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A power system for a private automatic branch exchange (PABX) consists of 
n independent and identical rectifiers hooked up in parallel. The lifetime of 
each component is an exponential random variable with a known mean 
(MTBF). The system fails when the number of operating rectifiers is less than 
m(m rsn). 

Rectifiers are distinguished by two main characteristics: the current they 
carry and their MTBF. The minimal number of units, m, is determined by 
technological considerations: for each type of rectifier, m is calculated so that 
the system can carry a given maximal current. This maximal current is 
specified for each PABX. 

The system is maintained by a technician who may visit the exchange 
regularly every v units of time or when it fails. Several maintenance policies 
are considered. For each type of exchange and for each form of maintenance 
policy, we determine the optimal set of parameters, {m, n, MTBF, and v}, to 
minimize the operating cost for a required level of reliability. These results are 
then used as guidelines for standardizing PABX power systems. 

APOWER SYSTEM for a private automatic branch exchange (PABX) 
consists of n independent and identical components (rectifiers) 

hooked up in parallel, as shown in Figure 1. The system converts AC into 
DC. Each of the n components may fail randomly. The system is operative 
so long as at least m units are operating; i.e., it fails when the number of 
operating components is less than m(mn). Rectifiers are distinguished 
by two main characteristics: the current they carry and their mean time 
between failures (MTBF). The minimal number of units, m, is determined 
so that the system can carry a given maximal current, Imax. 

It is customary to add r "redundancy" rectifiers so that the total 
number of units in the system is n=m+r. The system is maintained by a 
technician who visits the exchange from time to time according to a 
specified maintenance policy. At each visit the technician replaces all 
non-operating components. 

We study various types of PABX's characterized by their maximal 
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currents. (The common types are Imax=1, 3, 6, 10, 16, 24, 36, 48, 72, and 96 
amperes.) The power system for an exchange may consist of different 
sets of identical rectifiers. For example, a 6-ampere exchange may have 
rectifiers of 1 ampere each, or 3, 6, or even 10 amperes. 

Our objective is to find the optimal power system configuration for 
each PABX under various maintenance policies. For each of the main- 
tenance policies considered, we find the optimal set of m, n and MTBF, 
and intervals between technician's visits, which minimize the average 
total cost under a reliability constraint. The constraint was specified by 
field engineers, who require a small probability of system failure because 
the time-dependent cost of such a failure is difficult or impossible to 
estimate. 

We first describe the mathematical model and derive the probability 
distribution function of the system's lifetime. Next we describe various 

maintenance policies, define and calculate the overall cost function for 
each policy, and analyze it. Finally, we give numerical results and discuss 
their implications. 

1. DISTRIBUTION OF THE SYSTEM'S LIFETIME 

Let n be the number of independent identical components in parallel. 
The lifetime of each component is exponentially distributed with mean 
14[t=MTBF. The system is in operating condition so long as the number 
of operating units is not less than m(m'n). 

Let T' be the time until system failure. T' is the time until the 
(n-m+l)st unit fails. That is, 

Twm=e Z m+lx (me n), t 1) 

where Xi (i= 1,, n-m+ 1; Xo=O) is the time between the (i-1) st and 

Figure 1. n independent and identical components (rectifiers), hooked 
up in parallel, are shown for a power system for a private automatic 
branch exchange (PABX). 
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the ith failures of individual components. Since the lifetime of each 
component is exponentially distributed, Xi follows an exponential distri- 
bution with parameter (n-i+1)I (e.g., see [1, p. 59]). 

The following results will be needed (e.g., see [1, pp. 60-63]): 

PTm-- u) Frn(u)=h=m (l (exp(-tiu))k(1-exp(-[tu)) (2) 

and E{T 1=(=1/[) E 9=m 1/k. (3) 

2. MAINTENANCE POLICIES 

Several maintenance policies are considered here. The policies differ 
according to the technician's visits. We make the following general 
assumptions: (1) The components are completely effective until they fail, 
after which they are completely ineffective; (2) When a replacement 
occurs, either a completely new component is inserted, or the old com- 
ponent is repaired so that the p.d.f. of its lifetime is that of a new 
component. 

