Comput. & Ops. Res. Vol. 13, No. 4, pp. 489-505, 1986 . 0305-0548/86 $3.00 + 0.00
Printed in Great Britain Pergamon Journals Ltd

PHYSICAL DESIGN FOR A RANDOM-ACCESS FILE WITH RANDOM
INSERTIONS AND DELETIONS*

HAiM MENDELSONT
Graduate School of Management, University of Rochester, Rochester, NY 14627, U.S.A.

and

UR1 YECHIALIL
Department of Statistics, Tel Aviv University, Tel Aviv 69978, Israel

(Received November 1984; revised August 1985)

Scope and Purpose— This paper addresses issues of physical design for a direct-access file which is subject to
random record additions and deletions. We derive the performance measures of interest in explicit closed
form, and apply them to solve a number of physical design problems. Such problems frequently arise in the
design of various database and file systems.

Abstract— This paper studies in detail the performance of a database that is subject to random additions and
deletions. The relevant performance measures are derived in explicit closed-form. These performance
measures are applied to study the problem of optimal physical design.

1. INTRODUCTION

Most (if not all) commercial database systems possess the capability of dynamic record additions and
deletions. These capabilities enhance the flexibility of use which is required by the database approach,
and are necessary for transaction-processing systems. In contrast, most analyses of the performance
of database systems consider only a growing database system and ignore the possibility of dynamic
record deletions. Such analyses implicitly assume that deletions would be performed only at
reorganization epochs (cf. Shneiderman [1], Mendelson and Yechiali [2] and Heyman [3]). Clearly,
when records are added and deleted continuously over time, this gives rise to a misspecification of
database behavior that could severely hamper the physical design process. The dearth of results on
the behavior of data structures when deletions are dynamically mixed with insertions has been noted
by Knuth [4]; some exceptions to this lack of results are due to Van der Pool [5], Jonassen and
Knuth [6] and Mendelson [7].

Our objective is to provide an exact analysis of the performance of a direct-access file which is
subject to random dynamic insertions and deletions. We consider a random-access file with an
independent overflow area. When a record is added to the file, a hash-function assigns it to a bucket in
the primary area. If the bucket so selected is full, the record is placed in the overflow area. In that
event, a pointer in the prime area starts a list of all overflow records initially assigned to this bucket by
the hash function. Each record resides in the system a random amount of time during which it
generates retrieval requests. At the end of this residence time, the record is deleted.

*Partial financial support by the IBM Program of Support for Education in the Management of Information Systems is
gratefully acknowledged.

+Haim Mendelson is Associate Professor of Computers and Information Systems and Business Administration in the
Graduate School of Management, University of Rochester. His interests include the economics of information systems
management, database management systems, applied economics and finance, computer-based trading systems, and stochastic
modelling. He has published extensively in the leading journals in these areas. Mr Mendelson holds a B.Sc. from the Hebrew
University of Jerusalem, and an M.Sc. and Ph.D. from Tel Aviv University. He serves as Computers and Information
Systems Area Coordinator at the University of Rochester Graduate School of Management and is coordinating the School’s
activities under the IBM Program of Support for Education in the Management of Information Systems.

+Uri Yechiali is a Professor of Operations Research and Statistics at the School of Mathematical Sciences of Tel Aviv
University, where he served as Chairman of the Statistics Department from 1980 to 1983. Professor Yechiali received his B.S.
(I.E.)and M.S. (O.R.) from the Technion, Israel, and a Dr. Eng. Sc. from Columbia University. He was a visiting professor at
New York University and at Columbia University, and he is a consultant to the Israeli Ministry of Telecommunications. Dr

Yechiali has published in numerous O.R. journals and his research interests are in queueing systems, teletraffic, reliability and
stochastic models.

489

490 HatM MENDELSON and URI YECHIALI

The pioneering work of Van der Pool [5] demonstrates the possible difficulties in analyzing this
kind of system. Assuming exponential residence times, Van der Pool [5, p. 29] derives a set of
recursive equations on his state probabilities which are based on a constant number of records on file.
As Van der Pool recognizes, a constant number of records on file can hardly be justified in a model
with additions and deletions. He proceeds from these equations to compute the stationary state
distribution; since this cannot be done in closed form, he suggests a delicate (and quite complex)
approximation procedure. These values are then used to compute the costs of storage and successful
searches (his second performance measure is again heuristic and ignores the fluctuations in the
number of records in the system).

In this paper we study a different model which allows us to obtain explicit closed-form results on
the behavior of all the relevant performance measures without sacrificing generality. We demonstrate
how maintaining sorted overflow chains (by key value) leads to reduced operating costs, and examine
the magnitude of this reduction. We allow our system to immediately reuse the space released by a
deleted prime record so as to conserve on subsequent operating costs. Our model admits general
record residence times (as the assumption of exponentiality will not be valid in most systems) as well
as transient time-dependent behavior. We analyze in detail and provide closed-form results for the
behavior of storage costs, successful and unsuccessful search costs, record addition and deletion costs.
These performance measures are studied both for the case of sorted overflow chains and for the case of
unsorted overflow chains. Then we apply these results to study the problem of optimal physical
design. We study, through examples, the case where the primary storage area is fixed (the
“constrained” problem) and then the case where we can vary the primary storage area, at a cost. We
find optimal values for the bucket size and number of buckets, and examine the sensitivity of our
results to the design parameters.

Our model of the database system is presented in the following section. In Section 3 we study in
detail the performance measures of the system. These measures are applied in Section 4 to optimize
the physical design parameters of a specific system. Our concluding remarks are offered in Section 5.

