
Optimal Storage
Allocation for Serial

Haim Mendelson, Joseph S. Pliskin, and
Uri Yechiali
Tel Aviv University

Operating
Svstems

R. S. Gaines
Editor

A computer system uses several serial files. The
files reside on a direct-access storage device in which
storage space is limited. Records are added to the files
either by jobs in batch processing mode, or by on-line
transactions. Each transaction (or job) generates a
demand vector which designates the space required in
each file for record addition. Whenever one file runs
out of space, the system must be reorganized. This
paper considers several criteria for best allocating
storage space to the files.

Key Words and Phrases: serial files, storage
allocation, reorganization, partitioned dataset

CR Categories: 3.5,3.7, 4.33,4.6

l. Introduction

External storage allocation is one of the hnal steps in
the physical design of a computer application. Several
studies have considered this problem II, 2,7, 8]. They
examined the tradeoff between efhcient storage alloca-
tion and system performance (some considered addi-
tional factors as well). Each evaluated some specifred
performance measures for a given file organization
scheme.

In this study we consider a computer application
based on a few interrelated files residing on direct-access
media. Records are added to a file sequentially, and are
stored at the end of the dataset. (Functions that do not
consume storage space-e.g. retrieval or replacement of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' address: H. Mendelson and U. Yechiali, Department of
Statistics, J.S. Pliskin, Faculty of Management, Tel Aviv University,
Tel Aviv, Israel.
@ 1979 ACM 0001-0'782/79/0200-0124 $00.75.

tu

a record-are not necessarily processed sequentially.)
We term such a dataset a serial file. Serial files are widely
used in data processing applications. The most common
form is a sequential dataset, where records are always
processed in the sequence in which the file is constructed.
Other examples are a partitioned dataset (analyzed in
detail in Section 5), and the overflow area of some index-
sequential file organization schemes. Serial overflow files
are also used with some types of random datasets.

Since the storage space allocation fbr each file is
finite, the system has to be reorganized from time to
time. The reorganization procedure depends on the spe-
cific structure of the system; we may assume that after
reorganization, the serial files are empty and the process
of record addition may be initiated. The problem is then
how to best allocate a given total amount of storage
space S among the files. This problem was partially
attacked by the authors [3], where the criterion for
allocation was the maximization of the expected time
until reorganization. In the present work we develop the
optimal allocation for a "reliability" criterion, and com-
pare the optimal allocation rules for the various criteria.

We emphasize the need for simple allocation rules to
close the gap between theory and application. As it turns
out, the optimal allocation rules derived in this work are
simple enough to be easily implemented.

The model and the various optimization criteria are
introduced in Section 2. Allocation that maximizes the
expected time until reorganization is discussed in Section
3, while in Section 4 we frnd the allocation that maxi-
mizes the probability that the system can process a
specified number of transactions before a reorganization
is required (this is the "reliability" criterion). In Section
5 we present two applications and numerical examples
for the results developed in the preceding sections.

2. Criteria for Optimization

Consider a computer application that uses /? interre-
lated serial files. The files reside on a direct-access storage
device, where storage space is limited. Records are added
to the files from time to time, either by jobs in a batch
processing mode, or by on-line transactions. Transac-
tionslarriveintothesystematinstants0<t|<t2<...
< 14 <... , where the interarrival times, ,h -- f - f-',
are independent, identically distributed (iid) random
variables. We assume the distribution of each re (k : l.
2,3, ...) to be identical to that of a nonnegative random
variable , (ro - r) possessing a finite mean Er. Each
transaction generates a demand vector which designates
the space required in each file for record addition. The
kth demand is an n-dimensional vector V* :
(V+, V3, .. , VX), where V! is the amount of storage
space required in the fth file due to the processing of the

t Although we have chosen to adopt the teleprocessing terminol-
ogy, our results are valid for batch processing as well.

Communications
of
the ACM

February 1979

Volume 22
Nurnber 2

Files

/<th transaction. {V.}tr are independent random varia-
bles identically distributed as a random variable V(Vo -
V) whose distribution function is F(v) : P{V = v}. The
vector V is nonnegative with finite mean E(V) : ltr :
(lrt Fz, ... , Fn).

