
Routing in Queues with Delayed InformationNelly LitvakEURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlandslitvak@eurandom.tue.nlUri YechialiDept. of Statistics and Operations Research, School of Mathematical Sciences,Tel-Aviv University, Tel-Aviv 69978, Israeluriy@post.tau.ac.ilDecember 10, 2002AbstractWe compare two routing-control strategies in a high-speed communication net-work with c parallel channels (routes), where information on service completions indown-stream servers is randomly delayed. The controller can either hold arrivingmessages in a common bu�er, dispatching them to servers only when the delayedinformation becomes available (Wait option), or route jobs to the various channels,in a round-robin fashion, immediately upon their arrival. Interpreting the delays asservers's vacations and considering overall queue sizes as a measure of performance,we show that the Wait strategy is superior as long as the mean information delay isbelow a threshold. We calculate threshold values for various combinations of load andc and show that, for a given load, the threshold increases with c and, for �xed c, thethreshold decreases with an increasing load. If information is delayed on arrival in-stants, rather than on service completions, we show that the system can be viewed asa tandem queue and derive a generalization of a queue-decomposition result obtainedby Altman, Kofman and Yechiali.Keywords: Routing, Delayed information, Multiple-server queues, Vacation models,Decomposition1 IntroductionThe main goal of this work is to compare, in terms of overall queue sizes, two routing-control policies in communication networks where information on service completions is1

delayed. In general, analysis and control of queueing systems with delayed information,either on service completions or on arrivals, are complex issues that have been studied verylittle in the literature (see e.g. [1], [4]). These issues are crucial in high-speed networkswhere routing decisions have to be made based on delayed information on the actual stateof down-stream nodes. The lack of full information makes the problem of optimal routingof packets, among various possible channels, extremely diÆcult.Consider a network with c parallel channels (servers) and a controller. Variable-lengthmessages (jobs) arrive randomly, and the controller has to route (assign) them to thevarious channels. If the controller has full information on the state of each server, thenholding a central single bu�er for all queues and assigning a job to a server as soon asthe latter becomes available, is the best policy in terms of minimizing queue lengths andwaiting times. However, if the information about the actual state of each queue reachesthe controller only after some considerable delay, then the problem of optimal assignmentof jobs to the various queues becomes much more complex.Suppose, indeed, that the information about each service completion reaches the con-troller only after some random delay. Then one can think of two possible routing strategies:Wait or No-Wait policies. In the Wait option all arriving messages are held in a singlecommon bu�er and the controller forwards a message to a server only when he/she knowsfor sure that the server is free. This procedure implies that there are no separate bu�ersfor the individual servers and that each arriving message will be assigned to a server onlyafter an additional random delay, which clearly increases queue sizes and waiting times ofthe jobs. According to the No-Wait option the controller assigns jobs to the various queues'blindly', as soon as they arrive, without fully knowing the state of each server. In such acase the assignment can be done either randomly, or by using a round-robin (cyclic) proce-dure. The cyclic procedure has been shown to be much better than the (independent and)uniform random assignment in terms of minimizing waiting times (see e.g. [8]). Anotherrandom assignment method is advocated in [4]. The procedure studied there is, given thedelayed information on the queue size of each of the c servers, the router, upon arrival ofa new job, selects randomly two out of the c processors, and dispatches the newly arriv-ing job to the least loaded processor among the two. By applying a
uid-limit approach,leading to a deterministic model corresponding to the limiting system as c ! 1, it isdemonstrated via simulations that "the strategy ... performs well under a large range ofsystem parameters".In this work we'll mainly analyze the Wait policy of holding all arriving jobs in acommon bu�er, which heavily depends on the delays in obtaining information on servicecompletions, and will compare it to the No-Wait round-robin strategy. We will show thatwhen the mean delay of obtaining information is below a (calculated) threshold value, theWait policy is better than the No-Wait policy of assigning the jobs `blindly', thus partiallyanswering the question of eÆcient routing when information on service completions isdelayed. The key observation is that the analysis of the Wait policy leads to a specialvacation model where each server, after completing servicing a job, takes a random-lengthvacation.The motivation for the Wait policy stems from the following observation. Consider a2