2. THE SYSTEM

Consider a random-access file consisting of a fixed prime area and a variable overflow area. The
prime area consists of N buckets numbered 1, 2, ..., N. The capacity of each bucket is b (fixed-length)
records. In addition, each bucket contains a pointer to the beginning of a list structure in the overflow
area (initially, all list structures are null). Record arrivals to the system follow a Poisson process with
rate A. Each record is identified by a kew w; keys of arriving records are independent, identically
distributed (i.i.d.) random variables sampled from an arbitrary continuous distribution H(*).

When a record possessing key w is to be added to the system, it is assigned a hash address #(w). The
hash addresses of arriving records are i.i.d. random variables possessing a uniform distribution over
the bucket numbers {1, 2, 3, ..., N}. Note that this implies that record arrivals to individual primary
buckets follow independent Poisson processes with rates 4 = A/N. The bucket arrival rate, 2 = A/N,
is a function of the number of buckets in the system, N.

If bucket h(w) = is not full, the record is added to bucket j in the prime area. If bucket j is full, the
new record is added to a chain of all overflow records whose initial hash address was j. The beginning
of the overflow chain is pointed to by a pointer in bucket j. Chains are organized as either sorted or
unsorted lists. If chains are unsorted, the new record will be added at the end of the chain. If chains are
sorted, the records in the chain of bucket j are inspected, starting from the first record in the prime
bucket, to find the first key w; such that w; < w < w;,, (if w is greater than all the keys in the chain, set
w;., = 00). Now, if i < b, the new record will be written in the prirne bucket, and the last record in the
bucket will be displaced to the overflow area; if i = b, the new record will be written in the overflow
area. In the former case, the overflow pointer of the primary bucket will be updated to point to the
displaced record; in the latter case, the pointer field of the record with key w; (or the overflow pointer
of the primary bucket if i = b) will point to the added record.

A record remains on file a random amount of time. Let ¥} be the amount of time the kth record
added to the system resides in the database until it is deleted; ¥, V5, ..., ¥, ... are i.i.d. random
variables distributed as a random variable V, possessing distribution function G(+) and a finite mean

E[V]=1/u

Physical design for a random-access file with random insertions and deletions 491

We assume that the overflow area is effectively infinite (i.e. the probability of overflow from the
overflow area is negligible). There is a list of empty overflow slots; a pointer to the beginning of the list
is maintained in main storage. Overflow empty slot management is LIFO. Deletion of a record is
accomplished by reversing the steps taken when the record was added to the system. To delete a
record residing in the overflow area, its slot is simply returned to the list of empty overflow slots and
the pointer pointing to it is replaced by the value of the pointer of the deleted record. When a record is
deleted from a primary bucket which possesses an overflow chain, the first record of the overflow
chain is moved into the prime bucket, and its pointer becomes the pointer of the prime bucket. This is
a low-cost procedure which prevents degradation of system performance over time.

Interestingly, our model can be directly related to the M/G/co queueing model. Let X (t) (i=1, 2, 3,
..., N;t > 0)denote the number of records belonging to bucket i at time ¢, and let X(¢) = (X, (t), X 5(¢),
..., Xn(0) (X(0) =0). The above assumptions imply that the components of X(t) are independent.
Furthermore, for each i, { X(t), t > 0} is an M/G/co queueing process with arrival rate 4 and service
time distribution G(-). It follows (cf. Ross [8, Section 2.3]) that

P{X (1) = k} = q(k; t) = exp[~ p(t)] [p(t)]*/k! (1)
where
p)=4 J‘ [1 - G(x)] dx,
0
and
k
P{X (00) = k} = a(k) = exp(—p) & @)
where p = p(00) = i/u.
We also denote the right tails of the above distributions by
Qk; 1) = Zk aGgt; Q)= Y, q(j). ©)
j= j=k

In the next section we apply this model to analyze the performance of the system.

3. PERFORMANCE MEASURES

The costs of operating our file system include access costs (i.e. costs of input/output operations
performed on the file system) and storage costs, both for the prime area and for the overflow area. The
essence of the physical design problem is trading off these cost components. We let ¢, denote the cost
of reading or writing a primary record; c,—the cost of reading or writing an overflow record; s,—the
storage cost per record in the prime area (per unit of time), and s,—the storage cost per record in the
overflow area. Since input/output operations involve only whole buckets, these cost parameters will
depend on the bucket size. Thus, the above cost parameters will depend on the physical design
parameters chosen for the system. For example, since the data-transfer rate is finite, ¢, will be an
increasing function of the bucket size b. The specific dependence of the cost parameters on the
physical design parameters varies from installation to installation; we present the details for a typical
installation in the next section.

In order to be able to analyze performance measures for the database system, we have to first
specify the usage pattern of the database. Retrieval of records from the database can be classified into
successful and unsuccessful searches: A successful search is a retrieval request for a record currently
stored in the database; an unsuccessful search occurs when it is discovered that the requested record is
not present in the database*. We associate each record present in the system with a random stream of

*Unsuccessful searches are frequent when the system is used to verify the nonexistence of a record in the database (e.g.
checking the validity of a credit card number). Also, whenever a record is added to the database, an unsuccessful search has to
be performed to verify that the added key is not already present in the system. See, e.g. Knuth [9], Mendelson and Yechiali
[10] and Mendelson [11]).

492 HAiM MENDELSON and URI YECHIALI

retrieval requests to that record (clearly, all these retrieval requests will become successful searches).
We assume that the streams of retrieval requests for records present in the database follow
independent, homogeneous Poisson processes with rate R, (per record). We also assume that
unsuccessful search requests follow an independent Poisson stream with rate R,. The remainder of
the usage pattern involves additions and deletions which have already been specified in Section 2.
Thus, we are now in a position to analyze the various performance measures of the database system.

