
TVLA: A SYSTEM FOR GENERATING

ABSTRACT INTERPRETERS∗

Tal Lev-Ami, Roman Manevich, and Mooly Sagiv
Tel Aviv University

{tla@trivnet.com, {rumster,msagiv}@post.tau.ac.il}

Abstract TVLA (Three-Valued-Logic Analyzer) is a “YACC”-like framework for
automatically constructing abstract interpreters from an operational se-
mantics. The operational semantics is specified as a generic transition
system based on first-order logic. TVLA was implemented in Java and
successfully used to prove interesting properties of (concurrent) Java
programs manipulating dynamically allocated linked data structures.

1. Introduction

The abstract-interpretation technique of Cousot and Cousot, 1979
for static analysis allows one to summarize the behavior of a statement
on an infinite set of possible program states. This is sometimes called
an abstract semantics for the statement. With this methodology it is
necessary to show that the abstract semantics is conservative, i.e., it
summarizes the (concrete) operational semantics of the statement for
every possible program state. Intuitively speaking, the operational se-
mantics of a statement is a formal definition of an interpreter for this
statement. This operational semantics is usually quite natural. How-
ever, designing and implementing sound and reasonably precise abstract
semantics is quite cumbersome (the best induced abstract semantics de-
fined in Cousot and Cousot, 1979 is usually not computable). This is
particularly true in problems like shape analysis and pointer analysis
(e.g., see Sagiv et al., 1998; Sagiv et al., 2002), where the operational
semantics involves destructive memory updates.

∗Supported, in part, by a grant from the Academy of Science, Israel.

2

1.1 An Overview of the TVLA System

In this paper, we review TVLA (Three-Valued-Logic Analyzer), a
system for automatically generating a static-analysis implementation
from the operational semantics of a given program (Lev-Ami and Sa-
giv, 2000). The small-step structural operational semantics is written
in a meta-language based on first-order predicate logic with transitive
closure. The main idea is that program states are represented as logi-
cal structures and the program transition system is defined using first-
order logical formulas. TVLA automatically generates the abstract se-
mantics, and, for each program point, produces a conservative abstract
representation of the program states at that point. The idea of au-
tomatically generating abstract semantics from concrete semantics was
proposed in Cousot, 1997.

TVLA is intended as a proof of concept for abstract interpreters. It
is a test-bed in which it is quite easy to try out new ideas. The theory
behind TVLA is based on Sagiv et al., 2002.

Static Analysis Using TVLA A front-end J2TVLA converts a Java
program into tvp, the input meta-language of TVLA. This front-end
is available separately and is not further described in this document.
A typical input of TVLA consists of four text files: (i) The type of
concrete states of the analyzed programs is defined in the file pred.tvp.
This file defines predicates (relation symbols) which hold concrete values
of variables and program stores. (ii) The meaning of atomic program
statements and conditions is defined in the action file acts.tvp. Actions
allow to naturally model program conditions and mutations of stores.
They are defined using first-order logical formulas. TVLA actions can
also produce error messages when safety violations occur. Both actions
and predicates are usually defined once for a given analysis. They are
parameterized by information specific to the analyzed program, such
as the names of program variables, types, fields, and classes. (iii) A
file fots.tvp defines the transition system of the analyzed program. It
is basically a control flow graph with edges annotated by actions from
the action file, and can be automatically generated by J2TVLA for Java
programs. (iv) The tvs file init.tvs describes the abstract value at
the program entry. It can be used to allow modular TVLA analysis of a
separate program component, which does not start with an empty store.

