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This paper studies a two-level modification of the M/M/1 queuing model 
where the rate of arrival and the service capacity are subject to Poisson 
alternations. The ensuing 'two-dimensional' problem is analyzed by 
using partial-generating-function techniques, which appear to be essential 
in the present context. The steady-state probabilities and the expected 
queue are evaluated, and numerous special and extreme cases are analyzed 
in detail. 

IN THE literature on queuing theory, a great number of probabilistic 
models possessing a variety of properties have been discussed. Ordi- 

narily, in these models the parameters describing arrival intensity and/or 
service capacity possess one of the following characteristics: (i) The param- 
eters are homogeneous in time. (ii) The parameters are not constant but 
vary in time; however, their temporal dependence is a datum of the model. 
(iii) The parameters, if left by themselves, are homogeneous, but hetero- 
geneity is introduced by control action, e.g., customers are refused admit- 
tance to the waiting line if the queue size exceeds a certain level, or, again, 
service capacity is reinforced for the same reason. 

An additional set of queuing problems may be considered as possessing 
characteristics of service heterogeneity, to wit, when the service station is 
subject to breakdown (e.g., GAVER[41 and AVI-ITZHAK AND NAORM21). In 
these models, the service rate alternates in a random fashion between a 
fixed arbitrary positive level and zero. Another study (SCOTT[81) attempts 
to generalize by considering random changes- in either the arrival or the 
service parameters. 

The purpose of this paper is to discuss a further generalization, that is, 
the model analyzed here is one where both arrival intensity and service 
capacity undergo Poissonian jumps between two levels. Processes with 
similar underlying structure have been treated by others (e.g., KEILSON 
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Queuing with Heterogeneous Arrivals and Service 723 

AND WISHART[5 6), but the case where the underlying chain consists of two 
states is of special interest by virtue of the added simplicity, the potential 
practical importance and the explicit solvability of the model. A number of 
areas suggest themselves where such models may be of practical use. Thus, 
for instance, a computing facility may be retained by a number of clients, 
each emitting a steady Poisson stream of customers. The appearance and 
disappearance of such a client is associated with the simultaneous Poissonian 
increase and decrease of overall arrival rate and service capacity. 

Again, some production processes are associated with product diversifi- 
cation that may bring about random intensity changes of input and output. 
Another approach is to view the model as a discrete analog of certain con- 
tinuous-time storage processes (e.g., GANI[31 and MILLER[71). 

The problem under consideration is a two-dimensional generalization 
of the typically one-dimensional basic queuing systems. It possesses the 
following characteristics: A stream of Poisson-type customers arrives at a 
single service station. The arrival pattern is not homogeneous; rather there 
exist two arrival intensities at which the system is capable of operating. 
The time interval during which the system functions at level i (i = 1, 2) is an 
exponentially distributed random variable possessing the expected value 
l/Ii. Furthermore, it is assumed that any realization of a time interval 
associated with uniform arrival rate Xi is independent of previous history. 
Whatever has been said about arrival characteristics holds for the service 
pattern as well. Service time is assumed to be exponentially distributed; 
if the system is at level i, the service intensity possesses the value ,ui, and, 
as before, statistical independence between any two realizations is assumed. 
Let it be mentioned in passing that the notion of independence is to be 
understood in a conditional sense: given that the system is at level i, pre- 
vious history is of no predictive value. 

We have, then, a single-server queuing system that oscillates between 
two feasible levels denoted by 1 and 2. The persistence of the system at 
any level is governed by a random mechanism: if the system functions at 
level i (i.e., the arrival and service rates are Xi and ,ui, respectively) it tends 
'to jump' to the alternative level with Poisson intensity hi. We note ex- 
plicitly that, once they have joined the queue, customers do not wear labels 
1 or 2; rather the service rendered to them possesses the instantaneous rate 
associated with the present level of the system. Hence some basic prop- 
erties of the queuing process with which this study is concerned (e.g., state 
probabilities, expected queue size, etc.) do not depend on the specification 
of the queue discipline. 

