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A Stochastic Allocation Problem 
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Tel Aviv University, Tel Aviv, Israel 

(Received August 1977; accepted March 1979) 

A given quantity of a resource is to be allocated to several activities. The 
amount of the resource allocated to each activity is used to supply stochastic 
demands occurring randomly. The system operates as long as all the demands 
can be met. Whenever the demand of any one activity exceeds its allotment 
the system fails. The problem is to find the allocation which maximizes the 
expected time until failure. It is shown that when the available quantity of the 
resource is large, the optimal allocation is proportionate to the expected 
demand rate of each activity. An application to a multi-installation inventory 
problem is presented. 

W E CONSIDER the allocation of a given quantity of a resource to 
various activities. The work was motivated by a computer storage- 

allocation problem [10] for a system that uses several files where storage 
space is limited. Each transaction (or job) generates a demand vector, 
designating the space required in each file for record addition. Whenever 
one file runs out of space, the system must be reorganized. The problem 
is to allocate a given amount of storage space to the files so as to maximize 
the expected time until reorganization. 

A natural suggestion is to allocate the resource in proportion to the 
expected demand rate of each activity. It turns out that such an allocation 
is not necessarily optimal. However, we show that, when the available 
quantity of the resource is large, the proportionate allocation rule is 
asymptotically optimal. That is, the quantity allocated to an activity 
divided by its demand rate is the same for all activities. 

The allocation problem is formally presented in Section 1. An essential 
role is played by the function m(x) = expected number of demands 
fulfilled until system failure. This multidimensional renewal function is 
analyzed in Section 2. The asymptotic form of m(x) is used in Section 3 
to show that a proportionate allocation is optimal. In Section 4 the ideas 
and results of the preceding sections are applied to solve a multi-instal- 
lation inventory problem. 

1. THE ALLOCATION PROBLEM 

The system consists of n activities which require a common resource. 
Demands for the resource arise at instants 0 < tl < t2 < . . . < tk < . . . 
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where the times between demands, T k = tk _ tk-1 are i.i.d. random 
variables. We assume that tk t, and ET < oo. A demand at time tk is an 
n-dimensional vector Vk = (V1k, V2k, *.., Vnk), where Vik is the amount 
of resource required for activity i. Vk are independent random variables 
identically distributed as a random variable Vwhose distribution function 
is F(v) = P(V < v). We do not assume independence among the compo- 
nents of V. V is nonnegative, and possesses a finite mean E(V)-=- 

(Al, A2, * * *, n)- 

Let S be the amount of resource available for allocation. At time to - 

0, S is allocated to the various activities. Let xi- 0 be the allotment for 
activity i (i = 1, 2, * i-, n). Let D= f.cIx C R', x :-O, En,=l xi < S} 
denote the set of all feasible allocation vectors. Let Sk = (Slk, S2k, .*., 

Snk ) denote the vector of total demand up to time tk, where the cumulative 
demand of activity i is S =k - k_ Vi'. The system operates as long as Sk 

x x. The system fails at the first moment tk when S_k > xi for some i. 
That is, the system's lifetime T(x) is given by T(x) = min{tk I S1k > xi for 
some i}. The problem is to find an allocation vector x* E D which 
maximizes ET(x). 

Another measure of system performance is N(xc), the number of de- 
mands the system is capable of handling before it fails at time T(x3). That 
is, N(x) = max{k ISk x}.We have 

LEMMA 1. ET(x) = [EN(x) + 1] ET. 

Proof T(x) - tN(x)+l - EN(x)+l Trk. The result readily follows using 
Wald's lemma. 

It follows from Lemma 1 that ET(x) is maximized together with 
EN(x). Thus, the problem is to find x* E D which maximizes m(x) = 

EN(x). 
A natural suggestion for an optimal allocation vector is to divide S 

in proportion to the expected demand of each activity-i.e., to let xi = 

i-S/(==il sij). Unfortunately, this allocation is not necessarily optimal, as 
the following example shows. Suppose V = (V1, V2), where V1, V2 are 
i.i.d., and let P(Vi = 2) = P(Vi = 4) = 1/2. If S = 6, then a proportionate 
allocation yields xi = x2 = 3. A simple computation shows that for such 
allocation m(3, 3) = 1/4, whereas for a nonproportionate allocation vector 
x = (4, 2) one obtains m(4, 2) = 1/2. Thus, since m(4, 2) > m(3, 3), a 
proportionate allocation is not optimal. However, we will show in the 
sequel that, for sufficiently large S, a proportionate allocation is asymp- 
totically optimal. 

2. ANALYSIS OF m(x) 

In order to solve the allocation problem, we first analyze the objective 
function m(x) = EN(.x). The analysis is carried out in the following steps: 
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We derive a renewal-type equation for m(xv). From this equation we 
obtain the multidimensional Laplace-Stieltjes (L-S) transform of nm(x), 
which is then used to study the asymptotic behavior of m(.x) for large 
values of x. 