3.1. Storage cost

The storage cost for the prime area is, obviously, s,* Nb. The size of the overflow varies over time;
let 6,(¢) denote the number of overflow records in the chain of bucket j at time r. We have

{0 if X (1)< b,
6,00 = {Xj(t) —b if X,(t)> b,

Thus, the expected length of the chain-overflow for any bucket j is given by

M(t)=E[6t)] = OZO: (k — b)P{X(t) =k},

k=b+1

=p(t)-Qb; 1) —bOb + 1, 1). 4)
The expected overflow size is N+ M(t), and the corresponding cost rate per unit of time is Nso,M(t).

3.2. Successful search cost

To evaluate the cost of a successful search, consider a retrieval request from a chain j when it
contains n records. Each of the n records generates an expected number of R, retrieval requests per
unit of time. If n < b, each of these requests results in a single input/output operation (reading the
corresponding bucket), hence the expected retrieval cost rate per unit of time is Rinc,. If n> b, the
expected cost rate per unit of time is given by

| _
Rgne, + Rsnco[; I+2+...+@n— b))] = Rync, + Rco(n —b)(n—b + 1).

Thus, the expected retrieval cost rate per unit of time is given by
NRyc, p(t) + NRcoE[0,(t)(6,(t) + 1)].

Now,

Y (j—b)j—b+1)q(j;t)

i=

b
[i by q(j; 1) J+[§ U —b)q(j;)]

= [b20(b; 1) + p(O)(1 — 2b)Q(b — 13 1) + p2(O)Q(b — 2; 1)] +
[o()0(b — 1; 1) — bO(b; 1]

=b(b~1)Q(b; 1) = 2()b — DNQG ~ 15 1) + p*(1)Qb — 2; 1), ©)

E[6,(r)-(6,(t) + 1)]

where the sums Q(k; t) are defined by equation (3). Finally, the expected retrieval cost rate is
NRycyp(t) + 3N Rco[blb — 1)Q(b; 1) — 20(t)(b — 1)Q(b — 15 1) + p*(1)Q(b — 2; 1)], (6)

where we define Q(k; t)=1 for all k<O0.
The first term of equation (6) represents the expected cost of reading the primary bucket, an

Physical design for a random-access file with random insertions and deletions 493

operation that is performed once for each retrieval. The second term represents the expected added
cost of search in the overflow chain. This term is NRc, times 3E[0,(1) (6,(t) + 1)]; the fact that the
cost is quadratic in 0(t) represents a clustering effect: the expected cost of retrieval when overflow
chains are long goes up for two reasons. First, the expected search along the chain is obviously longer;
and second, the probability that the required.record is stored in the overflow area (i.e. the probability
that this search will be required) is also higher. The result is that when the expected number of records
per bucket is significantly greater than b, we should expect an increasingly significant deterioration in
the retrieval performance of the system. The implications of this clustering effect will be evident in the
design problems studied in Section 4.

3.3. Unsuccessful search cost

The cost of unsuccessful searches depends on the organization of the overflow chains: when
overflow chains are not sorted, it is necessary to search throughout the chain to discover that the
requested key is not present in the database; in the case of sorted chains, it is sufficient to search up to
the first key which is greater than the requested key. Thus, we have to distinguish between these two
cases.

3.3.a. Unsorted chains. An unsuccessful search at time ¢ involves reading the primary bucket (say
bucket j), and then reading 6,(t) overflow records. The expected cost per request is then ¢, + coM(t).
Since the arrival rate of unsuccessful search requests is R,, the expected cost rate per unit of time is
R, [c, +coM(@)].

3.3.b. Sorted chains. Let w be the key requested in the unsuccessful search request, and assume that
its hash-address is h(w) = j and X ;(r) = n. If n < b, the cost of search is only c,. If n > b, the cost will be
cptitcoifwyy oy <w<wy, (i=1,2,...,n—b),wherethekeysinchainjarew, <w, <...<w,.If
w > w,, the cost is ¢, + (n — b)*c,. Thus, given n (n > b) and h(w), the (conditional) expected cost is

n—b
cp P{w<w,} + Y (cp+ i co)P{Wysioy <w<wyy i} +[cp+ (n—b)co]" P{w>w,}

i=1

n-b+1
=cb+co-[) i<b +’:_I)H(w)"“-*(l—H(w»"‘“’“-”—(H(w))"].

But since the probability-integral transformed variate H(w) is uniformly distributed over [0, 1], we
have

n .) n !) .
E H b+i—1 1__ n—(b+i—1) = b+i—1 —py-bti-1)
[(b +i_1) W)P* =1 (1 — H(w)) J (b +l._1) Lou (1—u) du,

n . . 1
—<b+i_1>B(b+z,n—b—l+2)—-n+l,

where B(-, +) is the beta function. It follows that the expected conditional cost per request (given n;
n>b) is equal to

n—b+1
c,,-f—co'[(Z i)— 1}/(n+ 1)

=Cb+C0‘

(n—b)n—b+3)
2(n+1) ’

=c,,+529-[n+2(1 ~b)+ (b? —b—2)/(n+1)],

and the expected cost rate per unit of time is

Ry + §u260 [P(1)Q®; 1) = 2(b — 1) Qb + 15 1) + (b* = b = 2)- Qb + 2;)/p(t)],

CAOR 13:4-1

494 HaimM MENDELSON and UR! YECHIALI

since

S (n+ 1) exp[— (0] [p(O]/n! = Qb+ 2; 1))pl0)

n=hb+1

34. Addition cost ¥
In analyzing the cost of record addition, we apply the well-known fact that “Poisson arrivals see
time averages” (cf. Heyman and Sobel [12, Section 11-2]), namely: the state of the system
encountered by an arriving record at time ¢ is distributed as X{¢). Since the cost of record addition.
clearly depends on whether overflow chains are sorted or not, we study each of these cases separately.