We sum up and restate the setting of this study in a more formal way: 
Let X(t) denote a Markov process on the states I (i, m) } (i= 1, 2; m= 
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0, 1, 2, *) and let its transition probabilities { P(j,, (im) (t) } be stationary, 
that is, for t>0. 

P(jn),(im)(t) ==Pr{X(t+s) = (i, m)IX(s) = (j, n)} 

(i, j= 1 2; m, n=O, 1, 2,) 

is independent of s 0 O. Furthermore, for h i 0, the { P(jn) (im) (t) } satisfy 

P(im),(im+l)(h) = A h+o(h), (2) 

P (i,mnpl), (im) (h) = pih + o (h), (3 ) 

P(bn),f (2m) (h) 77lh + o(h), (4) 

P (2m), ,(lt) (h) = 'q2h+o(h), (5) 

P(im), (im) (h) = 1- (Xi+ai + qi)h+o(h), (mkO) (6) 

P(io),(io) (h) = 1- (Xi+/ui)h+o(h), (7) 

P(jn), (i)(0) = 1, if (jn) = (im), 8 
{0, otherwise. (8) 

The rates 7qj, Xi, and ,ti are nonnegative though at least one of the '-s, 
one of the X -s, and one of the , -s must be positive. Ordinarily all rates 
will be assumed finite. Only in Section II, when some extreme cases will 
be studied, will we allow rq or fl2 or both to tend to infinity. 

The set of transition probabilities {Pj(in) (t) } satisfies the backward 
Kolmogorov differential equations, and, from the theory of recurrent events, 
it is known that for all (i, m) the limits limo P(jn) (in) (t) pi exist and 
are independent of the initial state (j, n). The set { pim } satisfies 

P10 (X1 + 71) = p/l p+ p20772y (9a) 
p20 (X2+qi2) = P21Y22+PlOrll, (9b) 

Pim(X1+?i+/A1) = P1,m-1X1+p1,mmlj~1+p2m'?2j (m> 0) (9c) 

p2m (X2+12=+ A2)=p2,m-1X2+P2,m+1lI2+P1mln1. (mi> 0) (9d) 

It is convenient to present the set (9) in diagrammatic form, as in Fig. 1. 
The various equations appearing in the set (9) may be considered as a 

representation of a law relating to the steady-state regime: The average rate 
at which a point (i.e., a state) is entered equals the average rate at which a 
transition from the point occurs. 

Again from the theory of recurrent events it can be deduced that (for 
positive rq and fl2) the probabilities { pim,} are either all positive or, alterna- 
tively, all equal to zero. Indeed inspection of (9) shows immediately that 
all Pim - s are positive if one of them is positive; and all pim - s vanish if one 
of them equals zero. 
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Simple algebraic operations on (9) yield 

P1mX1?+P2mX2 =P1,m+l/Il+p2,m+1gl2 (m=0, 1, 2, ..) (10) 

Summation of (10) over all m yields. 

p1 \X1+p2.X2-(p. = -pIO)A1U+ (p2. P20)>2, (11) 
where 

Pir=Em=O Pim. (12) 

The quantity pi. is the probability of the system being at level i. 
Let two quantities X. and j2 be defined as 

X=PlX?l+P2-X2 (13) 
and 

A = pl-/Zl+p2.g2. (14) 

The physical interpretation of these quantities is straightforward: X is the 
average rate of customer arrivals; ft is the average capacity of the system to 
render service. 

Relation (11) may be written as 

p1l1?,1p20,Xb20,U-. (15) 

For the case of interest-the steady-state regime-in which the set 
{pim} is positive throughout, we can deduce from equation (15) that the 
following relation must hold: 

,u X > 0; ((16) 

that is, for steady-state conditions, the average service capacity of the 
system must exceed the average arrival rate. 

