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On the Relative Waiting Times in the
GI/M/s and the GI/M/1 Queueing Systems

URI YECHIALI

Department of Statistics, Tel-Aviv University, Israel

The expected steady-state waiting time, W,(s), in a GI/M/s system with interarrival-time
distribution H(-) is compared with the mean waiting time, W,, in an “equivalent”
system comprised of s separate GI/M/1 queues each fed by an interarrival-time
distribution G(-) with mean arrival rate equal to 1/s times that of H(-). For H(-)
assumed to be Exponential, Gamma or Deterministic three possible relationships
between H(-) and G(-) are considered: G(-) can be of the “same type” as H(-);
G(+) can be derived from H(-) by assigning new arrivals to the individual channels in
a cyclic order; and G(-) may be obtained from H(:) by assigning customers
probabilistically to the different queues. The limiting behaviour of the ratio R = W,/ W,(s)
is studied for the extreme values (1 and 0) of the common traffic intensity, p. Closed
form results, which depend on the forms of H(-) and G(-) and on the relationships
between them, are derived. It is shown that W, is greater than W,(s) by a factor of
at least (s + 1)/2 when p approaches one, and that R is at least s(s!) when p tends
to zero. In the latter case, however, R goes to infinity (!) in most cases treated. The
results may be used to evaluate the effect on the waiting times when, for certain
(non-queueing) reasons, it is needed to partition a group of s servers into several
small groups.

INTRODUCTION

IN DESIGNING a service system (of, for example, elevators, telephones or check-
out counters) comprising several servers, it is well known that grouping the
servers to give service in parallel is always “better” than partitioning them
into several small groups. In certain situations, however, it is preferable to
partition the servers instead of grouping all of them together. For example,
a department store puts several cashiers in various locations so that customers
will not have to walk long distances to pay for their purchases—although,
from a strict queueing point of view, it is more efficient to put all the cashiers
in one place. Another example is a telephone service (such as directory
assistance) which handles many incoming calls. In various instances, there are
limitations on the number of operators who may be hooked up into a single
group; therefore, it may be technologically and economically better to partition
the operators into several groups.

Here we compare a GI/M/s queueing system with its partition into s identical
GI/M/1 queues, specifically considering a service system comprising s > 2
identical servers, where the interarrival times have common distribution
function H(-) with mean 1/A, and the service times at each channel are i.i.d.
Exponential random variables with mean 1/u. The comparative system has s
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separate but identical GI/M/1 queues such that, for each individual channel
(= queue), the interarrival time distribution is G(-) with mean s/A.

Denote by W, the expected steady-state waiting time (excluding service) of
an arbitrary customer in each of the GI/M/1 queues, and by W,(s) its
corresponding value in the GI/M/s system. We are concerned with evaluating
the ratio R = W,/W,(s) of the mean waiting times in the two different
configurations. In what follows we mainly deal with the Gamma family of
interarrival time distributions and study the limiting properties of the ratio R
when the traffic intensity p = A/(su) approaches its extreme values, 0 or 1.
It will be shown that these limits depend on the forms of the distributions
H(-)and G(-) and the various possible relationships between them—i.e., on the
way in which the general stream with intensity A is separated into s individual
streams, each with a mean rate of A/s arrivals per unit time.

Three types of relationship between the distributions H(-) and G(-) will be
treated. We will first assume that H and G are of the “same type”.
That is, if H(-) is Exponential, Gamma or Deterministic, so is G(-). Next we
will assume that G is derived from H by cyclic assignment which systematically

w,
T, 1. lim| R(p) = —=
e - | 0= |

The procedure in
which G is
derived from H

Cyclic: (ks + i)th

Probabilistic:
A new arrival is
directed to the
ith channel with

Distribution arrival is directed probability
of T Same type to the ith channel P=1/s
s+ 1
Exponential s -lz- s
1 2sm —n+ 1
Gamma(n, An) s nE S
n+1 n+1
Deterministic s s 2s — 1
. W,
TABLE 2. lim | R(p) =
=0 W,(s)
The procedure in
which G is
derived from H
Distribution
of T Same type Cyclic Probabilistic
Exponential [’ s(s!) ©
Gamma © s(s!y" o
Deterministic © [’ ©
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directs every (ks + i)th customer (k=0,1,2,...;i=1,2,...,5) to the ith
channel. Finally, we will treat the case where G is derived from H by
assigning the arrivals probabilistically to the individual channels; i.e., a newly
arrived customer is assigned to the ith channel with probability P, = 1/s.