The core of the TVLA engine is a standard chaotic iteration pro-
cedure, where actions are conservatively interpreted over an abstract
domain of 3-valued structures. This means that the system guarantees
that no safety violation is missed but it may produce ”false alarms”,
i.e., warnings about violations that can never occur in any concrete ex-

TVLA: A System for GeneratingAbstract Interpreters1 3

ecution. Finally, TVLA allows to investigate the output 3-valued struc-
tures, which can either be displayed in Postscript format or as a tvs

file out.tvs to be read by other tools.
The unique part of TVLA is the automatic generation of the abstract

interpretation of actions in a way that is: (i) guaranteed to be sound,
and (ii) rather precise—the number of false alarms in our applications
is very small.

Outline The rest of this tutorial is organized as follows: In Sect. 2 we
describe the TVLA meta-language for constructing concrete semantics;
In Sect. 3 we provide an overview of 3-valued logical based static analysis;
In Sect. 4 we describe several enhancements and applications of the
system; and in Sect. 5 we give concluding remarks.

2. First-Order Transition Systems

We now present an overview of first order transition systems (FOTS).
In FOTS, program statements are modelled by actions that specify how
the statement transforms an incoming logical structure into an outgoing
logical structure.

A Running Example Fig. 2 shows our running example—a method
implementing the Mark phase of a mark-and-sweep garbage collector and
its transition system. The challenge here is to show that this method is
partially correct, i.e., to establish that “upon termination, an element is
marked if and only if it is reachable from the root.” TVLA successfully
verifies this correctness property in 5 CPU seconds.

2.1 Concrete Program States

In FOTS, program states are represented using 2-valued logical struc-
tures.

In the context of heap analysis, a logical structure represents the
memory state (heap) of a program, with each individual corresponding
to a heap-allocated object and predicates of the structure corresponding
to properties of heap-allocated objects.

Table 1 shows the predicates we use to record properties of individ-
uals for the analysis of our running example. A unary predicate x(v)
holds when the reference (or pointer) variable x points to the object v.
Similarly, a binary predicate fld(v1, v2) records the value of a reference
(or pointer-valued) field fld; in our example fld ∈ {left, right}. A
unary predicate set[s](v) holds when the object v belongs to the set s;

4

//@Ensures marked == REACH(root)

void mark(Node root, NodeSet marked){
Node x, t;

if (root != null) {
NodeSet pending = new NodeSet();

pending.add(root);

marked = new NodeSet();

while (!pending.isEmpty()) {
x = pending.selectAndRemove();

marked.add(x);

t = x.left;

if (t != null)

if (!marked.contains(t))

pending.add(t);

x = x.right;

if (t != null)

if (!marked.contains(t)

pending.add(t);

}
}

}

n0 IsNotNull(root) n1

n1 AssignEmpty(pending) n2

n2 Add(pending,root) n3

n3 AssignEmpty(marked) n4

n4 NotIsEmpty(pending) n5

n4 IsEmpty(pending) n17

n5 SelectAndRemove(pending,x) n6

n6 Add(marked,x) n7

n7 Load(t,x,left) n8

n8 IsNotNull(t) n9

n8 IsNull(t) n12

n9 NotContains(marked,t) n11

n9 Contains(marked,t) n12

n11 Add(pending,t) n12

n12 Load(t,x,right) n13

n13 IsNotNull(t) n14

n13 IsNull(t) n4

n14 NotContains(marked,t) n16

n14 Contains(marked,t) n4

n16 Add(pending,t) n4

n17 NotEqualReach(marked,root) error

n17 EqualReach(marked,root) exit

Figure 1. A simple Java-like implementation of the mark phase of a mark-and-sweep
garbage collector and its transition system.

Table 1. Predicates used to verify the running example.

Predicates Intended Meaning

x(v) reference variable x points to the object v

t(v) reference variable t points to the object v

root(v) reference variable root points to the object v

left(v1, v2) field left of the object v1 points to the object v2

right(v1, v2) field right of the object v1 points to the object v2

set[marked](v) object v is a member of the marked set
set[pending](v) object v is a member of the pending set
r[root](v) object v is heap-reachable from reference variable root

in our example s ∈ {marked, pending}. The predicate r[root](v) is a
special kind of predicate, used to record reachability information. It
is not needed to define the concrete semantics, but is needed to refine
the abstraction. Here, it is used to distinguish between individuals that
are reachable from the root variable and individuals that are garbage.
Predicates of this kind are called “instrumentation predicates”.