On viewing the underlying two-state Markov process, we immediately 
obtain 

Ply -2/ ('q1+ -72) (17a) 
and 

P2 -711 (l/(1+ 2), (17b) 

which is, of course, consistent with set (10). 
As a solution, we desire to express the state probabilities in their func- 

tional dependence on the parameter set { X1, X2,1 AI, /12, n7, 172}. Apparently 
there is no simple way of solving (9) in a straightforward recursive manner. 
The generating-function techniques proposed here go beyond the typical 
application. They are not just a compact and convenient way of presenta- 
tion; rather, they appear to be essential for the analysis of the mode] under 
study. 
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I. GENERATING FUNCTIONS AND MODEL CHARACTERISTICS 

WE DEFINE THE partial generating functions of the system as 

Gi (z) = Y' _O zmp im, jzl _ In i- 1, 2. (18) 

Let the set of equations (9a) and (9c) be slightly modified and rewritten 
as 

PlO(Xl+l+jl) = P20o2+Plll+Pl0l, (19a) 

Plm(Xl+ql+tUl) = Plm-lXl+p2m'?72+Plm+l/l (m> 0) (19b) 

We multiply each equation of the set (19) by zm(m = 0, 1, ) appropriately 
and sum over all m. This process results in 

(X1+,ql+ pul))Gl(z) = XlzGl(z) +?'2G2(z) + (pi/z) [Gl(z) -plo] + pio/l. (20) 

In an analogous fashion, we obtain 

(X2+'q2+/u2)G2(Z) = X2zG2(z) +?lGi(z) + (A2/z)[G2(z) -p20]+P20/2. (21) 

Next, we define a polynomial of the third degree, g(z), as follows 

q(z) = X1X2Z3- (-1X2?+2X1+ XlX2+ XI12+ X2/1)Z2 (22) 

+ (-qA2 +-q2t1l+AA2 + Xl1A2?+ X2AI)Z - tl2. 

On utilizing (20), (21), and (22) we arrive at 

g(z)Gi(z) = p20o2/12Z + p1o/11[2Z+ X2z(I - z) - /12(1 - Z). (23) 

THEOREM. For positive ii and tZ2 and finite r7i and lq2, the polynomial g(z) 
possesses a unique root zo in the open interval (0, 1). 

Proof . (i) Let z = 0; then g (0) = -/12 < 0 . 

(ii) Let z=1; since Gl(1)=pl.>0 and g(1)Gi(1)=q2(plOil+p20P2)>0 it 
follows that g(1)>0. Thus, the number of roots in the interval (0, 1) is 
odd (either one or three). 

(iii) Assume-without loss of generality-that 

812/X2?>/1i/Xi (24) 

Since ,-> ', it follows, then, that 82/X2> 1. But 

9 (U2/ X2) = (,.2/ X2) 2 [l- (12/ X2) X1] ?_ 0 

Hence, there exists a root of g(z) in the interval (1, g2/X2], and, therefore, 
the number of roots in the interval (0, 1) equals one. This completes the 
proof. 

Typically, Cardano's solution of g(z) will yield no simple algebraic 
expression for z0, though-as will be shown later-in some limiting cases 
simplification is possible. 
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The probabilities pio and p2e can now be obtained in the following man- 
ner: Setting z = zo in equation (23), we have 

p20l2,42z0+p1.4[1[fl2zO+ X2ZO(1 - ZO) -p2(1 -2 z)] = ?0 (25) 

Inserting (15) in (25), we get 

P1O =f2 (A- X)Zo/1Y1( -zo)G(2-X2ZO), (26) 
and, similarly, 

P20 = ? (Al- ZO/Y2 ( I- ZO) (Al- X1ZO) (27) 

We recollect that the busy fraction p of the service station is represented 
by 

p 1-=(PlOIp2o0) (28) 

We may mention, in passing, that-contrary to intuition-typically, the 
busy fraction p does not equal the ratio of the average arrival intensity X 
to the average service capacity ,; that is, p . . generally speaking, though 
in one special case the equality does hold. Indeed, in Section II we shall 
show that p = XI/u if and only if plO/p20 pl./p2., and this equality occurs if 
and only if Xl/Al = X2/2 

While there seems to be no simple and compact formula relating { p i. 
to plo and P20, there are no serious computational difficulties. After some 
manipulation of equations (9) we arrive at a computationally convenient 
set of recursive expressions 

Pim = Pm-l(Xl1/,Y1) + (D=O Ph) (P/il )-(Z='O P2j) (q2/U1), (29a) 
(m> 0) 

and 
P2m= P2,m-1(X2/I2) ?(J-O P2j)1 (2/m2) - (,'i=O p1j) (MIY/i ) (29b) 

(m>0) 

The partial generating functions are completely known once the values 
of plo and P20 have been established, as shown above. Hence, the expected 
queue size (as well as higher moments) can be determined by standard pro- 
cedures. 