The results are summarized in Tables 1 and 2 where the limiting values of
R are explicitly given for the Exponential, Gamma and Deterministic distribu-
tions. These results show that W, is greater than W,(s) by a factor of at least
(s + 1)/2 when p approaches one, and that R is at least s(s!) when p tends
to zero. In the latter case, however, R goes to infinity (!) in most cases treated.

SOME KNOWN RESULTS AND NOTATION

For the GI/M/s system we suppose that customers arrive at instants
to=0,t1,t2,...,t,,...; the interarrival times T,=1t,—t,_, (n=1,2,...) are
iid. positive random variables having the common distribution function
P{T < t} = H(t) with mean E(T) = 1/A. The service times {V;} at each channel
are Li.d. r.v. with df. P(V, <v)=1—e* v >=0.

When the system is separated into s identical GI/M/1 queues, the epochs
of arrival to an individual channel are t,,t,,,t,,,...,,.,-.. Where the inter-
arrival times X, =t, —t, , (k=1,2,...) are iid. positive r.v. having the
common d.f. P(X < x) = G(x) with finite mean E(X) = s/A. The service times
at each separate channel have the same probabilistic characteristics as the
service times at each of the channels in the GI/M/s system.

Define the traffic intensity by p = A/(sp). It is well known!+?:3 that each of
the two systems attains its steady-state regime if and only if p < 1. The
analysis in this work is carried out under this assumption.

For the GI/M/1 model Pollaczek? has shown that the average waiting time
of an arbitrary customer for his service to start is given by

Y

W, = )]
ol =y
where z = v is the unique solution in (0, 1) of the equation
z=Glu(l ~ 2)] @)
and
GO) = f e~ dG(x)
0
is the Laplace-Stieltjes transform of the distribution function G(-).3
For the GI/M/s system, the average waiting time is given by
o
W) = sl — @)D €)
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where @ = «, is the unique solution in (0, 1) of the equation
o = Hlps(l — w)]. 4)

D is calculated from the relation

s—2 .
D=1+(1—oc)2ﬂi (5)
i=0
where
s—2 0
ﬁs—1=1;ﬁj= Z ﬁiPij+ Z “l_SHPij (j=01,...,s—1);
i=j—1 i=s—1
B-1=0, (6)

and the P;/’s are the one-step transition probabilities of the embedded Markov
chain of the GI/M/s queue.
From (1) and (3) we readily have

W, (1 — o)

R ) S|:oc(1 — y)]D' 7
In what follows it will be shown that, for the family of Gamma distributions,
o and y are functions of p. Thus, in the sequel, it will be understood that
o= o(p), y = y(p) and R = R(p). Also, in order to gain a better understanding
of the results, we occasionally treat separately the Exponential and Determin-
istic distributions, although they are, respectively, a special case and a limiting
case of the Gamma distribution.

THE CASE p— 1

It is well known that the solutions ye(0, 1) for (2) and « (0, 1) for (4) exist
if and only if

ry=ts1 and Py =L,
p p

respectively (where f(y) = G[u(1 — y)] and F(a) = H[us(1 — «)]). Since both
f(y) and F(x) are convex increasing functions in (0,1) and f(1) = F(1) =1,
it follows that both y—1 and «—1 as p— 1. Moreover, using equation (6)
we derive that

s—jt+1

ﬂs—j< I—[ (l/lji—l,i) forj=2,3,...,S,

i=s—1
and from equation (34) in the Appendix it follows that for general inter-
arrival-time distributions

s—2
lim ) B < 0.
p=1 =0
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Thus, in this case, D—1 as p—1 and

hm R(p) = s lim |:1 oc] ®)
p—1 1 - Vi
We now consider three different types of relation between H(-) and G(-):
A. H(-)and G(-) are of the “same type”.
B. G(-) is derived from H(-) by cyclic assignment of arriving customers.
C. G(-) is derived from H(-) by probabilistic assignment of arr1vals to the
individual channels.

Proposition 1

If H(-) and G(-) are of the “same type” (with one of the above three
distributions) then lim,_,; R(p) = s.

Proof

(i) The Gamma distribution. Let T ~ Gamma(n,An). That is, T has the
Gamma distribution with shape parameter n and scale parameter An. (The
Exponential distribution is the special case when n = 1). In other words, the
density function of H(-) is
Cmt (ﬂ,l’l)"t"_ 1

(n—1"

Similarly, we assume that X ~ Gamma(n, An/s). Now from (2) and (4) we
calculate

ht) = e

_ (pn)'
"= = o) + pu]" )

and

(pn)y’
[ — )+ pn]"
It follows immediately that & =y and hence lim,; R(p) = s.