G1=M=c queueing system with i.i.d. inter-arrival times T having probability distributionfunction (p.d.f.) G1(t) = P (T � t) with mean E(T) = 1=�. Service times B are i.i.d. withexponential p.d.f. and mean E(B) = 1=�. The system is stable i� � = �=(c�) < 1. Callthis con�guration 'system-1'. Suppose that system-1 has to be partitioned into c separate(probabilistically identical) queues, each forming a G2=M=1 queue with i.i.d. inter-arrivaltimes X having p.d.f. G2(t) = P (X � t) and mean E(X) = c=�. Call this con�guration'system-2'. Clearly, the traÆc intensity for each separate queue in system-2 is � = (�=c)=�,and system-2 is stable i� � < 1, similarly to system-1. The method by which X is generatedfrom T could be either a probabilistic assignment, by which a newly arrived customer isrouted to queue i (i = 1; 2; :::; c) with probability 1=c, or a cyclic (round-robin) mechanismby which the (kc + i)-th arrival is assigned to queue i (k = 0; 1; :::). It is importantto indicate that in system-1 there is a single common bu�er where all arriving jobs areaccumulated and from which, having full information on the state of each server (busy oridle), the controller assigns jobs to free servers; whereas in system-2 there are c separatequeues and the controller, regardless of whether or not he maintains real-time informationon the various queue sizes or the state of each individual server, assigns each new arrivalto a channel as soon as the job arrives.Denote by E[W1] the mean waiting time (not including service) in system-1, and byE[W2] the corresponding value in system-2. Let r(�) = E[W2]=E[W1]. Then it has beenshown in [8] that for G1 belonging to the family of �(n; �n) distributions (i.e. Erlang(Gamma) p.d.f. with n exponential phases, each having mean 1=(�n)), the ratio r(�)possesses the following properties:(1) r(�) is a monotone decreasing function of �, 0 � � � 1.(2) For a probabilistic assignment, r(�) tends to in�nity as � approaches 0, andlim�!1 r(�) = (2cn� n+ 1)=(n+ 1):(3) For a cyclic (round-robin) assignmentlim�!0 r(�) = c(c!)n;whereas lim�!1 r(�) = (cn+ 1)=(n+ 1):That is, under probabilistic (random) assignment, the smallest value of r(�) is r(1) = c(n = 1, T exponential), while r(1) ! 2c � 1 when T becomes a deterministic randomvariable (n =1). However, for any n, r(0) =1. Under the cyclic assignment r(0) = c(c!)for n = 1 (T exponential) and is approaching in�nity as n becomes large (T deterministic),whereas r(1) = (c+ 1)=2 for n = 1, while r(1) = c for n =1.3

To summarize, for the family of Erlang inter-arrival distributions, the mean waiting timeof an individual job in system-2 is at least (c + 1)=2 times larger than its correspondingwaiting time in system-1. Indeed, a much smaller mean waiting time for individual jobscan be achieved if information on the system's state is available when assigning them toservers.Thus, we present in Section 2 an M=M=c-type queueing model where each server, afterevery service completion, takes an exponentially distributed vacation. In Section 3 wepresent two methods of analysis for this model: (1) we use a (partial) generating functionsapproach (see e.g. Mitrany and Avi-Itzhak [3], Levy and Yechiali [2]) which requires �ndingroots of a polynomial in order to be able to calculate the (two-dimensional) steady-stateprobabilities; (2) we employ Neuts's [5] matrix-geometric formulation, which also requiresnumerical calculation of a matrix R, which is the solution of a quadratic matrix equationin R. We implement the �rst solution for small values of c.For larger values of c we use in Section 4 a direct approximation formula for calculatingmean queue size and waiting times and derive a threshold value such that, if the meandelay is below that value, it is better to wait for the delayed information to arrive beforerouting jobs to various channels, rather than routing them as soon as they arrive but withlack of information on system's state. We then extend the calculations to the case wherethe delay is deterministic and calculate the threshold value for this case as well. Finally,in Section 5, we discuss some issues regarding delayed information on arrivals.2 The modelConsider anM=M=c - type queueing system with c parallel servers, each capable of servingjobs at a rate of � jobs per unit time. There is a common bu�er from which the controllerdispatches waiting jobs to servers. Such an assignment is performed only after the controllerobtains information that the designated server is free and idle. However, contrary tothe classical M=M=c queue where information on service completions becomes availableinstantaneously, in our case this information is delayed. We assume that the length of thedelay is an exponentially distributed random variable with mean 1=
. For the controller,the server becomes available only when the delay is over. This state of a�airs leads to atwo-dimensional Birth-and Death process as follows. We interpret the delay of informationon service completion as a vacation: following each service completion of a job the servertakes an exponentially distributed vacation (with mean 1=
) at the termination of whichit becomes available again. We say that a server is `operative' if it is not on vacation (i.e.either busy or idle, ready to serve).The present model di�ers from that of Levy and Yechiali [2] in that in the latter a servertakes a vacation only when the common bu�er is empty, whereas in our case a server takesa vacation after each service completion, regardless of whether the common bu�er is emptyor not.
4

It readily follows that the stability condition for that model is� = �(�+
)c
� < 1: (1)Condition (1) says that for each server the mean inter-arrival time c=� should be greaterthan the quantity 1=�+1=
, which can be interpreted as the mean duration of a generalizedservice time being composed of two consecutive stages: service and vacation.Assume that condition (1) is satis�ed. In a steady state, let N be the number of jobsin the system and J be the number of operative servers. Clearly, if N � J , all servers arebusy and N � J jobs are queueing. Further, letpj;n = P(J = j; N = n); j = 0; 1; : : : ; c; n � 0;be the steady-state probabilities that there are j operative servers and n jobs in the system.Then, for j = 0; 1; : : : ; c, the balance equations are given by[�+ (c� j)
 + n�] pj;n = (n + 1)�pj+1;n+1 + �pj;n�1 + (c� j + 1)
pj�1;n; n < j;[�+ (c� j)
 + j�] pj;n = (j + 1)�pj+1;n+1 + �pj;n�1 + (c� j + 1)
pj�1;n; n � j: (2)Here pj;�1 = 0 and p�1;n = pc+1;n = 0 for all n � 0.Now, let L be the queue length in a steady state. Then E [L] =Pcj=0P1n=j+1(n�j)pj;n.In the next section we describe two ways to compute the steady-state probabilities pj;n's andthe value E [L] from equations (2). This would serve our goal to compare the two routingstrategies in terms of the steady-state mean queue size and show under what conditionsone strategy is better than the other.3 Analysis3.1 Analysis via generating functionsFor j = 0; 1; : : : ; c de�ne the (partial) generating functionGj(z) = 1Xn=0 pj;nzn:Then, multiplying every equation of (2) by zn and summing over n, we obtain[�(1� z) + (c� j)
 + j�]Gj(z) = (j + 1)�z�1Gj+1(z) + (c� j + 1)
Gj�1(z)+ j�1Xn=0(j � n)�pj;nzn � z�1 jXn=0(j � n+ 1)�pj+1;nzn: (3)
5