In this paper, program states (i.e., 2-valued logical structures) are
depicted as directed graphs. Each individual of the universe is drawn
as a node. A unary predicate p(o), which holds for a node u, is drawn

TVLA: A System for GeneratingAbstract Interpreters2 5

root

r[root]
set[marked]

x

r[root]

r[root]

left

r[root]

right

right

left

rightleft

root

r[root]
set[marked] t

r[root]

x

r[root]

left

r[root]

right

right

left

rightleft

(a) (b)

Figure 2. (a) A concrete program state arising before the statement t = x.left;
(b) A concrete program state arising after the statement t = x.left.

inside the node u. If a unary predicate represents a reference variable it
is shown by having an arrow drawn from its name to the node pointed
by the variable. A binary predicate p(u1, u2) that evaluates to 1 is drawn
as a directed edge from u1 to u2 labelled with the predicate symbol.

Fig. 2(a) shows an example of a concrete program state arising before
the statement t = x.left.

3. 3-Valued-Logic-Based Analysis

We now describe the abstraction used to create a finite (bounded)
representation of a potentially unbounded set of 2-valued structures of
potentially unbounded size. The abstraction is based on 3-valued logic,
which extends boolean logic by introducing a third value 1/2 denoting
values that may be 0 or 1.

A 3-valued logical structure can be used as an abstraction of a larger
2-valued logical structure. This is achieved by letting an abstract state
(i.e., a 3-valued logical structure) to include summary nodes, i.e., indi-
viduals that correspond to one or more individuals in a concrete state
represented by that abstract state. During the sequel of this paper, we
will assume that the set of predicates P includes a distinguished unary
predicate sm to indicate if an individual is a summary node.

In this paper, 3-valued logical structures are also depicted as directed
graphs, where binary predicates with 1/2 values are shown as dotted
edges and summary individuals are shown as double-circled nodes.

TVLA relies on a fundamental abstraction operation for converting
a potentially unbounded structure into a bounded 3-valued structure.
This abstraction operation is parameterized by a special set of unary
predicates A referred to as the abstraction predicates.

6

root

r[root]

x

r[root] left right

left

right

left

(a)

root

r[root] t

r[root]

x

left right

left

right

left

root

r[root]t

r[root]

x

r[root] left right

left right

left right

left

left

right

left

(b) (c)

Figure 3. (a) An abstract program state approximating the concrete program state
shown in Fig. 2(a); (b) and (c) are the abstract program states resulting from the
abstract interpretation of the action Load(t,x,left).

Let A be a set of unary predicates. Individuals u1 and u2 in a structure
S are said to be A-equivalent iff for every predicate p ∈ A, pS(u1) =
pS(u2). A 3-valued structure is said to be A-bounded if no two different
individuals in its universe are A-equivalent.

Informally, an A-bounded structure can be obtained from any struc-
ture by merging all pairs of A-compatible nodes, resulting in a struc-
ture with at most 2|A| individuals that approximates the original (non-
bounded) structure.

Fig. 3(a) shows an A-bounded structure obtained from the structure
in Fig. 2(a) with A = {x, t, root, r[root], set[marked], set[pending]}.

3.1 Abstract Semantics

TVLA automatically produces an implementation of an abstract trans-
former for every action, which is guaranteed to be a conservative approx-
imation of that action. Users can tune the transformer to achieve a high
degree of precision. For example, in Fig. 3, the application of the trans-
former of the action Load(t,x,left) to the structure in (a) results in
the structures shown in (b) and (c). In this case, the result is identical
to the result of the best (most precise) transformer.