Combination of (15) and (23) results in 

G1(Z) - [t72(A- X)Z+p1OAI(l -Z)(X2z-Yi2)}/g(Z), (30a) 

G2(Z) -[?7l(,U- -X)Z+P20/t2(1 -Z) NXZ - A011g(Z) . (30b) 

Let auxiliary quantities Mi be defined as 

Mi= M0 mpin (i 1, 2) (31) 

Clearly, we have 
(d/dz)Gj(z) z=1l=Mi. (32) 
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The quantity Mi may be considered as the contribution of level i to the 
mean queue size; it is the product of the probability of the system being 
at level i and the conditional mean queue size, given that the system is at 
level i. 

Hence, the (unconditional) expected queue size Eq, after some develop- 
ment, is found to be 

Eq=Ml+M2 

= A/(_ - $) +[l(2G-; X2)PlO+/-42(Al - p2O- 8 - X1) Gi2 X2)]/ (33) 
(=X n2 X P2 -(l X) P -X21 

II. SPECIAL AND EXTREME CASES 

IN THE PRECEDING section, the model was treated in rather general terms. 
We can envisage many cases where it is not necessary to assume that xl 5; 2, 
or, alternately, that u #j2. Apparently there is no significant simplifica- 
tion in the expressions of the previous section if the more specialized as- 
sumptions X= X2 or l= A2 are introduced. However, there is one case 
where a specialized assumption causes the final expressions to be of extreme 
simplicity. This is the case where the traffic intensities X1/A1l and X2/g2 are 
equal, though arrival intensities and service capacities need not be equal. 

First we investigate the properties of the ratio plO/p20. Use of the rela- 
tions (26) and (27) leads to 

PlO/P20 = (272/1l) [1 - (Xl/Al)ZO]/[1 - (X2/A2)ZO] (34) 

Since 772/l71 = Pl./P2., it follows that, whenever zo>O, plO/p20opl./p2. if 
and only if 81/X1=82/X2. In such a situation, let this ratio be defined as 0; 
that is, 

=1/X8 A2/X2 = 0. (35) 
We have then, immediately, 

Al = (Alp. +A2P2-)/(Ap.l- +X2p2-) (36) 
= (GXlpl- +GX2p2-)/(Xlpl- + X2p2.) (36 

We recall (28), where the traffic intensity was expressed by p= 1- (plO + p20). 

This intensity is usually not equal to 'XI-. However, in the particular case 
under consideration (and in this case only) the equality p= A/P does hold. 
The proof is rather elementary: If the equality is assumed, then plO+P20= 

(2-4)/u. But, on using (15), we obtain 

plO/p20 = (A - A2)/ (A -) 

= (AlP +P2P2--=2)P(Al-AlPl-.2P2- ) /p2.- (3- 7 
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A closely related argument can be presented to prove that the assumption 
PlO/p20 = pl-/p2- implies the result p = X/Ij. However, it will be more in- 
structive to use the properties of the polynomial g(z). 

