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The M/G/1 queue with single and multiple server vacations is studied under both
the preemptive and non-preemptive priority regimes. A unified methodology is
developed to derive the Laplace-Stieltjes transform and first two moments of the
waiting time W, of a class-k customer for each of the four models analyzed. The
results are given a probabilistic representation involving mean residual lifetimes.

1. INTRODUCTION

We present a unified methodology for the study of waiting times in the M/
G/1 queue with several classes of customers and with single or multiple server
vacations under both the preemptive and non-preemptive priority regimes. Four
models are analyzed simultaneously, and in each case we derive the Laplace-
Stieltjes transform (LST) and the first two moments of the waiting time W, of
a class-k customer, assuming order-of-arrival service within classes. Our meth-
odology is based on the observation that each model may be viewed as a special
version of the basic single-class nonpriority M/G/1 queue with multiple-server
vacations. Employing this approach, we obtain new results concerning the two
vacation models under the preemptive-resume regime, as well as known results
concerning the two vacation models under the non-preemptive service discipline.
This approach has already been successfully used to obtain the LST and first
two moments of W, for the many-server non-preemptive priority M/M/c queue
with same mean service time for all classes (see Kella and Yechiali [12]).

Several authors have studied processes resembling the so-called ‘“‘vaca-
tion” models. Gaver [8], Keilson {11], and earlier authors as well studied the
M/G/1 model that allowed the server to be interrupted. Gaver defined inter-
ruptions as ‘‘the elements that prevent the continuous service of arrivals,” and
considered Poisson-type interruptions that are caused either by a machine break-
down or by the appearance of high-priority customers. Observing that “a busy
period generated by high-priority class of customers acts as an interruption in
low-priority service,” he analyzed the M/G/1 queue with compound Poisson
arrival and obtained the LST and associated moments of the busy period, as
well as the generating function of the number of customers in system, for both
preemptive and postponable (non-preemptive) service disciplines.

Cooper [2] was the first to use the term ““vacation” and to define the vacation-
type disciplines of “exhaustive service” and “gated service.” He studied the
single-class M/G/1 queue with multiple identical (but not necessarily independ-
ent) server vactions and obtained the LST and mean waiting time of an arbitrary
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customer for the case of service in order of arrival. Heyman [10] termed server
vacations as a “blocking process” and studied the expected delay of a class-k
customer in a non-preemptive priority regime for “two specific blocking proc-
esses—one representing the use of the server for a potentially unlimited number
of postponable jobs” (i.e., multiple vacations), “the other representing server
repair” (i.e., single vacation). He derived the mean waiting time EW, in the
multiple-vacations case, but his derivation of EW, for the single-vacation case
(Eq. (7) in [10]) contains a flaw.

Levy and Yechiali [15] further studied the single- and multiple- (iid) vacation
models in the nonpriority single-class M/ G/1 queue. They derived the generating
functions of the number of customers in system for each of the two vacation
models and were the first to obtain the LST and moments of W, for the single-
vacation case. Their result (21) corrects Heyman’s equation (7). Levy and Ye-
chiali’s explicit formulas for the LST of W, in the muitiple-vacation case and
for the mean number of customers present (Eq. (36) and (35) in [15]) may be
viewed as special cases of Cooper’s [2] equations (18) and (20). Scholl and
Kleinrock [16] also treated the M/G/1 queue with multiple-server vacations and
gave additional results concerning waiting times under the first-come first-served,
random order of service, and non-preemptive last-come first-served disciplines.
Shanthikumar [17] analyzed the two M/G/1 vacation models with several classes
of customers and non-preemptive priority service discipline. Using level-crossing
arguments he obtained the LST and the first two moments of W,, and gave
a recursive relation for calculating higher moments. Shanthikumar [18] fur-
ther utilized the level-crossing analysis to present a conservation identity for
M/G/1 queues with server vacations. Levy and Kleinrock [14] studied the
M/G/1 queue with a start-up delay and showed its similarities to the multiple-
vacation M/G/1 system. Recently, Doshi [5] provided a methodological over-
view of various stochastic processes modeled as queueing systems with server
vacations. He indicates the relationship between priority queueing models and
vacation models and goes over a variety of techniques used to study them.

Several authors (e.g., Fuhrmann [6], Fuhrmann and Cooper [7], Doshi [4],
Gelenbe and Iasnogorodski [9]) have studied the single-class M/G/1 and GI/
G/1 queues with server vacations concentrating on “decomposition” results,
i.e., on the phenomenon that “under fairly general conditions the waiting time
of an arbitrary customer, in steady state, is distributed as the sum of two in-
dependent random variables: one corresponding to the waiting time without
vacations and the other to the stationary forward recurrence time of the vacation”
(Doshi [4]). These recent studies extend previous results for the M/G/1 queue
by Cooper [2], who first obtained the decomposition result, and by Levy and
Yechiali [15], who first identified the second term as the forward recurrence
time.