TVLA: A System for GeneratingAbstract Interpreters3 7

4. TVLA Enhancements and Applications

In this section we sketch several TVLA enhancements that were imple-
mented in order to increase applicability, and mention some applications.

Algorithm Explanation by Shape Analysis In Bieber, 2001, TVLA
is extended with visualization capabilities to allow re-playing changes in
abstract states along different control-flow paths.

Finite Differencing In Reps et al., 2003, an algorithm for generating
predicate-update formulas for instrumentation predicates is described.
This technique is applied to generate predicate-update formulas for in-
tricate procedures manipulating tree data structures.

Automatic Generation of Instrumentation Predicates In Rama-
lingam et al., 2002, a technique for generating instrumentation predi-
cates based on backward weakest preconditions is described. This tech-
nique is applied to verify the absence of concurrent modification excep-
tions in Java. In Loginov et al., 2004, orthogonal techniques for (for-
ward) generation of instrumentation predicates are applied to prove the
correctness and stability of sorting algorithms.

Compactly Representing 3-Valued Structures In Manevich et al.,
2002, the space cost of TVLA is reduced by representing 3-valued struc-
tures with data structures that share equivalent sub-parts.

Partially Disjunctive Abstractions In Manevich et al., 2004, the cost
of TVLA analyses is reduced by applying more aggressive abstractions.
The running time of the running example is reduced from 579 CPU
seconds to 5 CPU seconds.

Numeric Abstractions In Gopan et al., 2004 it is shown how to han-
dle numeric properties for an unbounded number of elements. This
allows more precise and more automatic analyses using existing numeric
abstractions. The method is applied to show absence of array bound vi-
olations in a program implementing sparse matrix multiplications using
double indirections (i.e., a[b[j]]).

Best Transformers In Yorsh et al., 2004, theorem-provers are har-
nessed to compute the best (induced) transformers for 3-valued struc-
tures. This can be applied for modular assume-guarantee abstract inter-
pretation in order to handle large programs with partial specifications.

Heterogenous Abstractions In Yahav and Ramalingam, 2004, a frame-
work for heterogeneous abstraction is proposed, allowing different parts

8

of the heap to be abstracted with different degrees of precision at dif-
ferent points during the analysis. The framework is applied to prove
correct usage of JDBC objects and I/O streams, and absence of concur-
rent modifications in Java collections and iterators.

Interprocedural Analysis In Rinetzky and Sagiv, 2001, TVLA is ap-
plied to handle procedures by explicitly representing activation records
as a linked list, allowing rather precise analysis of recursive procedures.

Concurrent Java Programs Yahav, 2001 presents a general frame-
work for proving safety properties of concurrent Java programs with un-
bounded number of objects and threads. In Yahav and Sagiv, 2003 it is
applied to verify partial correctness of a two-lock queue implementation.

Temporal Properties Yahav et al., 2003 proposes a general framework
for proving temporal properties by representing program traces as logical
structures. A more efficient technique for proving local temporal prop-
erties is presented in Shaham et al., 2003 and applied for compile-time
garbage collection in Javacard programs.

5. Conclusion

TVLA is a system for generating implementations of static analysis
algorithms, successfully used for a wide range of applications. Several
aspects contributed to the usefulness of the system:

Firm theoretical background TVLA is based on the theoretical frame-
work of Sagiv et al., 2002, which provides a proof of soundness via the
embedding theorem. This relieves users from having to prove the sound-
ness of the analysis.

Powerful meta-language The language of first-order logic with tran-
sitive closure is highly expressive. Users can specify different verification
properties, and model semantics of different programming languages and
different programming paradigms.

Automation and flexibility TVLA generates several ingredients that
are essential for a precise static analysis. Users can tune the precision
and control the cost of the generated algorithm.