Set b0(z) = ��p1;0;bj(z) = z j�1Xn=0(j � n)�pj;nzn � jXn=0(j � n+ 1)�pj+1;nzn; 1 � j � c� 1;bc(z) = c�1Xn=0(c� n)�pc;nznand fj(z) = z [�(1� z) + (c� j)
 + j�] ; 0 � j � c� 1;fc(z) = �(1� z) + c�:Also, de�ne the matrix A(z) and the vectors b(z) and g(z) as
A(z) = 266666664

f0(z) �� 0 0 : : : 0 0 0�c
z f1(z) �2� 0 : : : 0 0 00 �(c� 1)
z f2(z) �3� : : : 0 0 0...0 0 0 0 : : : �2
z fc�1(z) �c�0 0 0 0 : : : 0 �
 fc(z)
377777775 ;b(z) = (b0(z); b1(z); : : : ; bc(z))T ;g(z) = (G0(z); G1(z); : : : ; Gc(z))T :Then (3) becomes: A(z)g(z) = b(z).To obtain Gj(z) we use Cramer's rule and write jA(z)jGj(z) = jAj(z)j, 0 � j � c,where jAj is the determinant of the matrix A, and Aj(z) is a matrix obtained from A(z) byreplacing the jth column by b(z). It follows that the functions Gj(z) are expressed in termsof c(c + 1)=2 unknown probabilities pj;n, 0 � n < j � c, appearing in the expressions forbj(z). From the �rst part of (2) we have c(c+1)=2 linear equations for those probabilities,but with c more variables pj;j for j = 0; 1; : : : ; c� 1. Using the equation for p0;0 from thesecond part of (2) which involves only p0;0 and p1;1, we still have to �nd c � 1 additionalequations. The following theorem and the use of equations (6) and (7) in the sequel givec� 2 of them.Theorem 3.1 For any c = 2c0, c = 2c0 + 1, where c0 � 0, the polynomial jA(z)j has aroot of multiplicity c0 at z0 = 0, a root at z� = 1 and exactly c� c0 � 1 roots in (0; 1).Proof. Let q0(z) = 1, and de�ne the minors of the diagonal of A(z), starting from thelower right-hand side corner, as follows:q1(z) = fc(z); q2(z) = ���� fc�1(z) �c��
 fc(z) ���� ; : : : ; qc+1(z) = jA(z)j: (4)6

The polynomials qj(z), 0 � j � c + 1, satisfy the following equations:q1(z) = fc(z)q0(z);q2(z) = fc�1(z)q1(z)� c�
; (5)qk+1(z) = fc�k(z)qk(z)� k(c� k + 1)�
zqk�1(z); 2 � k � c:>From (4), (5) we see that(a) q0(z) has no roots;(b) qk(z), where k � 1, is a polynomial of degree 2k � 1;(c) qk(z) and qk+1(z) have no joint roots in (0;1), because, if they do have such a jointroot, then it is also a root of qk�1(z); qk�2(z); : : : ; q0(z), but q0(z) possesses no roots;(d) q1(0) > 0, q2(0) < 0;(e) q2l+1(z) and q2l+2(z), where l � 1, have a root z0 = 0 of multiplicity l; the l-thderivative of q2l+1(z) at z = 0 has a sign (�1)l; the lth derivative of q2l+2(z) at z = 0has a sign (�1)l+1;(f) if z0 > 0 is a root of qk(z), then qk+1(z0) and qk�1(z0) are opposite in sign to eachother;(g) qk(1) = (c!�k)=(c� k)!, 1 � k � c;(h) qc+1(1) = 0, q0c+1(1) = c!(�+
)c�1[c�
 � �(�+
)];(i) the sign of qk(1) is (�1)k.Let us now subsequently consider the roots of q1(z), q2(z), : : : , qc+1(z). Clearly, q1(z)has only one root z1;1 = 1 + c�=� > 1. Further, q2(0) = �c�
 < 0, q2(1) > 0, q2(z1;1) < 0,q2(1) > 0, and thus q2(z) has roots z2;1 2 (0; 1), z2;2 2 (1; z1;1) and z2;3 2 (z1;1;1). Thereare no other roots, because q2(z) is of degree 3. Similarly, q3(z) is of degree 5; it has aroot z0 = 0, a root z3;1 2 (z2;1; 1), and there are also three other roots: z3;2 2 (1; z2;2),z3;3 2 (z2;2; z2;3), z3;4 2 (z2;3;1). Now, q4(0) = 0, q4(+0) > 0, q4(z3;1) < 0, q4(1) > 0.Hence, there are roots z0 = 0, z4;1 2 (0; z3;1) and z4;2 2 (z3;1; 1). Also, q4(z) has four otherroots in (1;1). Proceeding further, we see that polynomial qc+1(z) = jA(z)j whose degreeis 2c+1, has a root of multiplicity c0 at z0 = 0. Also, it has a root z� = 1. Since (1) impliesthat q0c+1(1) > 0, it follows that there are roots zc+1;l 2 (0; 1), l = 1; 2; : : : ; c� c0 � 1 andc+ 1 other roots in (1;1). This completes the proof. 2Now, from Theorem 3.1 we havedkdzk jAj(z)j����z=0 = 0; 0 � j � c; 1 � k < c0; (6)jAj(zc+1;l)j = 0; 0 � j � c; 1 � l < c� c0: (7)7

