise,   and the 
Wiener filter becomes   - the inverse filter for the PSF. Where the 
signal is very weak,   and   . 



• For the case of additive white noise and 
no blurring, the Wiener filter simplifies to: 

•
• where         is the noise variance. 

Wiener filters are unable to reconstruct
frequency components which have 
been degraded by noise. 



• They can only suppress them. Also, 
Wiener filters are unable to restore 
components for which H(u,v)=0. This 
means they are unable to undo blurring 
caused by bandlimiting of H(u,v). Such 
bandlimiting which occurs in any real-
world imaging system.



Steps

Obtaining     can be problematic. 
• One can assume      has a parametric 

shape, for example exponential or 
Gaussian. 

• Alternately,     can be estimated using 
images representative of the class of 
images being filtered.  



• Wiener filters are comparatively slow to apply, 
since they require working in the frequency 
domain. 

• To speed up filtering, one can take the inverse 
FFT of the Wiener filter G(u,v) to obtain an 
impulse response g(n,m). 

• This impulse response can be truncated 
spatially to produce a convolution mask. The 
spatially truncated Wiener filter is inferior to the 
frequency domain version, but may be much 
faster. 



Constrained Optimisation

• The algebraic framework can be used to develop a 
family of image restoration methods based on 
optimisation. Imposing appropriate constraints on the 
optimisation allows us to control the characteristics of the 
resulting estimate in order to enhance its quality.  The 
degradation model is the same: an LSI degradation and 
additive noise:

• Suppose we apply an LSI filter H to f and obtain an 
estimate g: .  Noting that the noise energy can be 
written as    
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Filter Design Under Noise 
Constraints

• we would expect that a good estimate 
would satisfy the condition .
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A simple optimisation strategy would be to assume that the noise is low energy and simply 

choose the estimate that minimises 
2
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Minimum Noise Assumption

Setting to zero and solving for g, we obtain what is known as the unconstrained optimisation 

estimate: 
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This is the familiar inverse filter, the deterministic solution, appropriate for the zero noise case, 

but exacerbating any high frequency noise.   

To avoid this result, the constrained optimisation approach introduces a new criterion, 
2)( Qgg =J  which is to be minimised subject to the noise energy constraint, 
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The criterion matrix Q is an LSI system chosen to select for the undesirable components of the 
estimate.   



.  If Q is high pass in nature, the estimate will be smoother than an unconstrained result. 
 

Our problem can now be formalised as a classical constrained optimisation problem that can be 
solved using the method of Lagrange.  

We want to minimise
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• The method of Lagrange augments the 
criterion with a term incorporating the 
constraint multiplied by a constant:
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• Now, we take the derivative with respect to 
g and set to zero, which gives us an 
expression for the estimate in terms of the 
Lagrange multiplier constant. 
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• In principle, we impose the constraint in order to 
find the multiplier        and thus obtain the 
estimate that satisfies the constraint.  

• Unfortunately, there is no closed form 
expression for     .  

• While it is possible to employ an iterative 
technique, adjusting      at each step to formally 
meet the constraint as closely as desired, in 
practice,      is typically adjusted empirically 
along with the criterion matrix Q.
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After diagonalization the frequency response of the filter is: 
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Now, consider the choice of the criterion matrix Q, and the Lagrange constant γ .  Obviously if 

either or both are zero, the filter reduces to the unconstrained, inverse filter result.  There are three

common more interesting choices. 

If we let IQ= , the criterion is just the estimate energy, 
2g , and the frequency response is: 
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• This simple filter is a pragmatic alternative to the 
Wiener filter when estimation of the signal and 
noise spectra are difficult.  

• The constant  is determined empirically to insure 
that at high frequencies, the degradation model 
has small frequency response,
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rather than growing with frequency and 
amplifying high frequency noise like the inverse 
filter



A second choice is to set 
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For our standard signal model, the signal 
spectrum decreases with frequency squared so 
the denominator of            grows as frequency 
squared, causing greater smoothing than the minimum 
energy estimate filter.
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• A third choice of the criterion is the second 
difference operator, with impulse response 

and the corresponding impulse response matrix Q.  
• The continuous version of the second difference 

operator is the second derivative, with frequency 
domain behaviour proportional to     .  

• The denominator        of  now grows as  and the 
estimate is even smoother than that of the 
Wiener deconvolution filter.
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Figure 15.1 shows examples of constrained optimization results.  The degradation model is 

Gaussian low pass filter blur and additive Gaussian white noise.  Note that the IQ=  condition 

with 02.0=γ  does the least smoothing, the second difference criterion with 02.0=γ  does the 

most smoothing, and the Wiener deconvolution filter is intermediate between these two. 