3.4.a. Unsorted chains. Suppose that the record to be added to the database has key w with hash
address h(w) =j. The addition then consists of

(1) an unsuccessful search along chain j;
(2) the actual addition, depending on
(2a) if X (t) <b, the primary bucket is updated and rewritten (cost c,);
(2b) if X ;(t) = b, the new record is stored in the overflow area (cost ¢,) and a pointer is added to
the primary bucket, which has to be updated (cost c;);
(2c) if X (t) > b, the new record is stored in the overflow (cost ¢,) and the previously last record -
is updated with a pointer (cost ¢,).

Thus, the expected cost per request is the expected unsuccessful search cost, plus a term which can
be written as

ey P{X () < b} + (¢, + o) P{X,(t) = b} + 2co* P{X (1) > b}
=cp'[1-Qb + 1;1)] +co qb;) + 2¢4° Qb + 15 1),
=cy+ (200 —)Ob + 15 1) + coq(b;).

The expected (total) addition cost rate per unit of time is thus equal to
NAi[2¢, + coM(t) + (2co — ¢,)b + 15 1) + coq(b; 1)]-

3.4.b. Sorted chains. If the arriving record has key w with hash address h(w) = j, then the addition
consists of :

(1) An unsuccessful search along chain j;
(2) the actual addition, depending on
(2a) if X (t) < b, the primary bucket is updated (cost c,);
(2b) otherwise, if h(w) is to be inserted between the ith and the (i + 1)st record of chain j, and
X(t) = b, we must distinguish the following cases:
(i) i< b:the primary bucket is updated (cost ¢,) and an overflow record is written (cost
Co)s
(i) i> b:the pointer of the ith record (an overflow record) is updated, and the new record
is written in the overflow area (cost 2c,).

It follows that the expected conditional addition cost, given w and n, is the cost of an unsuccessful
search, plus
L= cb'I{n<b} + I{n:b} '(CO + Cb) -+ I{”>b}’P{W < W, 1}'(60 + Cb) + I(">b)'P{W > Wy 1} * 2C0,
where I denotes the indicator of event E. Now,

n

P{wy,y <wj= Y (?) (Hw))'(1 — Hw))* ™,

i=b+1

Physical design for a random-access file with random insertions and deletions 495

hence
: n , .
L=Ipp co+Iin=p(co +¢p) + Ins 5y (€o + C3)° Y (i)(H(W))'(I"H(W))" ‘
i=0

+ Ty 20" 3 (’:)(H(w))‘(l—ﬂ(w»"'*‘.

i=b+1
Integrating over w and noting, as before, that H(w) ~ U(0, 1), we obtain
EJL)=Iihcp ot L=y (cot+ o)+ inspy* (co+cp)

b

(':)-B(,H 1, n=i+1)+ Iy 2
i=0

(',')B(i+1,n—i+1)
b+1 \?

=Iinepy Co+ L=y (Co + Cp) + Lins gy (co +¢p)
‘(b +1)/(n+ 1)+ Iy 20t (n—b)/(n+1).

i

Summing over the possible values of n, we obtain

E[L]=[1-0Q®;t)]'c, +qb;) (co+) +(co+cp) b+1) Y qn1)/(n+1)

n=b+1

+2¢cy° i q(n; t) (n—Db)/(n+1).

n=b+1

Noting that
Y (j+ 1) texp(—p) plfit=p"" Y exp(—p)p*1/(j + 1)
j=r i=r

=p~' ¥ exp(—p)pll!

j=r+1
and that

(n=b)n+1)=1-(b+1)/(n+1),

we finally obtain

E[L}=[1-Q(b;] cy+qb; 1) (co +cp)
+(cotcp) B+ 1)pt) 1 Qb +2;t)+ 24 Qb+ 15 ¢t)
~2¢o (b -+ 1) p(t) " Qb + 25 1) |
=¢,'[1 = Qb+ 1;1)] +colqlb; 1) +20(b + 1; 1)]
+ (b + 1p(t)'Qb + 2; t)(cp, — co)-

Finally, the expected (total) addition cost rate per unit of time when the chains are sorted is
E[L] + E[cost of an unsuccessful search] =

=Nic,[2 - Qb+ 1;1)] + Nico[(3 —b)Q(b + 1;t) + q(b; t)

+1p()Q(b; 1] + Ni(b + 1)p(t) ™' Qb + 2; 1) [c, + Scolb — 4)].

496 HAIM MENDELSON and URI YECHIALI

3.5. Deletion cost

Deletion of a record consists of a successful search for the record to be deleted, followed by the
actual deletion. Although it will turn out that we can use the results in Subsection 3.2 in the
evaluation of the expected cost of the required successful search, this is not automatically true since
the distribution of the system state upon deletion may be different from that of the system state at an
arbitrary instant. In fact, we have to carefully evaluate a probability of the form

P{X (t — 0) = n]t is a deletion epoch}.

To evaluate this probability, consider the situation where X ;(t) =n, and number the n records in
bucket j by a random permutation of the numbers (1,2,3,..., n). Then, let #(t)=
(1), n2(2), . . ., n4(£)), where 11,(t) is the residual time the ith record (using this numbering) has left to
stay in the system (that is, t + #,(t) is the deletion epoch of the record numbered by i). Following the
usual conditioning procedure of the M/G/c0 queueing system, we obtain

P{X) =n, n) <n}=q(n; 1) Ui L [ng)(z[; j i;(—z)g;g;] =

This implies
P{X(t) = n, a record is deleted in (z, t + At)},

A nGl)
=i;n, t) At —“fé = G@] dz+0(At),

where o(At) is a function satisfying lim,,. o 0(At)/At =0. Using Bayes’ rule, we obtain for
n=1273,...