For 0 � j � c, equations (6), as well as equations (7), di�er only by a constant multiplier.Hence, from (6) and (7) we get c � 2 new equations for the unknown probabilities. Inorder to use these equations, we have to �nd at least one of the determinants jAj(z)j,j = 0; 1; : : : ; c. The determinant jA0(z)j can be found by the following recursive procedure.Put a0(z) = bc(z); ak(z) = bc�k(z)qk(z) + (c� k + 1)�ak�1(z); k = 1; : : : ; c: (8)Then jA0(z)j = ac(z).We now need one more equation in order to solve for the Gj(z). This equation comesfrom the normalizing condition. Denote pj = Gj(1), j = 0; : : : ; c. The normalizingcondition is cXj=0 pj = 1: (9)>From Theorem 3.1 it follows that jA(z)j = (z � 1)B(z) and jAj(z)j = (z � 1)Bj(z),j = 0; : : : ; c, where B(z) and Bj(z) are some polynomials in z, and B(1) = q0c+1(1).Since Gj(z) = Bj(z)=B(z), the normalizing condition can be rewritten as Pcj=0Bj(1) =B(1) = q0c+1(1) = c!(�+
)c�1[c�
��(�+
)] giving the last equation needed to completelydetermine the generating functions Gj(z), j = 0; 1; : : : ; c.However, if one is mainly interested in �nding the mean queue size E[L], then computingthe determinants jAj(z)j for all j = 0; 1; : : : ; c can be avoided. Instead, it might be easierto get the needed number of equations by considering pj, j = 0; 1; : : : ; c, as additionalunknowns. Then the normalizing condition remains in the form (9), and we can use (3) to�nd c+ 1 additional equations. By substituting z = 1 in (3), we get[(c� j)
 + j�] pj = (j + 1)�pj+1 + (c� j + 1)
pj�1+ j�1Xn=0(j � n)�pj;n � jXn=0(j � n+ 1)�pj+1;n; j = 0; : : : ; c; (10)which gives c linear independent equations. Further, di�erentiating equations (3) at pointz = 1 we obtain��pj + [(c� j)
 + j�]nj = �(j + 1)�pj+1 + (j + 1)�nj+1 + (c� j + 1)
nj�1+� j�1Xn=0 n(j � n)pj;n + � jXn=0(1� n)(j � n+ 1)pj+1;n; j = 0; : : : ; c; (11)where nj = G0j(1). Summing over j = 0; : : : ; c and using the normalization, we derive thelast needed equation for the pj's:cXj=1 jpj � cXj=1 j�1Xn=0(j � n)pj;n = �=�: (12)8

Formula (12) can also be interpreted in the following way. In the left-hand side, the�rst term equals to E[J], and the second term equals to E[J0], where J0 is the number ofoperative but idle servers in a steady state. Note that J1 = J �J0 equals to the number ofbusy servers. Thus, it follows from (12) that E[J1] = �=�. Furthermore, since each busyserver can serve only one job at a time, we get J1 = N � L. This yieldsE[L] = E[N]� �=� = cXj=0 nj � �=�: (13)where nj = P1n=0 npj;n = G0j(1). Hence, in order to �nd E[L], it suÆces to compute thenj's. Since (11) gives c linear independent equations for c + 1 variables n0; : : : ; nc, weneed one more equation which we obtain by taking the second derivative of (3) at z = 1,summing over j = 0; : : : ; c and applying (12). This yields�E[N] = � cXj=1 jnj � �� � cXj=1 j�1Xn=0 n(j � n)pj;n: (14)Now n0; : : : ; nc can be computed from (11) and (14). Then we apply (13) to �nd E[L].Equation (14) can be also rewritten as �(1 + E[N]) = �(E[JN] � E[J0N]). Togetherwith (13), this enables us to �nd the covariance between N , the number of jobs in thesystem, and J1, the number of busy servers:cov[N; J1] = E[J1N]� E[J1]E[N] = E[(J � J0)N]� (�=�)E[N] = �=�:As mentioned earlier and will further be exploited in Section 4, a server's vacation can beviewed as the second phase of a generalized service. Since the mean number of arrivalsper unit time is � and since each service is followed by a vacation with mean 1=
, itfollows that the mean number of servers on vacation equals E[c � J] = �=
, implyingE[J] = c� �=
. If there are no delays, i.e. 1=
 = 0, we merely get E[J] = c. Finally, themean number of servers involved in the generalized service (either busy or on vacation) isgiven by E[c� J0] = �(
 + �)=�
 = c�, so that E[J0] = c(1� �).Implementation. The discussion above suggests the following algorithm of �nding E[L] when c = 2c0 or c = 2c0 + 1.1. Initialization. Set Sc = ;.2. If c� c0 > 1 then:(a) compute jA(z)j using (5);(b) �nd the roots zc+1;l 2 (0; 1), 1 � l < c� c0, of jA(z)j;(c) compute jA0(z)j using (8);(d) add equations (7) for j = 0 to Sc;(e) if c0 > 1 then add equations (6) for j = 0 to Sc.3. Add to Sc equations (2) for 0 � n < j � c and j = n = 0; (10) and (11) for 0 � j < c; (9), (12) and (14).4. Solve the system of equations Sc with respect to pj;n, pj and nj , 0 � j � c; 0 � n � minfc� 1; jg.9