Problems of renewal theory in two dimensions have been studied by 
Hunter [7, 8] and by Bickel and Yahav [3]. The following lemma is a 
simple generalization of Hunter's "integral equation of two-dimensional 
renewal theory" [7, p. 387]. 

LEMMA 2. m(x) satisfies the integral equation 

m(x) = F(x) + X m(x - u)) dF(v). (1) 

The proof follows from standard renewal-theoretic arguments by condi- 
tioning on Vl. 

As in the one-dimensional case, equation (1) may be solved in terms of 
Laplace-Stieltjes transforms. For s = (SI, S2, ...* sn) > 0, we define the 
multidimensional L-S transforms: mi(s) = jUo e-X dm(x), and V(s) = 

E[e-Y v] = ef-o e- v dF(v). 
By transforming equation (1) we derive 

m(s)= V(s)/[1 - (s)]. (2) 

In principle, one may invert m(s) to obtain the renewal function m(x). 
However, the actual computation is difficult and the results depend on 
the specific form of V(s). 

In various applications, the asymptotic behavior of m(x) for large 
values of x is of interest. Allocation problems usually deal with a situation 
where each activity is capable of handling numerous demands-i.e., xi 
?> y for all i. 

It is well known [5] that, in the one-dimensional case, the asymptotic 
behavior of m(x) as x -s-oc may be derived from the limiting behavior of 
m(s) as s -O 0 (s > 0). We do not know of a multivariate analogue. In 
order to develop a Tauberian lemma that will serve our purposes, we first 
prove 

LEMMA 3. Let k(x) be a positive measure with L-S transform k(s). The 
function k(x) is homogeneous of degree r if and only if k(s) is homoge- 
neous of degree (-r). 

Proof. The L-S transform of k(tx) = trk(x) is k(s/t) = trk(s). 

LEMMA 4. Let m(x) and k(x) be two positive measures with L-S trans- 
forms mh(s) and k(s), respectively. Assume that the function k(s) is 
homogenous of degree (-r). If 

l;wm {OX hWlk(s = 1 (3) 
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when s -O 0 along any fixed positive direction, then 

lim(m(x/k(x) = 1 (4) 

where x tends to infinity along any fixed positive direction. 

Proof. Let X > 0 be an arbitrary positive vector, and let s = X/t. Use of 
(3) and the homogeneity of k(s) yields limt,. t`&m(QIt) = k(A). It follows 
that for each sequence tn ---cc limnCt)in't-r&(/tn) = k(A). But tj-r1i(X/tn) 

is the L-S transform of tn-rm(tny) (evaluated at s = A). Therefore, the 
continuity of the L-S transform yields limnO t-rm(tnx) = k(x?). This holds 
for every sequence tn -* oc, hence 

limt,. t-rm(tx) = k(x). (5) 

By virtue of Lemma 3, equation (5) may also be written as limt,. m(tx)/ 
k(tx) = 1. 

Now let X > 0 be an arbitrary positive unit vector in s-space. The 
directional derivative of V(s) in the direction of X at s = 0 exists (since q 
= E(V) is finite), and it is equal to A * VV(0) = -A *. Hence, there 
exists a linear expansion V(S * A) = V(0) + 6A * VV(0) + o(6), where o(6)/ 
6 - 0 as 6 0 (6 > 0). Since V(O) = 1 and -VV(O) = 1~, we have V(6A) 
= 1- 6(X * k) + o(6). Substitution in (2) and multiplication by 6(* 
yields, 

(jg. *A) ni(6N) = 6(X I)t1 - 6(N * ) + o(6)]/(6(N *i) + o(6)) 
= (1- 6(N a ) + o( ))/(1 + (1/(A. * o)) ()/ ), 

which tends to unity as 6 - 0 (6 > 0). It follows that if we define k(s) = 

1/(s * j ), which is homogenous of degree -r = -1, the conditions of 
Lemma 4 are satisfied. Thus, 

limtOO(1/t)m(tx) = k(x) (6) 

for all x. 
Our aim now is to find a measure k(.) on the nonnegative quadrant of 

Rn, whose L-S transform is k(s) =f e-> v dk(v') = 1/(s * 1y). In the 
one-dimensional case, k(s) = 1/(s * ,u), which implies that dk(v) = dv/l. 
Thus, we have the well-known elementary renewal theorem [5]: m(x) - 

x/[i. However, the solution for higher dimensionality is somewhat less 
obvious. 

THEOREM 1. m(x) - mini=1,2,... ,n(xi/piN) (as x tends to infinity along an 
arbitrary positive direction). 