Let S be the amount of storage space available for
allocation. At time /0 : 0, S is allocated to the files. Let
xi > 0 be the amount of space allotted to the nh frle (i
: lr 2, ... , n). Let

2:{xlx€R', X>0, f r,=S1
j-l

denote the set of all feasible allocation vectors. Let SA
: (Sf, St, , Sf) denote the vector of total demand for
storage up to time f , where the cumulative demand of
file i is ^Sf

: L!_, Vt,.

The system can operate as long as none of the hles
runs out of space-that is, as long as S^ < x. Whenever
one file runs out of space, the system must be reorga-
nized. We say that the system fails at the first moment /
when Sf > x; for some file r'-that is, when it has to be

reorganized. Hence the system's lifetime until failure,
T(x), is given by

?n(x) : min{relSf > x;, for some i}.

The number of transactions the system is capable of
processing without reorganization is given by

N(x):max{klSo=*}.
The random variables (x) and t/(x) are related by the
formula

N(x)+1

Equation (1) simply states that the lifetime of the system
equals the sum of interarrival times until failure.

The problem is to chose an allocation vector x € D
satisfying some optimality criterion. In this paper we
consider and compare three criteria for optimality:

(i) Maximtzatton of the expected system lifetime:
Ir?XaEp ET(x).

(ii) Maximization of the expected number of transac-
tions processed until reorganization: rl&X16,p EN(x).

(iii) Maximization of the probability that the system can
process at least M transactions without failure (M
is some prespecified number).

The hrst two criteria are cost oriented, and are typical
of batch-processed applications. By maximizing the ex-

pected time between reorganizations, the reorganization
cost per unit of time is minim tzed.z Hence, an appropriate

t Note that for a regenerative reward process [5], the average
reward per unit of time tends wilh probability I to the ratio

expected reward per cycle

expected length of a regeneration cycie

125

allotment could decrease average operating costs. Simi-
larly, the second criterion leads to the minimization of
the expected reorganization cost per job (or transaction)
processed.

The viewpoint of a decision maker adopting the third
criterion, which we call the reliability criterion, is differ-
ent. The objective here is to minimize the probability of
system failure. Such an objective characterizes telepro-
cessing applications, in which the cost of a failure is high.
For a system that has been designed to process up to M
transactions, the reliability function, representing the
probability of meeting specihcations, is equal to P{N(x)
> M\.

In the sequel, we make use of the fact that the number
of transactions processed by u computer svstem until
reorganization is usually very large. Thus. the parameter
M deftned in the reliability criterion is assumed to be
very large. In the analysis of expected value criteria, we
similarly assume that S >> Ii:r pr. Hence, asymptotic
approximations may be use to yield general, simple
results.

The allocation problem can also be regarded as a

decision problem under uncertainty. The decision maker
chooses an action (i.e. allocation vector) x € D. Then a
random consequence N(x) (or 7"(x)) is obtained. If the
von Neumann-Morgenstern axioms are satisfied, a utility
function U may be defined over the set of possible
consequences so that the expected value of U is maxi-
mized. Hence, the problem becomes

max EU(N(x)) (or max EUQ(x))).
xED x€D

It is of interest to find the utility function corresponding
to each of the aforementioned criteria. Through the
utility function one might gain a better understanding of
the preferences of the decision maker.

It is obvious that for the first criterion we have U(f)
: 7n (or an increasing linear function of 7"), whereas for
the second we have U(N): |'. For the third criterion,
the following lemma is relevant:

Lnuue i. A decision maker with the step utilit.vfunc-
tion

[0. N<Mu(N:.1 ; 'NzM
I r!].r

(2)

should utilize the reliability criterion.
Pnoor'. Clearly, EU(/V(x)) : P{N(x) > M}. n
Before going into a detailed analysis, we observe that

the number of optimization problems can be reduced
from three to two as a consequence of the following
result:

Luvtun 2.