5. Find E(L) from (13).When c is not too large, this algorithm is suitable for a software like Maple or Matlab. In the present work, we usedMaple.For c = 2, the polynomial jA(z)j does not have roots on (0; 1). Thus, there is no need to compute jA(z)j and jA0(z)j.The algorithm results in a closed form expression for E[L]. This formula can be written in terms of the values � and �, where� = �(� +
)=(c�
) is the utilization factor, and � = �=
 is the ratio between the mean delay and the mean service time:E[L] = 2�3(�6 + 3�5�+ 5�5 + 7�4�+ 2�4�2 + 12�4 + 9�3�+ 2�3�2 + 16�3 + 7�2�+ 2�2�2 + 12�2 + 3��+ 5� + 1)(1 + �)2(1 � �)(�4 + �4�+ 4�3 + 7�3�+ 3�3�2 + 6�2�2 + 4�2�3 + 12�2�+ 6�2 + 4� + 7��+ 3��2 + �+ 1) :When the system does not have delays, i.e. � = 0, the above formula reduces to E[L] = 2�3=(1 � �2) which is the meanqueue length in the M=M=2 queue (see formula (16) below).For c > 2, the polynomial jA(z)j has roots in (0; 1). In general, these roots can not be analytically expressed via theparameters, con�ning us to a numerical solution. It is clear, however, that E[L] can always be seen as a function of � and �(without loss of generality, we can choose time units in such a way that � = 1).3.2 Matrix-geometric approachFollowing [5, Section 6.3], we construct a quasi birth-and-death process with generator ~Qgiven by
~Q = 2666666664

A0;0 A0;1 0 : : :A1;0 A1;1 A1;2 : : :: : : Ac�1;0 Ac�1;1 Ac�1;2A2 A1 A0A2 A1 : : :: : :
3777777775 :The square blocks of dimension (c + 1)� (c+ 1) are de�ned as(A0;0)i;h = 8<: ��� (c� i)
; 0 � i = h � c;(c� i)
; 0 � i = h� 1 � c� 1;0; otherwise;A0;1 = A1;2 = � � � = Ac�1;2 = A0 = diagf�; �; : : : ; �g;(An;0)i;h = � �min(i; n); 0 � h = i� 1 � c� 1;0; otherwise; for 1 � n � c;(An;1)i;h = 8<: ��� (c� i)
 � �min(i; n); 0 � i = h � c;(c� i)
; 0 � i = h� 1 � c� 1;0; otherwise; for 1 � n � c;A2 = Ac;0;A1 = Ac;1:Here (A)i;h for 0 � i; h � c is the element of the ith row and hth column of the matrix A.10

The matrix Q = A0 + A1 + A2 is the generator of the classical machine repair modelwith � as a breakdown rate:266666664
�c
 c
 0 0 : : : 0 0 0� �(c� 1)
 � � (c� 1)
 0 : : : 0 0 00 2� �(c� 2)
 � 2� (c� 2)
 : : : 0 0 0...0 0 0 0 : : : (c� 1)� �
 � (c� 1)�
0 0 0 0 : : : 0 c� �c�

377777775 :In such a machine repair model each server is considered, independently, as alternatingbetween two phases: service (mean 1=�) and breakdown, or vacation (mean 1=
). Let� = (�0; �1; : : : ; �c) be a stationary vector of the matrix Q, i.e. �Q = 0, where 0 =(0; 0; : : : ; 0). In that machine repair model �j is the stationary probability that there are joperative servers. In the case that vacations start after each service completion, �j can beinterpreted as a stationary probability that there are j operative servers given that thereare c or more jobs in the system. It is readily seen that�j = �cj��

 + ��j � �
 + ��c�j :Substituting this expression in the stability condition from [5, p. 83]�A2e > �A0e;where e = (1; 1; : : : ; 1)T , we again yield (1) since�A0e = � cXj=0 �j = � and �A2e = cXj=0 �j�j = c�

 + �:Now let pn = (p0;n; p1;n; : : : ; pc;n). Thenpn = pc�1Rn�c+1; n � c� 1:Here R is a minimal solution of the matrix quadratic equation R2A0 + RA1 + A2 = 0.There are various comutational procedures for �nding the matrix R (see [5, Section 1.9]).The vectors p0, p1, : : : , pc�1 can be found from the equationsp0A0;0 + p1A1;0 = 0;p0A0;1 + p1A1;1 + p2A2;0 = 0;pn�1An�1;2 + pnAn;1 + pn+1An+1;0 = 0; 2 � n � c� 2;pc�2Ac�2;2 + pc�1(Ac�1;1 +RAc;0) = 0;c�2Xn=0 pn1 + pc�1[I �R]�11 = 1;11

where I is an identity matrix. The vector n = (n0; : : : ; nc) is now determined fromn = 1Xn=0 npn = c�2Xn=0 npn + (c� 2)pc�1[I � R]�1 + pc�1[I � R]�2;and we can apply formula (13) to �nd E[L].Computationally, the matrix-analytic approach is more powerful than the solution viagenerating functions, and it enables one to e�ectively solve the model even for large valuesof c.4 Performance evaluationIn this section we compare the performance of the two routing procedures: Wait and No-Wait. The arrival
ow is Poisson with intensity �, and the service times are exponentialwith parameter �. As a comparing performance measure we choose the mean queue lengthin steady-state.Using the results of Section 3, the mean queue length in the Wait strategy can becalculated in two ways, following Sections 3.1 or 3.2, respectively. For c = 2; 3 we haveimplemented the algorithm from Sections 3.1 utilizing the approach via generating func-tions. For larger values of c, the matrix-geometric approach from Section 3.2 provides moreeÆcient computational procedures. However, computational aspects are not the main con-cern in this paper. Our ultimate goal is to compare the two routing policies in order tosee whether the use of the delayed information can help improve the performance of thesystem. Therefore, instead of diving into detailed calculations, we use a direct approxi-mation method. The comparison with explicit results for c = 2; 3 in Table 1 below provesthat the approximations provide a very good accuracy to serve our purpose. Moreover,the approximations can be easily generalized for non-exponential delays. For instant, inTable 2 we give results for the case when the delays are deterministic.As mentioned earlier, our model where every server takes vacation after each servicecompletion can be interpreted as an M=G=c queue with a generalized service time S com-posed of two consecutive phases: actual service B and vacation V . The queue length in sucha system is the same as in a system where the service itself is distributed as B + V . Thus,in order to calculate E [L] we use a two-moment approximation (see Tijms [7, p. 297]):E [Lapp] = �1� c2S�E [L(det)] + c2SE [L(exp)] ; (15)where c2S = V ar[S]=E2[S] is the variation coeÆcient of the generalized service time S =B+V ; E [L(exp)] is the mean queue size in a M=M=c queue with arrival rate � and meanservice time E[S], and E [L(det)] is the corresponding mean for anM=D=c queue for whichwe use Cosmetatos approximationE [L(det)] � E [Lapp(det)] = 12�E [L(exp)] :12

Here � � 1 + (1� �)(c� 1)p4 + 5c� 216�cand � = �E[S]=c. Further, for the M=M=c queue with mean service time E[S] we haveE [L(exp)] = �(c�)cc!(1� �)2 p0; (16)where p0 = " c�1Xk=0 (c�)kk! + (c�)cc!(1� �)#�1 :For exponential service times and exponential vacation durations, where E[S] = 1=�+1=
and V ar[S] = 1=�2+1=
2, we get c2S = (
2+�2)=(
+�)2. This enables us to write the right-hand side of equation (15) as a function of � and the ratio E[V]=E[B] = (1=
)=(1=�) = �:E [Lapp] = E [Lapp(exponential delay)] = (1 + �)�2 ��2 + �� + 1�E [L(exp)] : (17)Another approximation for the mean queue size in M=G=c system is given by Nozaki andRoss [6] as follows:E [Lapp(M=G(S)=c)] � 1 + c2S2 E [L(M=M(S)=c)] = 1 + c2S2 E [L(exp)] :Clearly, for E[V] = 1=
 = 0 we readily obtain, for both approximations, the classicalM=M=c queue with arrival rate �, mean service time E[S] = 1=� and utilization factor�0 = �=(c�). Note that if c2S < 1, then the Cosmetatos approximation gives higher E [Lapp]values than the Nozaki-Ross approximation, and vice versa. This follows since � > 1. Notealso that, when c = 1, � = 1, making the two approximations equal.To ensure stability, condition (1) requires that the ratio � = �=
 must be smaller thana critical value �crit = 1� �0�0 :Moreover, for �xed �, E [Lapp] increases with �.Let us now compare the mean queue length E[L] in the Wait system, where the con-troller assigns a newly arrived job to a server only (and immediately) after the formerobtains the (delayed) information that the server has completed servicing an earlier job,with the mean queue length E[L(cyclic)] in No-Wait system, where the controller assignsjobs to servers `blindly', as soon as they arrive, following the round-robin procedure. Inthe latter case there are c separate sub-systems, each being an Ec=M=1 queue with mean13