Proof. Let B = {v I v E R', v = aV, a - 0}. We define the measure 
k(*) on Borel-sets in Rn as follows: (i) For each section [0, ajt] C B, set 
k([O, ak]) = a. This clearly defines k(.) on all Borel-sets in B. (ii) For 
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each Borel-set E C Rn, we define k(E) = k(E n B), where the right-hand 
side is defined by (i). We claim that k(.) satisfies (4). Indeed, k(s) = 

fvzB e-? dk(v) = f0 e-sa, da = 1( ). It follows that k(x), which is 
the k-measure of the cube Cx = {v I v E Rn, 0 v x}, is equal to k(Cx) 
= k(C, f nB) = k({ajyjO c aj c x}) = k(tO, a*1f]) = a* where a* = a(x) 
= min1iicn (xi/jAi). The result follows from Lemma 4. 

3. OPTIMAL ALLOCATION 

In most applications, S is sufficiently large to justify the assumption 
that xi >> uIA for all i. The results of the previous section show that in such 
situations, the expected number of demands before system failure, m(x), 
may be approximated by mini=1,2,. .,n(xi/jui). The optimization problem 
then becomes 

max{m(x) = mini=1,2,. .,n(xi/jyi)} 

(7) 
s.t.En xi x S and xi-O, i= 1,2, ...*,n. 

THEOREM 2. The optimal allocation vector is x* = S/I(jE=1 A) *, i.e., 
x iis proportional to ,Ai. 

Proof The problem (7) is equivalent to the following linear program- 
ming problem: maximize {O} such that 

OAi-x cx 0 for i = 1, 2,.**,n and >J-i-< S (8) 
?-O; xi-O, for i = 1, 2, * ,n. 

An immediate application of duality theory proves that x* = ij-S/ 

l= Aj, 
9* = S/>I7=4 Aj is an optimal solution of (8). 

Denoting by yi (i = 1, 2, * , n + 1) the corresponding dual variables of 
(8), it is readily seen that the optimal dual solution isy* = 1/YJn=lA j for 
i = 1, 2, * , n + 1. In particular we have 

COROLLARY 1. am(X*)/1S =Y* 1 = 1/>=L1 lj. 

That is, a unit increase in the amount of the resource available for 
allocation increases the expected lifetime of the system by ETr/(X7=1 ij). 

4. APPLICATIONS 

The type of stochastic allocation problems studied in this paper may 
arise in several areas. We have already mentioned the computer storage 
allocation problem [10] which motivated this work. The solution of this 
problem is obtained by a straightforward application of our previous 
results-i.e., allotment proportional to expected demand. 

Another area of application is inventory systems. Consider a single- 
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commodity inventory system consisting of n centrally controlled outlets. 
Procurements are made on a system-wide basis by the central control 
point, which is kept constantly informed of the inventory levels at all 
locations. Demands for the commodity are independent random vectors 
Vk V where Vik is the quantity needed for the kth demand at 
installation i. Vk may include up to n - 1 zeroes, so that a demand vector 
may represent demand at a single installation. The times between con- 
secutive demands Tk - Tare i.i.d. with finite mean E. When the total 
demand in one of the installations exceeds the inventory at hand, an 
order is placed and immediately delivered. The order is used to fulfill 
unmet demand and to replenish all the installations. No redistribution of 
stock among outlets is allowed between orders. Costs are of two types: an 
order cost, A, incurred at each replenishment; and an inventory-holding 
cost which is charged continuously over time at a constant rate c per unit 
of commodity per unit time. Procurement and transportation costs are 
not considered, since they do not affect the optimal solution. 

The system just described belongs to the class of multi-installation 
inventory control systems. Some related inventory allocation models are 
described in references 1, 2, 4, 6, 9, and 13. The application studied here 
is a dynamic multi-installation continuous-review model. We consider 
the joint determination of the total order-quantity and its allocation 
among the outlets. 

Let yi be the level of inventory at installation i just before replenish- 
ment (yi < 0 for at least one i). Let x denote the vector of inventory 
levels immediately after replenishment-that is, xi - yi is the quantity 
delivered to outlet i. Since the reorder point is not a decision variable, 
the problem is to find the optimal value of x which minimizes the long 
run average cost per unit time. Note that here we impose no upper bound 
on xi1=. xi 

The underlying process is regenerative [12]. Hence, the long run 
average cost tends with probability 1 to the expected total cost per cycle 
(= time between succesive orders) divided by the expected length of a 
cycle. 

Let I(x) be the expected inventory holding cost per cycle, and let T(x) 
be the length of a cycle. Then the problem is to minimize (x) = [I(x) + 
A]/ET(x). By conditioning on Vl, we obtain 

LEMMA 5. I(X) satisfies the integral equation 
n r 

I(x) = c( x-)ET + I(x - v) dF(v). (9) 

The techniques of Section 2 may now be used to approximate I(x) and 
ET(x). It follows (see details in [11]) that the minimization of qp(x) may 
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be separated into two subproblems; (i) Determination of the total order 
quantity, S = Zi..1 xi, which is given by a variant of Wilson's lot-size 
formula: 

S = >1 ,iI)A/(cE'r). 

(ii) The allocation of S among the installations, which is proportionate, 
by virtue of Theorem 2. 
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