ET(x): E[t/(x) + t].Er
Pnoor. The lemma readily follows by an applica-

tion of Wald's theorem [5] to eq. (l). !
Thus an allocation vector x[D is optimal for criterion

(i) if and only if it is optimal for criterion (ii).

Communications
of
the ACM

February 1979
Volume 22
Number 2

3. Allocation by Expected Value

Consider the equivalent criteria of maximizingEN(x)
or E(x). One intuitively expects a proportionate allo-
cation to be optimal. Such an allocation divides the total
available storage space, S, according to the ratios of
expected demands pf pz: ... 1 pnt so that

n

xt: fpi/ X p",]S, i : 1,2, ... , n. (3)
j*r

It is easy to construct a counterexample showing that
a proportionate allocation is not necessarily optimal.
Suppose the system consists of two serial frles. A trans-
action creates a variable-length record in each file. The
record sizes are independent, and have the same distri-
bution. The record lengths are either 20 or 40 bytes,
with equal probabilities. Hence, in our notation, V :
(Vt, Vz), where Vt and Vz a,re iid, with

P{Vt:20}: P{Vi:40} : }, i:1,2.
If S : 60 bytes, then a proportionate allocation yields xr

- x2:30. For this allocation we have

(r with probability lN(30, 3o; - tt, with probauility i.
Hence,

EN(30, 30; : l.

On the other hand, if we let x : (40,20), we obtain
(t with probability {N(40,20; :
tt, with probability {,

with an expected number of transactions

EN(40,20) : 1.

Thus, since EN(40, 20) > E.l/(30, 30), a proportionate
allocation is not optimal.

In real life, each file contains numerous records, so

that S >> X.Lt trj. In this case, the proportionate alloca-
tion rule is (asymptotically) optimal, as seen from the
following theorem.

THnonEu 1. If xi>> ftfor i : 1,2, ... , n, then

EN(x) = min (xi/Fi), (4)
i:1,2, ,n

and the optimal allocation is given by (3). A proof of
Theorem I is given in [3].

It follows from Theorem I that in real-life situations
(where S >> I"Lt p;), the system designer has to estimate
the expected demand vector p, and allocate the given
space S so that

Xtl Xzl ... i Xn : |ltl Fz: ... I F".

This allocation rule satisfies our basic requirements of
simplicity and intuitive acceptability. In fact, we believe
that it has been frequently used as a heuristic allocation
rule.

126

The marginal value of storage space may be of
interest when S can be varied. If S is allocated propor-
tionately, thenxif p"i: S/}i-rtti Q:1,2,...,n). Hence,
by eq. (4),

n

EN(x): S/2 ti. (5)
l-L

That is, EN(x) is a linear function of S. It follows that a
unit increase in the total amount of storage space avail-
able for allocation increases the expected number of
transactions by l/Ei:t l.r.i, and the expected lifetime of
the system by Er/[iq tti.

4. A Reliability Criterion

The reliability criterion defined in Section 2 is to
maximize the probability of processing at least M trans-
actions before failure. Mathematically, this yields the
optimization problem

max P{N(x) - M)
x€D

for some given M.The event {ni(x) > M} is equivalent
to the event Oi-r {EY:t Vf - x;} since the system can
process at least M transactions if and only if the storage
space required for each file does not exceed its allocated
space.

If we invoke the additional assumption that the ran-
dom variables Vl are independent for all i: 1,2, , n;

k : l,2,3, ... , w€ obtain

P{N(x) > M}: P{,i,
{*I,

vf -",}}

:,t
"{-i v! = *,\. (6)

max s(x) : f tog ,{ y,
x j-l Le:l

The vector x that maximizes P{ff(x) z M) also maxi-
mizes the transformation g(x) : log P{N(x) z M}. The
optimization problem then becomes (using (6))

V! = r,\

s.t.x>0,) xisS.