Although TVLA is useful for solving different problems, it has certain
limitations. The cost of the generated algorithm can be quite prohibitive,
preventing analysis of large programs. Some of the costs can be reduced
by better engineering certain components and other costs can be re-

TVLA: A System for GeneratingAbstract Interpreters4 9

duced by developing more efficient abstract transformers. The problem
of generating more precise algorithms deserves further research.

References

Bieber, R. (2001). Alexsa—algorithm explanation by shape analysis—extensions to
the TVLA system. Diplomarbeit, Universität des Saarlandes, Saarbrücken, Ger-
many.

Cousot, P. (1997). Abstract interpretation based static analysis parameterized by
semantics. In Static Analysis Symp., pages 388–394.

Cousot, P. and Cousot, R. (1979). Systematic design of program analysis frameworks.
In Symp. on Princ. of Prog. Lang., pages 269–282, New York, NY. ACM Press.

Gopan, D., DiMaio, F., Dor, N., Reps, T., and Sagiv, M. (2004). Numeric domains
with summarized dimensions. In Int. Conf. on Tools and Algs. for the Construction
and Analysis of Systems, pages 512–529.

Lev-Ami, T. and Sagiv, M. (2000). TVLA: A system for implementing static analyses.
In Static Analysis Symp., pages 280–301.

Loginov, A., Reps, T., and Sagiv, M. (2004). Abstraction refinement for 3-valued-logic
analysis. Tech. Rep. 1504, Comp. Sci. Dept., Univ. of Wisconsin.

Manevich, R., Ramalingam, G., Field, J., Goyal, D., and Sagiv, M. (2002). Compactly
representing first-order structures for static analysis. In Static Analysis Symp.,
pages 196–212.

Manevich, R., Sagiv, M., G.Ramalingam, and J.Field (2004). Partially disjunctive
heap abstraction. In Static Analysis Symp. To appear.

Ramalingam, G., Warshavsky, A., Field, J., Goyal, D., and Sagiv, M. (2002). Deriv-
ing specialized program analyses for certifying component-client conformance. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 83–94.

Reps, T., Sagiv, M., and Loginov, A. (2003). Finite differencing of logical formulas
for static analysis. In European Symp. on Programming, pages 380–398.

Rinetzky, N. and Sagiv, M. (2001). Interprocedural shape analysis for recursive pro-
grams. In Wilhelm, R., editor, Proc. of CC 2001, volume 2027 of LNCS, pages
133–149. Springer.

Sagiv, M., Reps, T., and Wilhelm, R. (1998). Solving shape-analysis problems in
languages with destructive updating. Trans. on Prog. Lang. and Syst., 20(1):1–50.

Sagiv, M., Reps, T., and Wilhelm, R. (2002). Parametric shape analysis via 3-valued
logic. Trans. on Prog. Lang. and Syst.

Shaham, R., Yahav, E., Kolodner, E., and Sagiv, M. (2003). Establishing local tempo-
ral heap safety properties with applications to compile-time memory management.
In Proc. of SAS’03, volume 2694 of LNCS, pages 483–503.

Yahav, E. (2001). Verifying safety properties of concurrent Java programs using 3-
valued logic. In Symp. on Princ. of Prog. Lang., pages 27–40.

Yahav, E. and Ramalingam, G. (2004). Verifying safety properties using separation
and heterogeneous abstractions. In SIGPLAN Conf. on Prog. Lang. Design and
Impl. To appear.

Yahav, E., Reps, T., Sagiv, M., and Wilhelm, R. (2003). Verifying temporal heap
properties specified via evolution logic. In European Symp. on Programming, vol-
ume 2618 of LNCS.

Yahav, E. and Sagiv, M. (2003). Automatically verifying concurrent queue algorithms.
In Workshop on Software Model Checking.

Yorsh, G., Reps, T., and Sagiv, M. (2004). Symbolically computing most-precise ab-
stract operations for shape analysis. In Int. Conf. on Tools and Algs. for the Con-
struction and Analysis of Systems, pages 530–545.