: . n-q(n;t)
P{X(t — 0)= n|t is a deletion epoch} = m—+—
{ ! P } Zk=1 k-qk;t)
=n-q(n; t)/p(t).
In the case of sorted overflow chains, the location of the deleted record is independent of its

insertion time (and hence also of the deletion time). Then, given X 4(t — 0) = n, the expected cost of
search for the record to be deleted is

1
R I [1+2+...+(=b)]=cy+ico I jps y(n—b)n—b + 1)/n, %)

while the expected cost of the actual deletion is

n—b

’ b
I{nsb}'cb+1{n>b}‘[;'(co+cb)+ ’Co]=cb+1(n>b}'(co"Cb)‘*'b/”'l(»b}'cb (®)

(recall that when a record is deleted from a prime bucket possessing an overflow chain, the first record
of the overflow chain is moved into the prime bucket). The expected value of equation (7) is given by

0

cptcop®)™! Y (n—b)n—b+1)gn;t)

n=bh+1
= ¢y + 3Cop(t) TLE[0;(1)(0;(t) + 1)]
C=cp+3cop(t) " 1b(b — 1)Q(b; 1) — co(b — 1)Q(b — 1; 1)
+3¢op()Qb — 2; 1),

Physical design for a random-access file with random insertions and deletions 497

while the expected cost of the actual deletion is

¢yt (co—cp)p) ' i [b+(n—-b)]-qln;)+, p(t)™ " i b-q(n; 1)

n=b+1 n=b+1

=, +Cob p(t) 1 Qb + 1) + (co = cp) p ()1 M(e).
It follows that as t — oo, the expected deletion cost rate per unit of time is given by

NA[2¢0 + cobp™1Q(b + 1) + eop ™ 1b(b — 1)Q(b) — colb — 1)QB — 1)
+1copQ(b — 2) + (co — cp)Q(b) — (co — cp)p ™ 'bQ (b + 1)]
= NA[2¢, + csbp ™1 Q(b + 1) +cop ™ 1b(b — 1)Q(b)
—colb — 1)Q(b — 1) +4copQ(b — 2) + (co — c,)Q(B)].

When overflow chains are unsorted, the location of a record in the chain will depend on its
insertion time, and hence equation (7) may cease to hold. However, equations (7) and (8) will still hold
if the distribution of ¥V is exponential.

4. OPTIMAL DESIGN: NUMERICAL RESULTS

Consider a file system where A == 1000 records are added to the system per day, and a record
remains on file for 1/u = 200 days on average before it is deleted. The expected long-run number of
records in the system is A/u = 200,000, a medium file size for commercial applications. Let the record
size be r bytes; r is an application-dependent parameter. Consider a file residing on an IBM 3380 disk,
which is widely used in IBM installations; other contemporary disks have similar performance
characteristics, and hence this example is quite representative. The IBM 3380 has an average seek
time of 16 ms, an average rotational delay of 8.3 ms and a transfer rate of 3 megabytes per second.
This gives rise to an expected time of 24.3 + 1/3 x 10~ *rb ms for directly reading a block of b records,
where the first term represents the expected delay which is independent of block size and the second
term represents the finite data-transfer rate. The actual dollar cost per input/output operation
depends on installation and application-dependent parameters; using the disk input/output time
charging rates for average commercial jobs at the University of Rochester’s IBM 3032, this gives rise
to a cost of

€, =24x1073+33x107%b ©)

dollars per I/O operation. Clearly, for a different device or installation, the constants in equation (9)
will be different, but their derivation and the general pattern of behavior will be the same. A
commercial installation will contain a large number of systems with different characteristics, but the
orders of magnitude selected here are quite typical.

Direct-access storage costs at the same installation are 2 cents per track per day, where a track of
the 3380 can store up to 47,476 bytes. Note, however, that the cost per byte depends on the block size,
due to three effects: (i) there is an unused interblock gap of 480 bytes between consecutive blocks; (ii)
under most file organizations there must be an integer number of blocks per track; and (iii) block sizes
are adjusted upwards to the nearest multiple of 32 bytes. The result is that if the block size is r* b, and
we denote by [-] the ceiling operator (rounding to the nearest integer upwards), the number of blocks
per track is n={[1499/[rb/32] + 15)], and the storage cost per record per day is 0.02/(nb). The
integrality requirement on n gives rise to the existence of a sequence of “recommended” block sizes
that efficiently utilize the track space; for the 3380 this sequence includes 47,476 bytes for 1 block per
track, 23,476 bytes for 2 blocks per track, 15,476 bytes for 3 blocks per track, 9076 bytes for 4 blocks
per track, and so on. As the block size increases between these points, storge utilization goes up since
the number of blocks per track remains constant. Thus, a track will contain 3 blocks of 9076 bytes
each and also 3 blocks of 15,476 bytes each, making the latter block size much more efficient. A

498 HAiM MENDELSON and URI YECHIALI

second effect is the increase in storage utilization along this sequence, resulting from the fact that as
the number of blocks n goes up, less space is wasted on interblock gaps.

Next consider the costs associated with storage and retrieval in the overflow area. Usually there are
significant advantages to using the same block size in the prime area and in the overflow area, since
this makes maintenance more uniform and consequently less costly. We shall assume that this is
indeed the case, and that the two areas possess the same characteristics (the modifications required
when area characteristics are different are straightforward). Finally, we shall assume in our numerical
examples that 109 of thé records on file are retrieved per day, namely: R, = 0.1; we also let R,=0
(this can easily be modified without significantly affecting the results).