As we shall see in the sequel, by the central limit
theorem we can assume the probability distribution of
2Y:, V! (i : I , ... , n) to be absolutely continuous. Let
the cumulative distribution function of ZL, Vf be F,,

and its density functionf.
The optimization problem (7) is then a maximization

of a continuous function over a closed and bounded set,

so that a maximum x* exists. Without loss of generality,
w€ can assume that lilr x! : S. (If not, we can always
add to xf, for example, the quantity S - ILt xI to obtain
a new maximum without decreasing the value of g(x).)
The optimization domain reduces to the simplex

(7)

Communications
of
the ACM

February 1979

Volume 22
Number 2

(n
D*:lxlx>0, Ir,:

L i-l

n:r
L)
t:l

lr

I

(F:, r, -, r,) / (,,*<nr)r

The maximum of g(x) cannot be achieved on the
boundary of D*, where there exists at least one i (i: l,
... , n) with xi: 0, because P{lflt V! = 0} : 0. Thus,
the maximum has to be achieved at an interior point of
D*. At an internal extreme point, all the partial deriva-
tives of the Lagrangean

/n \

L(x,tr): g(x)-I(I xi-Sf
\i:r /

(log 4(xi; - trxi) + XS

must equal zero. This yields the optimality conditions

fi(xi)/Fi(xi) : tr, i: l, ... , n. (8)

We earlier assumed M to take on very large values,

so f Xlt Vf rs the sum of a large number of iid random
variables distributed as a random variable V,.lf Var(Vi)
is finite, it follows from the central limit theorem that
the distribution of the random variable

approaches the standard normal distribution as M ap-
proaches infinity. We can then approximate ,F,(.) and

ft(.) by

ft(xi) = p(/i), i : l, ..., n

Fi(xi) = O(7;), i:1, ..,n
where

/, : Lxi - M. ptl/lM var(vt)f+, i : l, ... , n, (9)

E0):0/JG)e-v2/2 is the density of the standard nor-
mal distribution, and O(7) represents its cumulative
distribution function.

The optimality conditions (8) now become

gQ)/a(yi):tr, i:1,'.,n. (lo)

Lnuue 3. For every I > 0 there exists a unique

solution y* to

e0) - tro(7) : s' (l l)

Pnoor. Def,rne h(y) : e0) - IO(f). The function
ft is differentiable for every y and satisfies

h'(y) : e'(y) - Ap(f) : - (y + I)p(y).

It is easily seen that h'(y) > 0 for all y < -tr, and h'(y)
< 0 for all y > -tr. Since h(-*): 0, it follows that h(y)
> 0 for all y < -4. Hence, a solution to h(y) : 0 can
exist only in the interval (-tr, *). But in this interval ft

is monotonically decreasing, so there exists at most one
solution. The existence of a solution 7* results from the
fact that /r(o) : -I < 0. D

Lemma 3 implies that for every A > 0 there is a
unique solution /t : /z : ln : y* to the system

r27

(10), where y* is the (unique) solution to (l l). Equation
(11) establishes a one-to-one relation betweenT* and A.

The value of y* (or A) can be obtained via the constraint
n

I xi : S. (r2)
j:t

From eq. (9),

x! : (M.Var(Vt))t.y* + M.pi, i : 1, ..., ft.

Summing over i,
nn

.S:-/* >, (M.Var(Vi)), + M I p,,

so

j:1 i:l

')

y* : ('- M ;,r') I (2,r, var(nf)

and the optimal allocation is

xf:Mp;*(S-M.", p)

(Var(V))+.__r.__, j : l,
| (Var(Vi))+

, n. (13)

The optimal solution (13) can be interpreted as follows:
M.pi is the expected space needed for the y'h file (i.e.
E(2y4 Vh). lf we provide each file with the expected
storage space it needs, there will be a space surplus of S

M.lh F;. (If this "surplus" is negative, it reflects
excess demand.) The 7th file's share of the surplus is
proportional to (M . Var(V,))t, which is the standard de-
viation of the total space required by that file.

The optimal allocation of space can thus be per-
formed in two stages:

Stage,4. Assign each file its expected space demand.
Stage B. Allocate the remaining space according to

the ratios of the standard deviations of demand. (If the
remaining space is negative, delete from each file ac-
cording to the ratios of standard deviations of demand.)