(i) The Deterministic distribution. In this case, we compare the D/M/s and
the D/M/1 processes. From (4) and (2) we readily get

Y= (10)

ow=e 70 (11)
y = e~ =l (12)

The obvious conclusion is that « = y and therefore, again, lim,_; R(p) = s.
Q.ED.

Remark 1

There are two meanings of “p approaching 1”: It could mean ,u—> /1/5
with A held fixed. There is no problem here. Or it could mean “A1— su”,
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with u held fixed. In this case one must be specific about how the inter-
arrival-time distribution changes as its mean changes. Since the Gamma
(n-Erlang, to be precise) distributions are parameterized by A we have no
problem here either.

Remark 2

Another approach to the “same-type” case where, in fact, « = y for general
(and not just Gamma) interarrival-time distributions might be as follows.
If we interpret the statement “of the same-type” to mean that T is
distributed as Y/A and X is distributed as Y/(1/s), where Y is a random
variable with mean 1, then o = E{exp(—su(l — o)T)} = E{exp(—(1 — o)Y/p)}
and y = E{exp(—u(1 — y)X)} = E{exp(—(1 — y)Y/p)}. Hence o = y.

Giving the above results one may be inclined to conclude that, in general,
for any H(-) and G(-) satisfying E(T)=1/A and E(X)= s/, we will
always have that o=y or, at least, that lim,., [(1 — &)1 —y)] =1, and
hence, lim,_, ; R(p) = s.

This, however, turns out to be incorrect and as was indicated above it
will be shown that R(p) depends on the specific way in which the general
arrival stream for the GI/M/s queue is partitioned into the s individual streams.

We now consider Cyclic Assignment and suppose that every (ks + i)th arrival
(k=0,1,2,...;i=1,2,...,s) is assigned to the ith queue. Thus if {T,,} is the
sequence of interarrival times to the GI/M/s system then the interarrival time
X to each of the s separate identical channels is the sum of s ii.d. random
variables, i.e.,

X=Y T,
m=1
Thus,

y = GLu(l — )] = (A1 - )" (13)

If T~ Gamma(n, An) then from the pfoperties of the Gamma distribution
it follows that X ~ Gamma(sn, An). We thus have, using (2), (4), and (13), that

_ (pn)'
“TH o)+ pl 9
and
(pn)™ (15)

T = y)s + pnl”

In this case o #y and the problem is to calculate lim,. [(1 — a)/(1 — )]
where both o and y tend to 1 as p approaches 1.
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Proposition 2

For the Cyclic Assignment in which T ~ Gamma(n, An) and X ~ Gamma
(sn,An), we have lim,_; R(p) = (sn + 1)/(n + 1).

Proof
Rewriting (14) as
x5 () = aonr = a1 = oo
K=1

dividing by (1 — «), differentiating both sides with respect to p and taking
limits as p— 1 we obtain, after algebraic manipulations, that

lilTll o(p) = 2n/(n + 1) (16)
oo
In a similar way we derive
lirr} Y'(p) = 2sn/(sn + 1) 17
s
Thus, from (8)
. sn+1
lim R(p) = .E.D.
lim (p) =~ 1 QED (18)

The Exponential case is derived from (18) by letting n = 1, and in that case
R(p)—(s + 1)/2.

The Deterministic case can be obtained either directly or by letting n
approach infinity. In the latter case (18) readily implies that R(1)— s as n— oo.
In the former case, results (11) and (12) apply and the immediate consequence
is that lim,_,; R(p) = s. Note that (11) and (12) may be obtained from (14)
and (15) by letting n approach infinity.

Comparing the results of the “same type” and the “cyclic” assignments it
is clear that for n < oo, (sn + 1)/(n + 1) < s. That is, by the cyclic assignment
we reduce the variability of the interarrival times and therefore reduce the
waiting times in the s separate channels. It is also interesting to note that
lim,_; R(p) = (sn + 1)/(n + 1) is non-decreasing in n.

