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MANAGEMENT SCIENCE 
Vol. 22, No. 6, February, 1976 

Printed in U.SA4. 

A MATHEMATICAL PROGRAMMING 
FORMULATION OF ESTIMATION PROBLEMS 

RELATED TO CONTINGENCY TABLESt 

EDWARD L. MELNICK$ AND URI YECHIALI? 

The adjustment of cross-tabulated sampled data to fit known marginal totals is a 
problem that has been the subject of some articles in the statistical literature (e.g., 
Deming and Stephan [2], Feinberg [3], and Kullback [7]). This problem occurs, for 
example, in sampling situations where a complete count of certain characteristics for 
an individual is obtained and cross-tabulations of these characteristics based upon 
sampled information are required. A second type of problem occurs when forecasting 
multivariate models such as input-output models of an economic situation, where the 
individual sectors are to be adjusted after estimating the more stable marginal totals. 

Solutions to the adjustment problem have been proposed which' not only satisfy the 
marginal totals but also retain the relationships of the observed data as measured by a 
statistical criterion. Since closed form solutions to these problems are not obtainable, 
iterative convergent procedures have been developed from which approximate solu- 
tions are obtained. Presented here is a reformulation of the problem as an integer 
transportation problem with a convex separable cost function. This representation 
demonstrates the relationships between some statistical optimization problems and 
mathematical programming procedures. By appropriately defining the cost function, 
any of the proposed statistical criteria can be represented and estimates can be 
obtained which maximize (minimize) the criterion and satisfy the marginal con- 
straints. Thus, instead of considering separate problems, a general model is formu- 
lated which encompasses all previously related problems and estimates are obtained 
from a general algorithm which satisfies exactly the statistical criterion in a finite 
number of iterations. 

The ensuing discussion will be in terms of an r x c table, although the ideas can be 
applied to any multidimensional table. In this note, {ni I i = 1, . . . , r and 
j = 1, .. ., c } are the observed frequency counts, {ni.} and {nj) their row and 
column sums, respectively, {Ni.} and { N) are the known marginal totals and {Nij4 
are the unknown population frequency counts that are to be estimated. Obviously, 

Nu > nq so that xq = NUq-nq > 0 for all i andj. Previously the problem was redefined 
in terms of relative frequencies. In this framework, the objective becomes the 
estimation of population probabilities {Pi, = N1/ N, N = EjNU) in a contingency 
table when the row and column marginal probabilities, {Pi. = Ni./N) and {Pj 
= NJ N}, are known, and at the same time there is a sample of cell frequencies {n4} 
where n = E= Ec= Inq 

In terms of a mathematical programming model, the adjusted problem is stated as 
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702 NOTES 

follows: Given a set of observed frequency counts and known marginal frequency 
totals, find a set of nonnegative integer-variables {x, = NU- n} that minimize 
(maximize) a separable convex (concave) objective function 

r c 

E Eff( (1) 
i= 1 j= 1 

and satisfy the transportation-type constraints 
C 

E x, ai, i ,. r, 
j=l 

r 

where 

a,= Ni. -n1., b= N1- n1,. (3) 

The estimated population cell frequencies {N4) are obtained from the computed {xq} 
terms. Furthermore, the bivariate probability estimates can be computed as P.* 

Ny/N. 
Deming and Stephan [2] first considered the adjustment problem. Their estimates 

were obtained by a least squares method which minimized the sum of the weighted 
squares of the residuals. This was obtained by minimizing Neyman's modified 
chi-square 

r c (n - nP )2 (4) 

= j=1 n 

subject to the restrictions imposed by the known marginal density functions (i.e., 

IjPU = Ni./N, i = 1, ... , r; lPij = Nj/N, j = 1, ... , c). This criterion can be re- 
presented in the form of (1) by recognizing that the minimization of (4) is equivalent 
to minimizing 

r c 2 

_S Xij (5) 
i=1 j=1 iJ 

Estimates which maximize the likelihood function have also been proposed for this 
problem. These estimates are the values which maximize 

r c 

r c HI PUJ (6) 
11 In! i== 
i=1 j=1 

subject to the marginal density constraints. Equation (6) can be written in the form of 
(1) by recognizing that the estimates which maximize it also maximize 

r c 

E E n, log(x, + na). (7) 
i= 1 j= 

Ireland and Kullback [6] estimate the joint probability function by minimizing the 
discrimination information number between the derived density function and the 
sampled density function. This is obtained by generating estimates which satisfy the 
marginal constraints and minimize the discrimination information number defined 

r c 

EPii log(Piil7ry) (8) 
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where v. = n /n. The form of (1) for this problem is 
r c 

2 (xi, + nij)log[(xij + ni)/nIn] (9) 
i=l1 j=l 

since it is minimized by the same estimates minimizing (8). 
The solutions to these problems require integers for {xiI i = 1, . . ., r and j 

= 1, .. , c}. To obtain this goal proceed as follows: Let Zi = min(ai, bj) for all i, j 
and linearize each convex (concave) function fUy(xq) over the set of all integers from 0 
to Zu I Thus obtain a linear programming problem with Z = variables (Hadley 
[5]). Specifically, the problem is to find nonnegative integer variables x,k so as to 
optimize {r , c= > I' 1z allkXUk} subject to 

c Zq 

E E xijk = ai, i= 1..., r, 
j=1 k=1 

r zij 

E E Xijk 
= by, j= 1, . ,c, 

i=1 k=1 

0 < xgUk < 1, all i, j, k where auk = fh(k) -f11(k - 1). (10) 

One can show that an optimal solution to this problem (which is not a classical 
transportation problem any more) is necessarily integral. Thus, optimal integer 
solutions to problems (5), (7) and (9) can now be obtained using any simplex-based 
algorithm. A more efficient way might be to use the Graves-Thrall method [4] for 
capacitated transportation problems with convex separable costs. Another attractive 
alternative would be to use one of the transportation or network algorithms designed 
for convex costs. Better than all of these would probably be a slightly modified 
specialization of Dantzig-Wolfe decomposition [1], [5] for separable programming. 
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