arrival rate �=c, mean service time 1=� and �0 = (�=c)=�. The mean queueing time isgiven by (see [8]) E [W (Ec=M=1)] = ��(1� �) ;where � is the unique root in (0; 1) of the equationz = (�=(�(1� z) + �))c = (c�0=(1� z + c�0))c:Thus, the mean queue length for each individual queue isE [L(Ec=M=1)] = �cE [W (Ec=M=1)] = �0�1� �:It follows that the total mean queue size among all c separate queues isE [L(cyclic)] = c�0�1� �:Since, for any c > 1, the value E [L(cyclic)] is greater than E [L(M=M=c)] with thesame �0 (see [8]), and, for �xed �0, the value E[L] as well as E [Lapp] is an (increasing)function of �, there exists a threshold value �� 2 (0; �crit) such that E[L] � E [Lapp]becomes equal to E [L(cyclic)]. Thus, as long as � < ��, it is better to keep all arrivingjobs in a common bu�er and operate the system by using the delayed information on servicecompletions, rather than to assign arriving jobs `blindly', immediately upon arrival, to thevarious servers, even if it is done in a cyclic manner. However, if � > ��, then the delaysare too long, and it is better to have a separate bu�er for each server and assign new jobsto the various servers following the round-robin procedure, without waiting for the delayedinformation to arrive.In Table 1 below we give the values of ��, for some di�erent values of �0 and c. Since c2S <1 when the delay is exponential (or deterministic), we use the two-moment approximation(15) for calculations. The results show that, for example, if �0 = 0:8 then, for stability, wemust have � < �crit = 0:25, while, for c = 10, as long as � < �� = 0:1934, it is preferred tooperate the system by using the delayed information. It is seen that, for a given value of�0, �� increases with growing numbers of servers and that, for �xed c, �� decreases when�0 increases.In fact, the above calculations can be extended to the case where the delay V is de-terministic with V = E[V] = 1=
. Here the approximations are especially valuable sincethe exact solution is not available. In such a case E[S] = 1=� + 1=
, as before, butV ar[S] = 1=�2. This implies that c2S = (1 + �)�2 and 1 � c2S = (1 + �)�2 (2� + �2), whereagain � = �=
. Thus, equation (15) leads toE [Lapp(deterministic delay)] = (1 + �)�2 ��� + �2=2�� + 1�E [L(exp)] :It follows that (see (17))E [Lapp(exponential delay)] � E [Lapp(deterministic delay)]= (1 + �)�2 ��2 (1� �=2)�E [L(exp)] :14

Table 1. Threshold values �� when delays are exponentialc = 1 c = 2 c = 3 c = 5 c = 10�0 = 0:2 E[L(M=M=c)] 0.05 0.0167 0.0062 0.00096 0.00001�crit = 4 E[L(cyclic)] 0.05 0.0414 0.0376 0.0353 0.0376�� approximate 0 0.4263 0.6781 1.0332 1.5723�� explicit 0 0.4303 0.6806�0 = 0:5 E[L(M=M=c)] 0.5 0.3333 0.2368 0.1304 0.0361�crit = 1 E[L(cyclic)] 0.5 0.6180 0.7406 0.9905 1.6232�� approximate 0 0.2190 0.3373 0.4769 0.6411�� explicit 0 0.2193 0.3371�0 = 0:8 E[L(M=M=c)] 3.2 2.8444 2.5888 2.2170 1.6367�crit = 0:25 E[L(cyclic)] 3.2 4.5564 5.9026 8.6090 15.3782�� approximate 0 0.0744 0.1128 0.1534 0.1934�� explicit 0 0.0744 0.1128�0 = 0:9 E[L(M=M=c)] 8.1 7.6737 7.3535 6.8624 6.0186�crit = 0:1111 E[L(cyclic)] 8.1 11.8589 15.6188 23.1394 41.9425�� approximate 0 0.0352 0.0531 0.0715 0.0888�� explicit 0 0.0352 0.0531Table 2 below gives, similarly to Table 1, values of �� for various combinations of �0and c. It is seen that �� in Table 2 is slightly bigger than in Table 1, but the di�erencedecreases when �0 increases.Table 2. Threshold values �� when delays are deterministicc = 1 c = 2 c = 3 c = 5 c = 10�0 = 0:2 �� 0 0.4532 0.7199 1.0877 1.6341�crit = 4�0 = 0:5 �� 0 0.2256 0.3487 0.4924 0.6581�crit = 1�0 = 0:8 �� 0 0.0747 0.1134 0.1541 0.1942�crit = 0:25�0 = 0:9 �� 0 0.0353 0.0532 0.0716 0.0889�crit = 0:11115 Delayed information on arrivalsIn this section we brie
y discuss general queueing systems where information on arrivals,rather than on service completions, is delayed. We consider an arbitrary structure of arrival
ow and arbitrary service discipline. Furthermore, we don't specify the number of serversor the distribution of the service times. It is assumed that the delays are independent andare all distributed as some random variable K. The control policy is such that a job isrouted to a server only when the controller knows for sure that the common bu�er, whichholds all arriving messages, is not empty. 15