(a) Periodic maintenance. Following a fixed schedule, the technician 
visits the system every v units of time. He replaces all units that have 
failed during the time interval v. Note that the system might be in a non- 
operating condition for some time before the periodic maintenance takes 
place, and the technician would have to replace more than n-m+1 
components. The system is therefore so designed that the probability of 
such an event will not exceed a specified level a. 

(b) Emergency maintenance. The system is visited only when the 
number of operating units falls short of m. That is, when the (n-m+l)st 
failure occurs, the technician makes an emergency visit and replaces all 
n-m+1=r+1 non-operating units. (We assume that the time it takes to 
replace the units is negligible.) Instants of replacement constitute renewal 
points, where times between successive renewals are i.i.d. random varia- 
bles distributed like Tm. 

(c) Periodic-emergency maintenance. This policy is a combination of 
the first two. Basically, there is a planned schedule of visits every v units 
of time. However, if the system fails within this interval, the technician 
makes an immediate emergency visit and replaces all n-m+1 failed 
components. The next visit takes place v units of time after the emergency 
visit, unless the system again fails before that time. 

(d) Periodic maintenance and emergency replacements. This is a 
modification of policy (c). Scheduled visits take place v units of time 
apart. In addition, each system-failure requires an emergency visit. The 
technician follows his preplanned schedule at times kv (k=O, 1, 2, ...) 

even if the emergency replacement takes place just before a periodic visit 
at time kv. On the surface, this policy seems to be inferior to the preceding 
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one. However, since the technician usually maintains several exchanges, 
it might in certain cases be more efficient for him to stick to his planned 
schedule augmented by emergency visits. 

3. THE COST FUNCTIONS 

Let Y be the time between two successive visits, and let Z be the 
number of components that failed within the time interval (0, Y]. For 
each of the policies (a), (b), and (c), we would like to find the best set {m, 
n, MTBF, and v} that minimizes the rate of cost 

Dn =cin+[c2E {Z} +K]/E {Y) (4) 

where 

cl -investment cost of a component per unit time (for a system 
designed for a given technological lifetime); 

C2 = unit cost for replacement of failed component; 
K = fixed cost for a technician's visit. 

For policy (d) we wish to minimize the cost function 

Dn~c 1f c2{expected number of units 
C21 

replaced within (0, v] 

+ expected number of] 
+visits within (0, v] jK]/ 

We now analyze in detail each of the four maintenance policies. 

Periodic Maintenance 

Here we readily have E{Y)=v and E{Z}=n(1-exp (-sv)). As men- 
tioned above, for any given m, the optimal n, n* is determined such that 

P(T'--< v)xa. (6) 

Substituting the above values in (4) yields D' =cln*+[C2n* 
(1-exp (-1wv))+KJ/v. 

For each of the various PABX's detailed numerical calculations were 
performed (see [4]). The optimal values of m, n*, MTBF, and v are given 
in Section 4. 

Emergency Maintenance 

In this case E {Y} =E (T'}, while E {Zj =n-m+1. Thus, from (3), 

Dn =cln+[C2(n-m+ 1) +Klju/ E n~li (7) 
Using the fact that, for given m and It, D:' is a discrete convex function 

of n, we determine the optimal value of n that minimizes D" to be either 
1 or such that DRn7Dn:+1 and Dn<DU1n. 
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Periodic-Emergency Maintenance 

Visits take place either v units of time after the previous visit or when 
system-failure occurs-i.e., after Tn' units of time. Specifically, Y=min 

TnM v}. Hence, we have [3, p. 38] Et{Y =V-f"FT,(t)dt. Using (2) we 
derive 

E1 
=v (k Z" eXP( tkt) Zi=ot )(l -ep(it)]dt 

=V-kO Eikn) ( 
- ) _1)'[1-exp (-p(k+i)v)]11i(k+i). 