Finally, we consider Probabilistic Assignment where the rule of assignment
is the following:

Every new arrival is assigned to the ith channel with probability P, = 1/s.
If {T,,} is the sequence of interarrival times to the GI/M/s system then the
interarrival times {X{’} to the ith channel (i =1,2,...,s) are iid. random
variables distributed as

1
X9= Y T, WP (1—PY'P (I=12..) (19)
m=1

331

OR.Q. 28/2(i)—G



Operational Research Quarterly Vol. 28 No. 2, i

That is
1

Gi(x)=P[X? < x] = i PI: Y T, < x](l — Py P, (20)
1=1

m=1

The Laplace—Stieltjes transform of G;(x) is given by

R 3 ()
Gi(0) = Y10 (21)
where P, =1 — g;. Clearly, E(X")= —['(0)= E(T)/P, and if P,=1/s then

E(X®) = s/A.
Now for each channel we have
PHLu(1 = 7)]
— g Hpu(1 = p)]
and if P, = 1/s we have y; = y for all i and
,_ M =)
s — (s — DH[u(1 — y)]

Assuming now that T ~ Gamma(n, An) then

H(0) = [An/(0 + An)]" ] (24)

yi= Gilu(l — )] = 5 (=12....9 (22)

(23)

and hence
(pn)"

R
s + pn | — (s — )(pn)’

S

(25)

Proposition 3

Under Probabilistic Assignment, if T ~ Gammal(n, An) and vy is given by (23)
then
. 2sn —n + 1
lim R(p) = ————.
plf} (o) n+1

Proof

As before, from (16), «'(1) = 2n/(n + 1).
To derive y'(1) we apply on (25) the same method used to obtain (16)
and we get

, 2sn
A | 26)
Thus, finally,
2sn —n + 1
imRp) =-"""F1  QED 27
p—1 n-+ 1
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When n=1, T is Exponential (ic., the arrival stream is Poisson),
H() = /(0 + A) and from (21),

0 + P

that is, the arrival stream to each of the individual channels is a Poisson one
with intensity P;A. If we let P, = 1/s then the current case is identical with
part (i) of the “same type” case and lim,,; R(p) = s. Clearly we may obtain
this result simply by substituting n = 1 in (27).

The Deterministic case is derived from (27) by sending »n to infinity, which
yields, lim, ,; R(p) = 2s — 1.

We summarize the above results in Table 1.

Investigation of Table 1 reveals that the cyclic assignment is the best, while
the probabilistic assignment is the worst. Another conclusion is that for the
family of Gamma distributions the ratio lim,_,; R(p) increases monotonically
with n.

Gi(g) =

THE CASE p—0

The analysis in this case is somewhat more involved than for the case
where p— 1. The detailed proofs are given in the Appendix, and here we
only state the results. These results hold for T ~ Gammal(n, An).

Proposition 4

If H(-) and G(-) are of the “same type” then lim,.,R(p)= oo. This
result is somewhat surprising. The explanation is that, when p—0, the
waiting time in the system with s servers goes faster to zero than the waiting
time in the single server queue, although both waiting times approach zero
as p—0.

Proposition 5
For the “Cyclic Assignment” case, lim,_, o R(p) = s(s!)".

Proposition 6

For “Probabilistic Assignment”, lim,_,, R(p) = 0.
We summarize these results in Table 2.

CONCLUSION

The average waiting time in a GI/M/s queue was compared with the
average waiting time in an “equivalent” system comprised of s separate GI/M/1
queues. The results may be used to find the optimal partition of servers into
several groups when designing a service system where certain restrictions
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eliminate the possibility of assigning all the servers in a single parallel group.
The results may be qualitatively summarized as follows. If the inter-
arrival times for both systems is of the “same type” then one would wait, on
the average, at least s times as long in the separate system than in the combined
one, when p goes to 1. When p becomes small the ratio of waiting times goes to
infinity. By assigning arrivals probabilistically to the various individual
channels we even worsen the situation. The best one can do is to assign the
new arrivals systematically in a cyclic order such that the (ks + i)th customer
(k=0,1,2,...;i=1,2,...,s) is always directed to the ith queue. Even in
this case one waits in the system comprised of s individual GI/M/1 queues at
least (s + 1)/2 times as long as in the GI/M/s queue.

APPENDIX

We first show that for the family of Gamma distributions and for the
various relationships between H(-) and G(-), both « and y approach zero
as p—0.