Altman, Kofman and Yechiali [1] considered a queueing system satisfying the conditionsabove. Speci�cally, they assumed that the delay K 2 f0; 1; : : :g is a constant, and theystudied a queue length process fXKn g, n = �K;�K+1; : : : ;�1; 0; 1; : : : , in a discrete-timesingle-server queue with a stationary process fYng of batch arrivals (Yn is the number ofjobs arriving at time slot n) and arbitrary service times. For such a system, they provedthat XKn d= X0n + KXi=1 Yn�i+K; (18)where fX0ng, n = 0; 1; : : : , is the queue length process corresponding to no delay on arrivalinformation (K=0), and XK�K d= X00 . To explain formula (18) on an intuitive level, theauthors pointed out that the delays of information on arrivals may be looked upon as extraserver's vacations, since the server may stay idle even if there are jobs present in the bu�er.This observation is still true for more general systems with delayed information on arrivals.Thus, once again, there exists a strong connection between models with server's vacationsand models with delayed information.However, for delayed information on arrivals, the interpretation via vacation model isnot that natural as for delayed information on service completions. For example, for thesystem studied in [1], the description of the analogous vacation model may read as follows:"The server takes a vacation at time n if the bu�er became empty at time n�K. The serverbecomes available again at time n+ l, if the �rst arrival after time n�K occurred at timen�K + l". Within such a vacation model formula (18) expresses a direct decomposition,where the �rst term of the right-hand side is the queue length in the beginning of anarbitrary time slot in the system without vacations, and the second term is the queuelength at the beginning of an arbitrary non-serving slot. Yet, this formula is still not veryintuitive, and formally it requires a proof, which is of the same diÆculty as the direct prooffor the system with delayed information.Using the general model, we propose another outlook of delayed information on arrivals:when a job arrives to the bu�er, the controller does not know about its existence duringsome random delay. When the delay is over, the controller recognizes the job, and operatesas if this job has just arrived. From the point of view of the controller, this system di�ersfrom the system without delayed information only by the characteristics of the arrival
ow.For example, if the delay K is a constant, then the controller observes the same arrival
ow, shifted by K time units. Actually, the controller may have no idea about the delays.However, in reality, the delays dictate that new arrivals have to waste additional time,hanging in the system, causing an increased queue length.This situation can be better visualized with the aid of Figure 1. A new job �rst arrivesFigure 1: A delayed information on arrivals can be seen as a 'preliminary' service.to a `preliminary' queue with in�nite number of servers and immediately gets served, whereits service time is distributed as K. Completing this delay, the job immediately proceeds16

to the main queue which is the same as our original system, but without delays (and, ofcourse, with a modi�ed structure of the arrival
ow). The queue length in the originalsystem with delayed information equals the number of jobs in the �rst queue in Figure 1plus the bu�er content of the second queue. In general, such a tandem queueing system maynot allow an explicit probabilistic analysis. Nevertheless, result (18) follows immediatelyfrom the above interpretation. One just has to note that, at the beginning of a time slot n,the number of jobs in the �rst queue is PKi=1 Yn�1�K+i, and the arrival
ow to the secondqueue is the same as the original one, shifted by K slots. Moreover, the tandem-queueinterpretation immediately yields Proposition 5.1 bellow which is more general than (18).Proposition 5.1 Let (A(t); t � 0) be an arrival process of some queuing system. Let(XK(t); t � 0), where K = const � 0, be a queue length process in this system wheninformation on arrivals is delayed by K time units. If XK(0) d= X0(0), then for any t � 0,XK(t) d= X0((t�K) _ 0) + A(t)� A((t�K) _ 0): (19)Using the tandem-queue interpretation, one can also derive some results when the delayK is random. For example, the following proposition is based on the well-know fact thatin a steady-state, the number of jobs in M(�)=G=1 queue has a Poisson distribution withparameter [�(mean service time)], and the departure
ow from such a queue is Poisson(�).Proposition 5.2 Let XK be distributed as a steady-state queue length in some queueingsystem where arrival process is Poisson(�) and information on arrivals is obtained withrandom delay K. Then XK d= X0 + Y;where Y is a Poisson(�E[K]) random variable independent of X0.To conclude, we note that there is a considerable di�erence between delays of informa-tion on arrivals and delays on service completions. First of all, the delays of informationon arrivals don't play any role in stability conditions, in contrast to delayed information onservice completions. Second, the delayed information on arrivals increases waiting timesmerely by the length of the delay, and, in general, changes the original structure of thearrival
ow. However, the delays of information on service completions a�ect the systemvia the extended `generalized' service which increases queue lengths and waiting timessigni�cantly when the load is high.AcknowledgementWe would like to acknowledge Daniel Kofman for discussions that motivated this work.We are grateful to an anonymous referee whose constructive comments helped improvingthe presentation of the paper. 17

References[1] E. Altman, D. Kofman and U. Yechiali, Discrete time queues with delayed information,Queueing Systems 19 (1995) 361{376.[2] Y. Levy and U. Yechiali, An M=M=s queue with server's vacations, INFOR 14 (1976)153{163.[3] I.L. Mitrany and B. Avi-Itzhak, A many server queue with service interruptions, Oper.Res. 16 (1968) 628{638.[4] M. Mitzenmacher, How useful is old information, IEEE Trans. Parallel Distrib. Systems11 (2000) 6{20.[5] M.F. Neuts, Matrix-geometric Solutions in Stochastic Models - An Algorithmic Ap-proach, Johns Hopkins, Baltimore, 1981.[6] S.A. Nozaki and S.M. Ross, Approximation in �nite capacity multi-server queues withPoisson arrivals, J. Appl. Prob. 15 (1978) 826{834.[7] H.C. Tijms, Stochastic Models: an Algorithmic Approach, Wiley, 1994.[8] U. Yechiali, On the relative waiting times in the GI=M=s and the GI=M=1 queueingsystems, Oper. Res. Quart. 28 (1977) 325{337.

18