(8) 

The expected number of failures within (0, Y] is given by 

E {Z) = E j=-o(j) (1-exp (-iv)) J'(exp (-_v))n' 

+(n-m+1)FT`(v) 

= k=m(n-k) (k) (exp (--v))k(1-exp (-tw)) 

+(n-m+1)FT (v) (9) 

=n[1-FT" (V)]- kk) (exp (-,v))k(1-exp (-lv)) 

+(n-m+1)FT`(v) 

=n-(m-1I)FT Z (V)-nexp (-[w) [1-FT,, ' (V) ] 

Note that by careful interpretation of (9) one may obtain the correspond- 
ing results for emergency maintenance and periodic maintenance as 
follows. For the former, v=oo. Letting F(oo)=I in (9) yields E {Z} =n-m+1. 
For periodic maintenance, F(v) represents the probability that the tech- 
nician will make a visit before time v; obviously, this probability equals 
zero. Putting F(v)=O in (9) yields E tZ} =n(1-exp (-Liv)), as was obtained 
directly. 

To find the optimal set of {m, n, MTBF and v}, we use (4) with E { YJ 
and E (Z} given by (8) and (9), respectively. Two procedures for deriving 
n may be employed. One way is to look for n*, which, for every m, 
determines Dnm= minn {Dn}. The second way (adopted here) is to find n* 
such that P {TT'*_v} ~S, as was done for the case of periodic maintenance. 

Thus, our objective in this case is to minimize the cost function 

Dn*=cln*+[c2E {Z} +K]/E (Y} . (10) 
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Periodic Maintenance and Emergency Replacement 

Let N(v) be the number of emergency visits within (0, v], and let 
M(v)=EN(v). M(v) satisfies the renewal equation M(v)=FTrl' (v)+ 
0fM(v-t)dFT, (t). The Laplace transform of M(v) is given by (see [3, p. 
236]) M(s)=T'(s)/[1-Tn(s)], where Tn (s)=E {exp (-sTn)} is the La- 
place transform of Tn. Since T' is the sum of exponentially distributed 
independent random variables (see (1)), its Laplace transform is the 
product of the transforms of the Xi's, namely, Tn (s)=Ji=Xmk//(k/I+s). 
Hence, 

M(s)= FJ*=m(4kL)/[fIn=m(kIp+s)- FJ=m(ki)]. (11) 

To find M(v), one has to invert M(s) as given by (11). A general inversion 
seems to be difficult, if not impossible. However, for m=n, m=n-1, and 
m=n-2, we obtain explicit formulas. These formulas are applicable since, 
as will be evident from the numerical results, in most cases it is optimal 
to have n=m+1 components in the system. 

For m=n, M(s)=nfi/s. Thus, M(v)=nptv, as was expected because of 
the Markovian properties of the process. 

For m=n-1, M(s)=nli(n-l),u/s[s+ (2n-1),u]=n(n-1),u(2n-1)-' 
[I/s-11(s+(2n-I)ft)]. Thus, M(v)=n(n-l),u(2n-l)-lv-n(n-1)(2n-1) -2 

[1-exp (-(2n-l),uv)]. 
For m=n-2, 

M(s) =n(n-1 ) (n-2)[L3/s[s2+3(n-1),tus+(3n2-6n+2)[12] 
=n(n-1) (n-2),i3(a2+b2)-1[1/s- (s-2a)/((s-a)2+b2)] 

where a = 3,u(1-n)/2, 2b = -,(3n2-6n-1 ) 1/2 and a2+b2=Pi2(3n2-6n+2). 
From [2, p. 229] it follows that dM(v)/dv=n(n-1)(n-2),I(3n2 -6n+2)- 
[1-exp (av)(cos (bv)-(a/b)sin (bv))], which implies that 

M(v)=n(n-1) (n-2)p(3n2-6n+2)-f {v-exp (av) (a2+b2)- 
[a cos (bv)+b sin (bv) 

-(a/b)(a sin (bv)-b cos (bv))]-2a/(a2+b2)}. 