Degraded Image Q = I, gamma = .02

Q = [2nd difference], gamma = .02 gamma|Q|2 = 1/SNR



Adaptive Filters for Image 
Smoothing

Fundamental issues:
• Noise (typically high frequency) and signal (typically 

edges, also comprising high frequency components) 
overlap in frequency and cannot be separated by the 
simple frequency component weighting characteristic of 
LSI systems.  

• Alternately, image signals are non-stationary and any 
global processing is likely to be sub-optimal in any local 
region.  

• Early efforts to address this problem took an approach 
based on local statistics, designing operators that were 
optimised to the local image characteristics.  



local linear minimum mean squared 
error (LLMMSE) filter

• introduced by Lee in 1980.  
• In this approach, an optimal linear estimator for 

a signal in additive noise is formed as 

• is the observation 
• The noise and signal are assumed to be 

independent.  
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• Let the noise be a zero mean white 
Gaussian noise process with variance     

• The parameters     and       are chosen to 
minimise the mean squared estimation 
error criterion 
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• Taking the derivative of the
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The resulting LLMMSE estimate is then:  
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• The estimate is a weighted sum of the observation and its local
average, using local variance for the weighting. 
• When the local signal variance is much greater than the constant 
noise variance, the estimate is just the observation—no smoothing occurs.

• When the local variance is entirely attributable to noise, the estimate is
just the local average—maximum smoothing occurs
• The LLMMSE filter does little near edges or high contrast texture regions 
and smoothes as much as it can when the signal component is constant



• Note that we have to estimate the noise variance 
somehow, as we did with the conventional 
Wiener filter.  

• The choice of window size over which to 
estimate the local mean and variance is 
important.  

• It needs to be at least        for reasonable 
variance estimates, but it should be small 
enough to insure local signal stationarity.  

• Lee found that both 5x5 and 7x7 worked well.  
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• Results illustrating the effect of the LLMMSE filter for three different 
region sizes are shown in Figure 16.1.  Note the residual noise 
within the local neighbourhood near strong edges.

Original plus noise 3x3

5x5 7x7



The LLMMSE filter can be interpreted as a local impulse response or mask whose weights are 

functions of the local statistics in the input.  Specifically, 
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where )(1 22 nfn σσα −=  and N  is the window size over which the local statistics are 

estimated. You can also determine a local frequency response whose bandwidth is a function of 

local signal-to-noise variance ratio. 



Limitations of the LLMMSE filter 
are apparent.

• The need to restrict the window's size to achieve local 
stationarity restricts the amount of smoothing that can be 
achieved in constant signal regions. 

• It may be desirable to allow the smoothing window to 
grow as large as the signal constant region allows.  

• Some alternate noise suppression scheme to simple 
averaging should be employed, such as a local order-
statistic filter (median filter and the like, which we will 
discuss further later). 

• Alternately, it may be desirable to apply the LLMMSE 
filter iteratively, achieving repeated smoothing in 
constant signal regions.  The window's square shape is 
also a limitation.  



• Near an edge, the LLMMSE filter does no smoothing, 
allowing visible noise in close proximity to the edge.  

• The window shape should also adapt, allowing the filter 
to smooth along but not across edges.  

• The constant weights within the window, except for the 
centre point, limit the smoothing to the box filter, or 
simple local averaging variety.  

• Perhaps some sort of locally variable weighting within 
the window would improve the performance near edges.



An extension of the local statistics filter that addresses these limitations is the local adaptive 

recursive structure where the output is formed with a local recursive difference equation whose 

coefficients depend on the local input statistics.  A simple one dimensional version is: 
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If the parameter α  is chosen the same as for the LLMMSE filter and αβ −=1 , a similar edge-
dependent smoothing behaviour occurs.   

In constant signal regions, the next input is ignored in favour of the 
last output—smoothing occurs because noise is ignored

In strong signal regions the last output is ignored in favour of the next input 
and edges and textures are preserved.  The local impulse response has an 
exponential form:
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• It is as if both the weights within the 
window and the window size are now 
dependent on the local signal-to-noise 
variance ratio (SNR). 

• As the local SNR decreases,     increases, 
the weights become more uniform and the 
impulse response extends over a larger 
interval, and more smoothing occurs. 

β



β  can also be interpreted as the pole position in the Z plane for the local system transfer function 

( ∑ −=
n

nznhzH )()( ).  The pole varies from 0, the all-pass case with no smoothing, at maximum SNR 

and approaches 1, the maximum smoothing case at minimum SNR.   

Note that this is a causal, first order filter.  If we construct a two dimensional version with different 
horizontal and vertical parameters, we can accomplish directionally dependent smoothing: 
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We could even add in a diagonal term if desired.  Figure 16.2 compares 
recursive and non-recursive versions of LLMMSE edge-dependent 
smoothing.  In the next session we will explore a more general alternative
to these simple local statistics filters.



Recursive Lee Filter 7x7 Nonrecursive Lee
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