Given the above specifications, the physical design of the system involves two basic decision
variables: the number of buckets in the primary area, N, and the number of records per bucket (or
blocking factor), b. We shall consider the long-run behavior of the system, and distinguish between
two problems: the constrained design problem, where the overall number of records in the primary
area, N-b, is predetermined, and the problem is to determine the optimal bucket size (or the number
of buckets, N); and the unconstrained problem, where both N and b are to be determined. It is
convenient to represent the unconstrained problem as the problem of finding the minimum-cost
solution among all constrained problems, where we are relaxing the value of the constraint. Thus, we
wish to examine the behavior of the expected overall operating and storage cost per day as a function
of the blocking factor b, where N*b =K, a constant; then we shall examine the behavior of the cost
function when we allow K to vary. We shall also examine quantitatively the impact of sorting
overflow chains on the solutions. This will help determine conditions under which the reduction in
operating costs due to sorting overflow chains justifies the added complexity of operation.

4.1. The constrained de;sign problem

Here we are interested in the behavior of the expected overall cost per day as a function of the
bucket size b as we keep the capacity of the primary area, N-b = K, constant. Since the expected
number of records on file in the long run is p = 200,000, we examine three representative values of K :
(i) K = 150,000, where the primary area can store up to 75 7o of thefile, and a significant portion of the
records must reside on the overflow area; (i) K = 200,000, where the capacity of the primary area is
equal to the expected number of records in the system (but, of course, the overflow area will still be
significant); (iii) K = 300,000, where the capacity of the prime area is 50 % above the expected number
of records and the overflow size should be negligible. The results for record size r — 200 are shown in
Fig. 1 (additional results are presented in subsequent figures).

First consider the case of a significantly constrained prime area, K = 150,000. It is evident that a
low blocking factor (b = 4) is optimal here, a result which is contrary to the usual suggestion of a fairly
high blocking factor (in particular, when—as in this case—logical records are short with respect to
the track size). In fact, the expected cost per day is $165.28 for b =1, $138.71 for b = 2, $131.76 for
b =3, $130.30 per day for b =4 (the optimum), and $131.37 per day for b =5, then there is a fast
increase in the expected cost up to $1043.43 per day for b =237, which is the maximum possible
blocking factor for this record size (in Fig. 1 we show only a small portion of this range).

To explain this counterintuitive result, we decompose the total daily cost corresponding to b = 237
and discover that most of the cost is attributable to successful retrievals ($919.73 per day). The reason
that large values of b are associated with high retrieval cost is that when Nb = K , large b implies low
N; thus, records are distributed among a smaller number of chains. But since the space available is
K = 150,000, which is less than the expected number of records, p = 200,000, a significant number of
retrievals will require search in the overflow area; furthermore, due to the clustering effect discussed in
Section 3.2, the expected cost of overflow search increases quickly for long overflow chains. When N
islow, records are distributed among less overflow chains, and hence there is a higher probability that
some overflow chain(s) will turn out to be long (although the capacity of the prime area remains the
same). A second effect, which is less significant here but will become important for larger values of K,
is the increase in the data-transfer cost for large b: we must read all b records in the block in order to
get only one of them.,

Figure 1 also demonstrates the behavior of the cost as a function of b when the capacity of the prime
area is equal to the expected number of records in the system (K = 200,000) and when it is 509 higher
(K = 300,000). In both cases, the cost function has a minimum at a moderate value of b (b = 24 in both

Physical design for a random-access file with random insertions and deletions 499

OVERALL COST PER DAY
200

K = 150,000

180

160

140

120

100

80] !] 1 1 1 1
0 20 40 60 80 100 120 140 160

BLOCKING FACTOR , b
logical record length : r=200
Fig. 1. Overall cost (in dollars per day) as a function of the blocking factor b for the constrained design

problem. The upper curve corresponds to K = 150,000, the middle one to K = 200,000, and the lower curve
to K = 300,000 records in the primary area.

cases; the expected daily cost is $100.99 for K = 200,000 and $89.81 for K = 300,000). As before, high
values of b are undesirable. The effects of disk space utilization become prominent in these two cases,
since now the storage cost becomes significant while the input/output costs are reduced. Thus, for
example, the sharp local minima of both curves at b = 117 result from the fact that when the block size
is 117 x 200 = 23,400, two blocks can fit on one track, while for b = 118 the block size becomes 23,600
for which only one block can fit on a track of the 3380, and the rest of the track remains unused.
Consequently, the storage cost goes up steeply. Similar local minima can be found on both curves at
b =137, 45, 57 and 77, corresponding to n = 6, 5, 4 and 3 blocks per track, respectively. (Note that in
the examples studied, the cost goes down as K increases. However, in Section 4.3 we shall study the
cost as a function of K in some detail, showing that there is a point K,;, where the cost starts
increasing.)

4.2. Does sorting overflow chains matter?

In the following three figures we examine the constrained problem studied in the previous
subsection, while assessing the improvement brought about by sorting overflow chains. These
figures will also serve to study the effects of increasing the logical record length from r = 200 (as in Fig.
1) to r = 500. Figure 2 depicts the expected cost per day for K = 150,000 records as a function of the
bucket size b, for both sorted and unsorted overflow chains, when the logical record size is r = 500.
First we observe that as in the case where r = 200, the minimum cost blocking factor b is fairly low, at
b = 4; the corresponding minimum daily cost is $159.27. Since the bucket size is larger, we can readily
observe the points that lead to relatively efficient disk space utilization; as in the previous figure with
K = 150,000, these are not points of local minimum, and the general pattern of costs increasing with
bucket size (beyond the minimum point, i.. for b > 4) dominates. The explanation is similar to that of
Fig. 1: due to the clustering effect, large values of b are associated with low values of N; then thereis a
higher probability of having some long overflow chains that bring about a significant cost increase.