The objective here (see (5)) is to find the optimal set that minimizes 

D;~=in*[C2 expected number of units)+Mv+JK1,(2 
Dn*=clfl+[C2 1, replaced within (0, v] {M(v)+1}K]/v, (12) 

where {M(v)+1} = expected number of visits within (0, v]. Note that 
here too n* is determined by (6). 

The next step is to calculate the expected number of units replaced 
within (0, v]. Let {(Tnm) i} be a sequence of i.i.d. random variables having 
the common distribution function FT,, (.). Let Sq = 7=i (Tx) i be the time 
until the qth system-failure within an interval of length v, and denote by 
Fsq(t) and fsq(t) the distribution and density functions of Sq. 
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For kn-m=r, let b(k; n, t)=(n) (1-exp (-Ht))k(exp (-Hit))n` be the 

probability of k component failures within (0, t]. Write B(r; n, t)=k=o 
b(k; n, t). Clearly, B(r; n, t)=1-FT, (t)=1-Fs1(t) is the probability of no 
system failure within (0, t]. 

Let R be the total number of units replaced within (0, v]. We wish to 
find E {R}. If no system failures occur within (0, v], then the probability 
of k component failures (k_ r) is b(k; n, v). If exactly qi 1 system failures 
occur within (0, v], then there are q emergency visits in addition to the 
planned one, and the total number of units replaced is (r+l)q+k for some 
kr. The probability of such an event is 

fSq(t)b(k; n, v-t)dts=P(q, k), (13) 

and hence the probability of q? 1 emergency visits within (0, v] is given 
by 

r ~~~~rv 
P (N(v)=q} = Ek=oP(q, k) Ek=o f Sq(t) b(k; n, v-t)dt 

t=0 (14) 

= ffsAq(t)[1-Fs, (v-t) ]dt=Fsq(v)-Fsq,+ (v). 
t-O 

It follows from (13) that E (R} is 

E{R} = >3=_okb(k; n, v) + E q? 1 r=o[ (r+l)q+k]P(q, k). 

Since r=o kb(k; n, v)=n(l- exp (-sV)) >3job(k; n-1, v)=n(l- exp 
(-tv))[1-FT ,(V)] and M(v)= >E=i qP{N(v)=q}, we get, using (14) 

E (RI = n(l- exp (-tw)) [ I-FTn ,(v)] (15) 

+ (r+ l )M(v) + Ei 
Oo 

2, r=oP(q, k) . 

The third term of the right-hand side of (15) is difficult to evaluate, but 
an approximation may be given, using (14): 

0Erv rt 
Eq=l k=ok fs,(t)b(ke; n, v-t)dt' , Eq=lr k=o fsq (t)b(k; n, v-t)dt 

t=0 t=0 

=r Sj=V[Fsq(v) Fsq+i (v)]=rFT;;(v). 

That is, E{R}'-n(l-exp (-nv))[1-FT , (v)]+(r+1)M(v)+rF7,,(v). Note 
that, when n>m+2 and an explicit formula for M(v) is difficult to obtain, 
one may use the approximation M(v) FT,, (v) for small values of a. 

To conclude, for any given pair of m and tG1=MTBF, we wish to find 
the optimal values of n and v that minimize 
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Dn =cin+[c2E {R} +[M(v)+1]K]/v, 

where n and v are related by the constraint P(Tm -v)-xa. 