It is not difficult to verify that 

g(0) =. (38) 

Hence, we have the decomposition 

g(z) = X1X2(z2-kz+0) (z-0), (39) 
where 

k = 771/Xl+772/X2+ 1 +0- (40) 

The root of interest zo, which is located in the interval (0, 1), is equal to 

zo= (k-X/k2-40)/2. (41) 

In formulas (26) and (27) the ratio zo/( -zo) (1 -zo/0) makes its appearance* 
Algebraic manipulation yields 

zO/(1-zo)(1-ZO/O)=OXlX2/(11+?t2) X. (42) 

Substituting this result in (26) and (27), we obtain 

pio = p. (I-/ (i=11 2) (43) 
Using (28), we finally get 

P= 1- (plo+p20) -1/6= 5.* (44) 

THEOREM. If relation (39) holds, then 

pim = Pi.(I -p)pm. (i= 1) 2; m=O, 1, ..) (45) 

The proof will be by induction. By (43) the theorem is valid for 
m= O. By using (9a) and (9b), it is immediate that it holds for m= 1. 
Assume now that it holds up to some m> O; then it holds for mr+ I as well, 
since by (9c) we derive 

Pim+i Pim m(P+n1l/tl + 1)-P2m(712/l) -Pm-1P 

= [l/(?71 +q2)] (- P)Pm[q2 (P+'qll 1) )-711(724A1) -72] (46) 

= Pi. (1- p)p 

and similarly for P2,m+1 This completes the proof. 
It is interesting to obtain the probability of having m customers in the 

queue regardless of level: 

P~m= Plm+P2m (lp)pm. (47) 
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The partial generating functions are derived as 

Gi(z) - pi.(I -p)ZE=o (zp)m p.t 5 z))/(,-XZ) (i= 12 2) (48) 

from which it is obtained that 

Eq-A/(z-A). (49) 

The set of relations that were derived in this case is closely related 
to the single-server queue with Poisson input and exponential service 
(M/M/1). As pointed out before, this is the only case where such a 
simple extension of the M/M/1 formulas exist. 

It is possible to obtain these relations by a slightly different avenue of 
approach. Let us assume that steady-state conditions have been attained 
and, furthermore, that at the present moment a transition from one level 
to the second level has taken place. Now this transition will carry no 
influence on the random variable 'number of customers present in the 
queue,' since the traffic intensity Xil/li(=p) has not changed (what has 
changed is the average number of transitions per unit time, which is dif- 
ferent for the two levels). Hence, the conditional distributions of this 
random variable are identical for both levels 1 and 2 and the state probabili- 
ties are given simply by 

Pin = Pi Prma (50) 

a formula equivalent to an appropriate combination of (45) and (47). 
A special case of a model discussed by WHITE AND CHRISTIE, [9] by 

Avi-Itzhak and Naor [1,2] and by Gaverl4] may also be regarded as a special 
case of the present model. In particular, it was assumed in these other 
studies that the service station is incapacitated from time to time and 
resumes its operation after a random time. In the notation of the present 
study, this is equivalent to assuming that Xl=X2=X and 2=?0. Using 
(15), we obtain 

pO pi--x1i. (51) 

Substituting this value in (33), we derive 

Eq = { X+ [X,1/(7?+i)]p2. } /&(lpl--A), (52) 

which is equivalent to queuing formulas obtained by the above authors. 
Next, we examine a number of extreme cases. 
Case A. It is assumed here that one of the level transition intensities, 

j71, say, vanishes. It is immediately clear that, under such circumstances, 
we deal with an M/M/1 queuing system with Xi and pu1 as arrival and 
service intensities. Indeed, factorization of g(z) and further manipulation 
yield 

piO= (I-)/8 1- X14 (53) 
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Further, the probabilities f. plm} are geometrically distributed, whereas all 
{P2m} vanish. 

Case B. This is another extreme situation of some simplicity. Here 
we let -q2--> CC whereas 7ql is positive and finite. Again it is clear that this 
case converges to an M/M/1 queue on level 1. 

Case C. Here we assume that very rapid oscillations occur between 
the two levels 1 and 2. More specifically, we let -ql and Il2 tend simul- 
taneously to infinity with the proviso that the ratio flh/7f2 tends to a positive 
and finite constant C. 