We have thus obtained a simple and convenient
allocation rule. It requires a small number of parameters,
and can be easily implemented. The optimal solution
depends only on the expectations and standard devia-
tions of the demand distributions.

In systems where optimization follows a reliability
criterion, it will generally be true that S > M.ILI p"
because this criterion is usually employed when the costs

of system failure are high. To avoid system failure, it has

to be supplied with more space than the average demand.
If S < M.lh p;, then for every allocation vector x € D
there exists at least one i such that xi I E(}y:t Vb.
Under the above conditions, where M rs large enough
and yi - ir(0, l), this same i will satisfyP{)Y:' v! = r,}
< j and thus also P{N(x) > M} < }. Clearly, such a
system is not "reliable."

Let us now take a somewhat qualitative and intuitive
look at the optimal allocation rule. If S > M.L?q F"

Communications
of
the ACM

February 1979

Volume 22
Number 2

then to obtain a reliable system we have to provide each

file with at least the expected space it requires. This
would exactly suffice if demand were deterministic. But
since demand is stochastic, we would like to allocate
el:cess space to each file to accommodate demand when

it exceeds its expected value. The allocation of excess

space should depend on the underlying uncertainty. The
more uncertainty there is about a given frle (i.e. the larger
the standard deviation of demand at that file), the more

space is required. It therefore seems reasonable to allo-
cate the excess space according to the ratios of standard
deviations.

The result for the case of S < M.Ii:r p; is somewhat

surprising because the larger the standard deviation of
demand, the larger the portion of storage space that will
be deleted from the allocated space. This has a logical
explanation. We are actually "benefiting" from the ex-

istence of uncertainty. If demand in all ftles were deter-
ministic, the system would fail with probability one

because we do not have enough space to meet demand.
In a stochastic environment, there is a positive probabil-
ity that the system will not fail. Instances where demand

exceeds its expected value are of no concern because

expected space is not sufficient in any case. The larger
the standard deviation of demand, the larger the proba-
bitity that a given space will successfully meet demand.
Thus, it seems reasonable to delete larger areas from frles

with larger standard deviations of demand.

5. Applications

5.1 Serial Files in an On-Line System
Consider an on-line system comprised of n serial

hles. File I is a journal file, in which all transactions are

recorded for possible reconstruction or for statistical
purposes. A transaction may add a record to each of the
remaining n - | files. Let p; denote the probability that
a transaction updates file i (i : I,2, ... , n). We have

Fr: l, 0< pi=1, i:2,3,...,n.
We assume independence among the files. The record
sizes for file i (i : I ,2. ... , n) are iid random variables

{Y!, *:1,2,3, .. }, where Yf - Y, and Var(Yi) < oo.

The problem is to allocate a given total space, S, among
the files.

The optimal allocation depends on the first moments
of the demand vector V. In order to find these moments,
we define the indicator random variables

1k - f t. transaction k updates file i,
'/1!

lo. otherwise.

Foreach i:1,2, ...,n, {Af , k:1,2,3,...} areiid., and
Af - l, where

P{A, - l} : pi: | - P{A,:0}.
The demand generated by the kth transaction in file i is
equal to A!. 1'i, so

t28

Y : (ArYt AzYz, ... , AnYn),

where Ai and Y; are independent for all i : l, 2, ... , n.

It follows that

k: E(v,) : E(A)E(Y,) : piE(Yi),

E(V?) : E(AiY?) : P;E(Y?),

hence

Var(Vi) - E(V?) - y,? : p? Var(Yi)
+ pi(r - p,)E(Yi). (17)

The first term of (17) is the contribution of the variation
in the record size, Yi, to the variance. The second term
is due to the uncertainty in the selection of file i to be

updated. It is nullified when pi: l.
An alternative derivation of (15) and (17) may be

obtained by using the Laplace-Stieltjes transforms

f,(r) : E(e-"t'), V{i: E(e-"vi1, (18)

defined for s > 0. We present it as an introduction to the
use of more complicated transforms in the second ex-

ample.
LEtnlue 4. For s > 0,

Vi(s):pii'i(s) + (l - pi), i: 1,2, .,n. (19)

Pnoor. By conditioning on Af we obtain

VtG) : E(e-''v!1

: p{A!: l}. E(e-,.t,!lA!: l) + p{Af : 0}.1

: pi. y,(r) + (l - pi).