Indeed, when p—0, F/(1)— oo and F(0) = 7 e *'dH(t). If T ~ Gamma

(n, An) then
B pn n
FO = <1 + pn> -0

Thus using (9), «—0 as p— 0. Similarly, /’(1)— oo as p—0 and f(0) = G(u).
For the “same type” case it was shown that for n=1, 1 <n < oo, and
n = oo, we always have o =y. Hence, y—>0 as p—0. For the cyclic case,
G ~ Gamma(sn, An) and hence

10 = < j—n2n> 1 5 -0
K 3 + pn

as p—0. Thus, from (15), y—0 as p—0. For the probabilistic case, using
(23) and (24), one obtains

J©) = [pn/(1/s + pn)]"/{s — (s = DLpn/(1/s + pn)]"} — 0.
Hence from (25), y—0 as p—0. Q.E.D.

Next we show that
lim D = oo. (28)

p—0
To show this we use equation (5) and observe that, since ;> 0 (j = 0,1,.. .,
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s — 2) it suffices to show that ,_,— oo as p—0. From (6) it follows that
hm .Bs— 2 = hm [(1 - Ps—l,s— 1)/Ps—2,s— 1]
p—0 p—0

where, for the GI/M/s queue,

Pgyy = f e—"‘“—“dH(r)=(pn)"/(pnﬁ—%l). (29)
0

Clearly, P,_,,-1—0 and, since P,_;,.;—0 (see (34)), f,_,— o0 as
p—0. QED.
In view of the above results and equation (7) our problem now is to find

lim R(p) = s lim <X D>, (30)
p—0 p—= 0\
where both y and « tend to zero as p does.

Proof of proposition 4
When we considered the “Same Type” case for p—1 it was shown that
we always have « = y. Thus, using (30), it readily follows from (28) that

lim R(p) = slim D = oo Q.E.D. 31)
p—0 p—0

Proof of proposition 5
We first note that

s—2
limD =1+ Y lm g, (32)
p—0 i=1,0
and from (6), for j =0,1,2,...,s — 1
s—2
llmﬁj= llm|: Z ,BiPij+Ps—1,j:| (33)
0 P20 i=j-1

Now, for j <i+ 1< s we have'??

© /7 nn—1
Pij — f ! + 1 1-— e—;zt)i+1~je—utje—zyyt(lll) r d
0 J (n—=1

_ i+ 1 i+l-j i+1 —] . (pl‘l)”
- ( J > k;O ( k >(_ 1)] [Tl]" (34)
mE

Using (34) and recursively applying (33) (with f,_; = 1) we obtain

<S— 1>”<S—2>HH.<‘]‘+ 1>n
lim g, = >° 5 > (j=s—25s—3...1. (35

p=0 lim (pn)s—4~bn
p0
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Now, since lim, o Pjo = 1 for j=0,1,...,s — 1 we have, from (33),

s—2
Y lim g+ 1

li — =0 36
pl_I:% BO LI_I,I})(I — Poo) ( )
but
lim (1 — Pog) = lim | —2"
p—0 p—0 + 1
pn 5
thus,
s—1\"/s—=2\" [j+ 1} L
, : : ; pn + E
I _ i / 1 37
pl—l}g Po pl—»n(} jgﬁ (pmye=d= 1 " pn 7

Now from (14), (15) and (35) it follows that for j=1,2,...,s — 1

P WP 1) i L e . P
i‘fé(aﬁJ) i‘ino{[(l s pn]“(pn)"ﬁ’} 0 G%)

and, therefore, using (32) and (37) we finally have

lim R(p) = s lim <X ﬁ0> —s2 S i ST sty (39)
p—0 p—o 0\

(1/sy"
Q.E.D.
Clearly, for the Deterministic case (when n = co) lim,.,R(p) = co. On
the other hand, a direct derivation would give o =y from which it follows
again that lim,_,, R(p) = oo.
The Exponential case may be obtained from (39) by substituting n =1
which yields lim,, o R(p) = s(s!).

Proof of proposition 6
For T ~ Gamma(n, An) consider again equation (14), and rewrite it as

oy, p) = np" (40)
where
W)= ) @(l — @) pny " @1)
k=1

Clearly, y—1 as p—0.
336
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Taking derivatives of both sides of (40) yields

o' Wo, p) + ay(e, p) = n"np" L. 42)
Passing to the limit gives lim,, o' = 0. Continuing differentiating in this
manner we obtain lim,.o0® =0 for k=1,2,...,n — 1, where «® denotes
the kth derivative with respect to p. Only for the nth derivative we have
lim o™ = n"n!. (43)
p—0

Considering (25) and applying the same method as above, we get
lim,.oy® =0 for k=1,2,...,n — 1 and

lim y™ = "~ 'n"nl. (44)
p—0
Hence,
lim R(p) = s"lim D = 0. Q.E.D. 45)
p—0 p—0
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