We note that the probabilities associated with the levels may be pre- 
sented as 

pI. = 1/(1+ C), (54a) 

P2- = C/(1 +C). (54b) 
On utilizing (19), we get 

Cpimz p2m, (m=O, 1, .) (55) 
or, equivalently, 

CGi(z) = G2(z). (56) 

Insertion of (55) in (15) results in 

Pio= (A- X)/ (A1+?2C) =(1- -/1Pi. (57) 

On using induction arguments, we eventually derive 

Pim Pi (1 _ ) A-)(X /f A-)m (58) 

In other words, we have again obtained a geometric distribution over 
the states m with parameter /j2. The physical interpretation of (58) is 
simply that, in the case of extremely rapid oscillations between levels 1 
and 2, the arrival becomes homogeneously Poissonian with weighted 
intensity A.; an analogous statement holds true for weighted service ca- 
pacity -. 

Case D. Under this heading we shall deal with a situation where 
transitions between levels are very sluggish; that is, oscillations occur 
infrequently. In more formal terms, we assume that the transition 
intensities 7ql and 72 are arbitrarily close to zero, while the ratio 7l/f2 equals 
a finite, nonzero constant C. We shall have to distinguish between two 
subcases: 

DI. Here it is assumed that both arrival rates fall short of their cor- 
responding service capacities, i.e., Xl<,l, X2</t2. Combination of (22) 
and (23) (and letting ?11 J 0+, 2 7 0+) yields 
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Letting z = 1 in (59) and further use of (9) result in 

Pirn!Pi ( 1-i i// i (X./im) m (60) 

This can be interpreted in the following manner: If oscillations between 
levels occur very infrequently and if, on both levels, arrival rate falls short 
of service capacity, the system settles in two distinct quasi-equilibria 
(one at a time). Each quasi-equilibrium is of M/M/1 type). 

D2. In this subcase, we shall assume that one of the service capaci- 
ties, Al, say, does not exceed its corresponding arrival rate Xi, that is, 
Xi ? i. However, we recollect the condition that the weighted service 
capacity , has to exceed the weighted arrival rate, or, equivalently, 

/-2 > X2+ (XI - Al)72/17 (61) 

Under such circumstances, there can be no quasi-equilibrium at level 1. 
For arbitrarily small Pqi we are able as will be shown below-to accumu- 
late an appropriately large average queue whenever the system is at level 1. 
This large queue is decreased to quasi-equilibrium size of the type discussed 
in subcase DI whenever the system functions at level 2. 

In a more formal way, let us rewrite (22) as 

q(Z) = (Z- 1) (XlZ-,1) (X2Z-,42)+ (771+fl2)Z(W - Z)* (62) 

Now 7ql, 2> 0 (however small), and it follows that zo<41/X1 and (,41- Xzo) 
is of the order (X71+X72), since 

(Al- XZO)/ (X1+X2) = Zo(A - X'Zo)/ ( - Zo) (A2 - XZo). (63) 

From inspection of (26) it becomes immediately obvious that plo is small 
of the order f72. This is not the case for P20. Formula (27) is not immedi- 
ately applicable here, since both numerator and denominator are close to 
zero. If (63) is combined with (27) and (17), we obtain 

P20 = P2 I (- )[1 - (X2/42)Zo] } / (- XZO) *(64) 

Since for very small -qi the quantity zo is close to 41/X1, we get, after 
substitututing zo'-/11/X, the approximation 

P20=(/-i )/y 2* (65) 

The interpretation to be attached to this result is this: For very small 
7li and 'Xl1?, and X2<1i2 such that A<j2, the idle capacity at level 1 has 
disappeared. Hence, by (15) the overall idle capacity equals P2Oj2, which 
is another way of expressing relation (65). 

It remains to find an expression for the expected queue size. As was 
pointed out earlier [and can be observed from (33)], Eq can be made 
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arbitrarily large by an appropriate choice of qj. However, the product of 
Eq and (ql+7l2) tends to a finite limit: 

('q1 + I2) Eq--(Xi - 
A)(HaA2 -X2 -p20)/ ') (6 

"-J(Xl-81)[ (82-\X2) -(p- -i~)] -a X. (66) 

This limit equals zero when Xi = ,1i and is positive for the case Xi> xu. 
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