The moments of Vi as given by (15) and (16) may now
be easily obtained by using the fact that

E(vi) : -vi(o), E(v?) : vi (o). !
The optimal allocation may now be found by u

straightforward application of the results of sections 3

and 4. We solve the following numerical example: a total
space of ,S : 24 megabytes is available for allocation
among n : 3 files. Each transaction, rvhich is 80 bytes
long, is written on the journal file. Hence, pt : I and Yr

is equal to 80 bytes with probability l. A record is added
to file 2 with probability pz: j. There are two record
types, with lengths of 80 and 120 bytes, and Yz equals 80

or 120 bytes with equal probabilities. A record is added
to f,rle 3 with proability pt : I.These record lengths are
assumed to have an exponential distribution with mean
l/x : 100 bytes. We summarize the relevant data and
computations in Table I.

The expected values E()t,) and variances Var(Yi) arc

Table l. Data and computations for numerical example.

file i Pi E(Y,) Var(Y,) pr,: E(V,1 Var(V')

(14)

(l5)

(16)

80

t00
100

80

50

25

0

2700

43'75

0

400

10000

Communications
of
the ACM

February 1979

Volume 22
Number 2

easily obtained for the given distributions of)/,. The
moments of Vi, Fi and Var(V), are computed from eqs.
(15) and (17), respectively.

In order to maximize the expected lifetime of the
system or the expected number of transactions processed
until reorganization, the available storage space has to
be allocated according to the proportion

prt lrz: ps : 80: 50: 25,

SO

xi : 24.80/ 155 : 12.39 megabytes,

xi : 7.74 megabytes,

xe : 3.87 megabytes.

Thus, the journal file captures most of the available
space, while the allotment of file 3 is less than 4 mega-
bytes.

Now, consider the reliability criterion (which is usu-
ally suitable for on-line systems), and suppose the system
is designed to process M: 100,000 transactions. Follow-
ing the allocation rule developed in Section 4, we first
allocate to file i the expected demand M.pi (i : 1,2,3).
This yields 8 megabytes for the journal file, 5 megabytes
for file 2, and 2.5 megabytes for file 3. The remaining
8.5 megabytes are allocated according to the proporrions
of standard deviations, which are 0: 0.785: l. Hence. we
obtain

xi : 8 megabytes,

xi : 8.7 megabytes,

xi : 7.3 megabytes"

Due to the allowance for uncertainty, the share of file 3

has increased considerably in comparison with its allow-
ance under the proportionate allocation rule. This was
done at the expense of the journal file whose demand is
deterministic.

5.2 Allocation of PDS Libraries

A partitioned dataset (PDS) consists of several se-
quential subfiles called members [4]. Each member is
made up of one or more records. The dataset also
includes a directory containing the name, address and
other features of each member. The directory enables
direct access to the members of the PDS. The records of
members are stored sequentially, so the PDS is a serial
f,rle.

A new member is created by writing the data sequen-
tially, following the current end of the PDS, and storing
a directory entry containing its name and address. Dele-
tion of a member is performed by removing its name
from the directoryl however, the space used by the
deleted member cannot be reused until the dataset is
reorganized. When a member is changed, all its records
are rewritten following the end of the file, and its direc-
tory entry is updated to point to its new location; the
space used in its old location is not released.

129

The partitioned organization is usually used for pro-
gram libraries. The program library is organized as a
PDS whose members are separate programs or subpro-
grams. A user usually maintains two program libraries:
a source library, containing the source cards of the
programs; and a library of load modules, from which the
programs are loaded for execution.