4. NUMERICAL RESULTS 

We examined 10 types of PABX's, distinguished from each other by 
the maximal current they can carry. We therefore specify each exchange 
by its maximal current, Imax, which takes the values 1, 3, 6, 10, 16, 24, 36, 
48, 72 and 96 amperes. Rectifiers are specified by their current and 
MTBF. The set of currents considered for rectifiers is the same as the set 
of values for Imax; the values of MTBF are 5,000, 7,200, 10,000, 15,000, 
20,000 and 25,000 hours. The minimum number of rectifiers with which 
a system can operate is m. For an exchange of 16 amperes, for example, 
we may put m=16 if we use rectifiers of 1A each, or m=6 if we use 
rectifiers of 3A each, or m=3, 2, 1, 1, 1 if we use rectifiers of 6A, 10A, 16A, 
24A or 36A, respectively. For each of the above possibilities, we made 
calculations using all values of MTBF. For example, for a 16A PABX 
with 6A rectifiers, we put m=3 and calculated the total number of 

components, n, for different values of v, where v may take values of 1, 2, 
3, 4, 5 or 6 months (no higher values of v were allowed because of various 
technological considerations). The values of m, n, MTBF and v were 
substituted in the various cost functions, and the optimal values were 
obtained. 

Periodic maintenance. For a=0.05 (see (6)) and for each exchange 
(characterized by Imax), it was found that it is optimal to have m=1, n*=2, 
MTBF=20,000h and v=6 months. These results are summarized in Table 
I. If we did not have the restriction that v_6 months, we would not have 
obtained the uniformity expressed in Table I. 

Emergency maintenance. The optimal values that minimize (7) are 
presented in Table II. We conclude: (i) for all exchanges we have m=n=1; 
(ii) for exchanges with Imaxl, 3, 6 or 10 amperes, the optimal value of 
MTBF is 25,000h, while for the others it is 20,00h. 

Periodic-emergency maintenance. For a=0.05 and for each exchange, 
the values that minimize (10) were found to be identical with the values 
given by Table I. That is, m=1, n*=2, MTBF=20,000 and v=6. 

TABLE I 
OPTIMAL. VALUES FOR PERIODIC MAINTENANCE 

Current of 
m each MTBF n* v FT,," (V) 

component 

1 Imax 20,000 2 6 0.038 
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Periodic maintenance and emergency replacement. In this case, too, 
the optimal values that minimize (12) are the same as those for the 
periodic maintenance and for the periodic-emergency maintenance. How- 
ever, the values of the cost function for m=1, n*=2, v=6 and 
MTBF=25,000 hours are very close to the optimal values obtained when 
MTBF=20,000 hours. 

Standardization 

From the numerical results given in [4], several "standard" schemes of 
sets of rectifiers to be used may be constructed. The actual scheme 
depends on various considerations, among which the cost factor is only 
one. A possible standard scheme for each of the maintenance policies 
considered, under the assumption of uniform distribution of types of 
exchanges, is given in Table III. In Table III A represents the current of 

the chosen rectifier, and v=6 for all PABX's. The set of exchanges is 
partitioned into three groups, within which the same type of rectifier 
should be used. For the group of 16, 24, or 36 amperes rectifiers with 36 
amperes and MTBF = 20,000 hours are favored, where m=1 and n=2. 
Similar results are obtained for the group of 48, 72, and 96 amperes, 
where the rectifiers being used are of 96 amperes. For the group of 1, 3, 
6 and 10 amperes, different standard schemes are suggested depending 
on the specific maintenance policy. 
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TABLE II 
OPTIMAL VALUES OF PARAMETERS FOR EMERGENCY MAINTENANCE 

Imax i Current of MTBF n each unit 

1 1 1 25,000 1 
3 1 3 25,000 1 
6 1 6 25,000 1 

10 1 10 25,000 1 
16 1 16 20,000 1 
24 1 24 20,000 1 
36 1 36 20,000 1 
48 1 48 20,000 1 
72 1 72 20,000 1 
96 1 96 20,000 1 
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