Examining the savings resulting from sorting overflow chains, we note that they are significant for
large b but relatively small at the optimal value of b. Thus, at b = 4 (the constrained optimum), the

500 HAiM MENDELSON and URI YECHIALI

OVERALL COST PER DAY

500

SORTED CHAINS

300

200 k-

+ 100 1 1 | 1
0 20 40 60 80 100
BLOCKING FACTOR , b
logical record length : r=500
Fig. 2. Overall cost (in dollars per day) for sorted and unsorted chains as a function of the blocking factor b
for the constrained design problem. The graphs correspond to K = 150,000 records in the primary area. The

upper curve depicts the cost function for unsorted chains, and the lower depicts the cost function for sorted
chains.

savings due to sorting the overflow chains are $2.58 per day (<1.6%) whereas for b =94, they
increase to more than $106 per day (which amount to more than 16 % of the overall cost). Figure 3
depicts the corresponding results with K = 200,000 records. Here, the minimum cost is $133.95 per
day, at b= 11; the corresponding cost for unsorted overflow chains is $136.59. As before, the cost
differential between sorted and unsorted chains increases with b, although the difference for most
values of b is not as high as in the case where K = 150,000. Finally, Fig. 4 illustrates the same
comparison when K = 300,000. Note that here the cost function for sorted chains is almost identical
with that of unsorted chains, and in fact it is difficult to distinguish between them in the figure. Indeed,
the difference between the two is of the order of a couple of cents per day. Intuitively, this results from
the fact that when K = 300,000, the expected length of overflow chains is close to zero, and
consequently sorting these chains is of little impact on the expected cost function. Thus, when we can
generously allocate space for the prime area, it may not be desirable to add to the complexity of the
system by maintaining sorted overflow chains.

4.3. The unconstrained design problem

To solve the unconstrained design problem, we vary the storage capacity of the prime area, K, and
search for the value of K which minimizes our cost function, where the optimum given K is obtained
by searching over the possible values of b. In Fig. 5 we demonstrate the behavior of the overall cost (at
optimal b) as a function of K, when r = 200, and in Fig. 6 we depict the optimal blocking factor b as a
function of K for the same value of r. Due to the importance of this problem, we repeat the process for
r = 500; the results are shown in Figs 7 (cost as a function of K) and 8 (b as a function of K).

The general pattern of behavior is as follows. There exists an optimal value of K, K,;,, such that for
K < K., the cost function decreases with K, and the optimal bucket size b increases with K ; thereis a
fairly flat minimum of the cost function at K = K;,, and the optimal b remains constant in the
neighborhood of K, (b maintains a value that corresponds to an efficient disk-space utilization
point). For K < K;;,, the dominant cost factor is the cost of input/output; as K goes up, the overflow
area becomes smaller and the expected input/output cost goes down. This is, of course, accompanied

220

200

190

180

170

160

150

140

130

120

210

200

190

180

170

160

150

140

130

Physical design for a random-access file with random insertions and deletions
QVERALL COST PER DAY
- UNSORTED CHAINS
SORTED CHAINS
I L [1
Q 20 40 60 80 100

BLOCKING FACTOR , b
logical record length : r=500
Fig. 3. Overall cost (in dollars per day) for sorted and unsorted chains as a function of the blocking factor b
for the constrained design problem. The graphs correspond to K = 200,000 records in the primary area. The

upper curve depicts the cost function for unsorted chains, and the lower depicts the cost function for sorted
chains.

QVERALL COST PER DAY

] 1 Il 1

0 20 40 60 80 100

BLOCKING FACTOR , b
logical record length : r=500
Fig.4. Overall cost (in dollars per day) for sorted and unsorted chains as a function of the blocking factor b
for the constrained design problem. The graphs correspond to K = 300,000 records in the primary area. The

differences between the cases of sorted and unsorted chains are negligible, and the two graphs virtually
coincide with each other.

501

502 HAiM MENDELSON and URI YECHIALI

180 EXPECTED OVERALL COST PER DAY (for optimal blocking factor)

160 |~

140 .

120 N

100 |- s

80 1 |‘ [l Il Il

100 150 200 250 300 350

K (thousonds of bytes)
logical record length : r=200

Fig.5. Theunconstrained design problem: overall cost (in dollars per day) for 200-byte records as a function
of the prime area allocation, K.

0 OPTIMAL BLOCKING FACTOR , b

400

35

30

25

LI T S B S S 2 B S

20

o
L S e L e e

|] ! 1 i

0
100 150 200 250 300 350

K (thousands of bytes)
logical record length : r=200

Fig. 6. The unconstrained design problem: optimal blocking factor, b, as a function of the prime area
allocation K (logical record length = 200 bytes).

Physical design for a random-access file with random insertions and deletions

220 EXPECTED OVERALL COST PER DAY (for optimal blocking: factor)
200 -

180

160

140 % et -

120 1 1 1 { |

100 150 200 250 . 300 350 400
K (thousonds of bytes)
logical record length : r=500
Fig.7. The unconstrained design problem: overall cost (in dollars per day) for 500-byte records as a function
of the prime area allocation, K.
o OPTIMAL BLOCKING FACTOR , b
}.
15
.

10

5

0 { 1] 1 1

100 150 200 250 300 350 400

K (thousands of bytes)
logical record length : r=500

Fig. 8. The unconstrained design problem: opitmal blocking factor, b, as a function of the prime area
allocation K (logical record length = 500 bytes).

503

504 Haim MENDELSON and UR! YECHIALI

by an increase in the storage cost of the prime area; but in this range the reduction in input/output
cost more than compensates for the increased storage cost. For K > K, the situation is reversed,
and the storage cost becomes the dominant factor. In fact, when K gets large enough, the overflow
chains become practically negligible, and increasing K only increases the storage cost without any
significant offsetting benefits.