When a program is to be changed or added, the
source library is updated first. The updated member
recorded on the source library is then compiled. If the
compilation ends successfully, a member is created and
stored in the library of load modules. In case of unsuc-
cessful compilation, no space is demanded in the load-
module library. Eventuall], one of the libraries runs out
of space and has to be reorganized. It is customary to
reorganize both libraries together, since the setup cost of
a reorganization is high.

Suppose that the libraries are to be allocated" and the
available storage space is S. We wish to allocate S
between the two libraries so that the expected time until
reorganization is maximized. For that purpose, we have
to compute the vector ;r of expected demands per job.

Let V! be the area needed in rhe source library fbr
the krh job. We assume that { V\. k : 1,2.3, } are iid,
and Vf - Vr. Let p be the probability of a successiul
compilation. With probability I - p, compilation is
unsuccessful, and the space needed in the library of load
modules is V3: 0. With probability p, a load module is
created and VE > 0.

It would be unreasonable to assume that V5 is inde-
pendent of V!, since it is likely that a longer source
program creates a larger load module. We assume that
if compilation is successful,

vI : Bhvf,

where {Bo, k: 1,2,3, ...} are iid random variables and
Bh - ^8. The "compression factor" B represents the ratio
of program size in machine code to the total length of
the source code. Its distribution depends on the program-
ming language and on the programming habits. We
further assume the Bh and V! are independent.

The distribution of V is characterized by its two-
dimensional Laplace-Stieltjes transform, defined by

Z1s; : it(s1, s2) - Els-"'vl: Ele-"Jr"zv2f.

For the system described, we prove

Lrr"rrun 5. The Laplace-Stieltjes transform Z1s; i.r

given by

V1s1 : pEVtgt t Bsz) + (l - flVrgr) (20)

where

Vr(sr) - Efe-"rvr1

is the (one-dimensional) Laplace-Stieltjes transform of
vl.

Pnoon. By conditioning on the success of compila-
tion, we obtain

Communications
of
the ACM

February 1979
Volume 22
Number 2

l'

VG) : p E lr-*
u

l::ffiffiti'."1

+ (l - p).El,e-"'ulm;";niix'1. (2r)

In case of a successful compilation,

V - (Vu BVt),

hence

^e1e-''vl
'Hffinri'LJ E(e-".,. v1-s2. BVry : Ev{sr+ Bsz). (22)

If compilation ends unsuccessfully,

v - (vu0),

E[e-''vl]#li1i;iiiHtl : Efe-",v'l : Z(s,). (23)

Equation (20) follows by substituting (22) and (23) into
(2r). D

Conorlenv l. The expected demand vector is given
by

F: -AZ(r)1"_o : (E(V), pE(B)E(V)) (24)

It follows that in the optimal allocation

xi:xi: pttpz: l:pE(B),

so only p and E(B) have to be estimated.

Received August 1978

References
l. Maruyama, K., and Smith, S.E. Optimal reorganization of
distributed space disk fies. Comm. ACM /9, I I (Nov. 1976),
634-642.
2. Mendelson, H. Optimal utilization of stochastically growing data-
Bases. M.Sc. Th., Tel Aviv U., l9'l'7 . (In Hebrew.)
3. Mendelson, H., Pliskin, J.S., and Yechiali, U. A stochastic
allocation problem, (To appear in Operations Research.)
4. OS Data Management Services Guide. IBM Form No. GC26-
3746-2,IBM Systs. Ref. Libraries, White Plains, N.Y., 1973.

5. Ross, S.M. Applied Probability Models lMilh Optimization
Applications. Holden-Day, San Francisco, 1970.

6. Schneiderman, B. Optimum data-base reorganization points.
Comm. ACM 16,6 (Iune 1973),362-365.
7. Van Der Pool, J.A. Optimum storage allocation for initial
loading of a file. IBM J. Res. Develop. l6 (19'12),579-586.
8. Van Der Pool, J.A. Optimum storage allocation for a file in
steady state. IBM J. Res. Develop. I7 (1973),27-38.

Communications
of
the ACM

February 1979
Volume 22
Number 2