Figure 5 demonstrates the behavior of the expected overall cost per day as a function of the
capacity K of the prime area, using the optimal blocking factor b = b*(K), when the logical record
length is r = 200 bytes. The global optimum is at K = K, = 253,000 bytes, some 259, above the
expected number of records p = 200,000; the corresponding overall daily cost is $88.12. The overall
daily cost remains below $90 through the range 229-302K (at optimum b); thus, the minimum is quite
flat. Note that for this value of r, the shape of the expected cost curve is quite asymmetric and the
marginal cost of overallocation is low with respect to the marginal cost of underallocation.

Figure 6 demonstrates the behavior of the optimal blocking factor, b, as a function of the available
prime area capacity K. At the global optimum, the optimal blocking factor is b = 37; the same
blocking factor is optimal in the range 211,000 < K < 256,000. Also note that the graph of b*(K) is
unimodal, with its maximum at the global optimum point K = K., Intuitively, when K is
significantly below its optimal level, the clustering effect discussed before implies that large values of b
are undesirable. As K increases towards K., the clustering effect becomes less severe, thus allowing
the more efficient storage utilization afforded by larger values of b. As we have also seen before, large
values of b are undesirable even for large values of K, and b*(K) starts declining at K = 257,000. Note
that the optimal values of b follow the sequence of blocking factors that allow for efficient track
utilization, emphasizing once more the importance of this effect.

Figures 7 and 8 demonstrate the behavior of the cost and the optimal value of the blocking factor
b*(K) for the case of somewhat larger records with logical record length r = 500 bytes. The global
minimum is attained at K = 242,000 and b = 18 records per block; clearly, the minimum cost is
somewhat higher than before ($126.22 per day). The general pattern of behavior is similar to the case
r =200. However, the larger record size reduces the asymmetry in the shape of the cost function; this
should be expected since storage considerations gain importance as the record size increases. The
unimodality of the function b*(K), with maximum b associated with K = K,,;,, occurs as before. Here,
the range where b = 18 is optimal is wide (204,000 < K < 350,000); as before, the optimal values of b
coincide with those values that give rise to efficient track utilization.

5. CONCLUDING REMARKS

This study provides a comprehensive analysis of the performance of a database system that is
subject to random additions and deletions. Fortunately, we have been able to obtain closed-form
results on the behavior of the relevant performance measures; programming these results is a trivial
matter and the computational costs involved are quite insignificantt. These results are useful in the
context of performance prediction, cost evaluation and system design.

We have shown a number of examples where we derived the optimal system design parameters
(bucket size and/or prime area allocation). These examples also provide insights to the general
patterns of system behavior, as well as to the relative importance of various considerations. In
particular, we have shown that, in contrast to the standard recommendation for large bucket sizes,
small to moderate blocking factors are often optimal. We have emphasized the importance of using
those blocking factors that lead to efficient track utilization; although additional factors also affect
the overall costs, we have seen that this consideration is, locally, a determining factor. We have also
examined how the availability of storage space affects the behavior of the system and the values of
blocking factors to be utilized. Also, the degree of asymmetry in the shape of the cost function (as a
function of available storage capacity) is such that for small record lengths, we may be more generous
in the allocation of the prime area without incurring significant excess costs, whereas for large record
sizes this may be too costly, and the designer may have to be more careful in allocating space for the
prime area.

Finally, it is instructive to examine the order of magnitude of the costs associated with poor design.
Our results indicate that for a single medium-sized file, sub-optimal design can increase the daily

+The source programs employed in the production of our results are available upon request.

Physical design for a random-access file with random insertions and deletions 505

operating costs from some $100to an order of magnitude of $200; poor designs could cost even $1000
per day for our examples (many of these numbers do not appear in the graphs, which are themselves
the results of optimization procedures). This translates into a difference of some $30,000-$300,000
per year per file. Multiplying this by the number of files and comparing to the trivial computational
costs, we note that physical design is a worthwhile investment, even if we accept only the low end of

the estimate.

REFERENCES

B. Shneiderman, Optimum data base reorganization points. CACM 16, 362-365 (1973).

. H. Mendelson and U. Yechiali, Optimal policies for database reorganization. Opns Res. 29, 23-36 (1981).

. D. P. Heyman, Mathematical models of database degradation. ACM Trans. Database Syst. 7, 615-631 (1982).

E. Knuth, Deletions that preserve randomness. IEEE Trans. Software Engng SE-3, No. 5 (1977).

. Van der Pool, Optimum storage allocation for a file in steady state. IBM J! Res. Dev. 17, 27-38 (1973).

T. Jonassen and D. E. Knuth, A trivial algorithm whose analysis isn’t. J. Comput. Syst. Sci. 16, 301-322 (1978).

Mendelson, Analysis of extendible hashing. IEEE Trans. Software Engng SE-8, 611-619 (1982).

. S. M. Ross, Applied Probability Models with Optimization Applications. Holden-Day, San Francisco (1970).

. D.E. Knuth, The Art of Computer Programming, Vol. 3, Sec. 6.4, pp. 506518, Addison-Wesley, Reading, Mass. (1973).

10. H. Mendelson and U. Yechiali, Performance measures for ordered lists in random-access files. J. Ass. Comput. Mach. 26,
654-667 (1979).

11. H. Mendelson, Analysis of linear probing with buckets. Inform. Syst. 8, 207-216 (1983).

12. D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research, Vol. I: Stochastic Processes and Operating
Characteristics. McGraw-Hill, New York (1982).

13. 1. Meilijson, M. R. Newborn, A. Tenenbein and U. Yechiali, Number of matches and matched people in the birthday
problem. Commun. Statist.-Simulat. Comput. 11, 361-370 (1982). ‘

14. H. Mendelson, Lattice path combinatorics and linear probing. J. Statist. Plann. Inference 14, 79-94 (1986).

. D.
S

. Al
. H.

VONAUNA WN —