In this article we develop a unified comprehensive framework for the analysis
of priority-M/G/1 queues with server vacations. We study four models:

(1) NPMV: Nonpreemptive multiple vacations.

(2) NPSV: Nonpreemptive single vacation.

(3) PRMV: Preemptive-resume multiple vacations.
(4) PRSV: Preemptive-resume single vacation.
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General results for all four models (and eventually others) are derived in
Section 2. Steady-state probabilities are calculated in Section 3. The Laplace-
Stieltjes transform of the waiting time, W, of a class-k customer and its first two
moments are calculated in Section 4. Finally, a unified probabilistic represen-
tation related to the first two moments of W, is presented in Section 5.

2. DEFINITIONS, NOTATION, AND GENERAL RESULTS

We consider a priority-M/G/1 queue with n classes of customers, where the
Poisson arrival rate of customers of class i is \; (i = 1,2, . . . ,n), their service
times are Vs, and customers of class i have a priority (preemptive or non-
preemptive) over customers of class j iff i < j. In addition, the server from time
to time takes a so-called vacation. Two vacation models are considered.

In the multiple-vacation variant “the server works continuously as long as
there is at least one customer in the system. When the server finishes serving a
customer and finds the system empty, it goes away for a random length of time,
U, called vacation. At the end of the vacation the server returns and begins to
serve those customers, if any, who have arrived during the vacation. If the server
finds no customers waiting at the end of a vacation, it immediately takes another
vacation, and continues in this manner until it finds at least one waiting customer
upon return from a vacation” (Cooper [3]). In the single-vacation case the server
takes exactly one vacation at the end of each busy period. That is, if upon return
from a vacation there are no new customers in the system, the server stays idle
until the first arrival of 2 new customer, and only then it starts a (regular) busy
period. Obviously, if customers arrive during a vacation, the server starts serving
them as soon as its vacation terminates.

Our goal is to derive expressions for the LST and moments of the waiting
time of an arbitrary class-k customer in each of the four models specified above.
For the purpose of analysis, it is convenient to group the higher-priority and
lower-priority classes into two distinct sets, defined by the following indices (see
Conway, Maxwell and Miller [1]): (a) The index noting customers which are
prior to (above ) class-k customers, i.e., with priority index smaller than k. (b)
The index noting customers which are inferior to (below) class-k customers, i.e.,
with priority index greater than k.

Thus, define A\, = Z! Ny Ny = 2040y Ay M = 22, N, and let V, and V,
denote the service times of class-a and class-b customers, respectively. Let
Gi(*) denote the cumulative distribution function (CDF) of the service time V,
of class-i customers. Then, the CDF’s of V, and V, are, respectively,

G) = 5 3 60)

and

n K:‘
Gb(') = 2 )\_ Gi(')'
i=k+1 Nb
Also, let p; = NEV,, p, = NEV, = 2k Pi» Pp = NEV, = Zf i pip =
210,00 =0,0; =2, p, 1 =j=n Note that o, = p, 0,_, = p, and
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p — o, = p,. We will often interchange p, with o, and p, with p — o,. We
also assume that the system is unsaturated, i.e., p < 1.

For the analysis in the sequel we require certain observations and results.
Denote by 6, the length of time from a moment a class-a customer enters service
and no other class-a customers are present, until the first moment when there
are no class-a customers in the system. Clearly 6, is the duration of a busy period
in a standard M/G/1 queue with arrival rate A, and service times V,. Conse-
quently, the LST of 6, and its mean are given by (Cooper [3], p. 230)

éa(s) = Va(s + )‘a - )‘aéa(s))$ Ega = EVa/(l - pa)’ (1)

where X(s) = E[e~*¥] is the LST of a random variable X.

Let V,, denote the length of time from the moment a class-k customer enters
service (clearly, no class-a customer is present) until the first moment after his
service completion when there are no class-a customers in the system. It is easy
to see that V,, is a delay cycle, with delay V,, in a standard M/G/1 queue with
class-a customers only. That is, V,, is the length of time the server is continuously
busy in an M/G/1 queue with arrival rate A, and service time V,, where the
server starts with a service of duration V, (= the delay) of a class-k customer
(no type-a customers are present initially), and continues with service of
type-a customers only, until none of them is present. Hence, the LST and mean
of V, are given by (see Conway, Maxwell and Miller [1])

Vak(s) = I-)k(s + )\a - )‘aéa(s)), EVak = EVk/(1 - pa)' (2)

Observe that V,, may also represent the time from a service initiation of a
class-k customer until the first moment another class-k customer (if present)
may enter service. (This duration is called “completion time” by Gaver [8].)
Therefore, we consider V, as a generalized service time of a class-k customer,
and set pu = MEVy = pi/(1 — po).

Similarly to the definition of V, we define two key delay cycles:

(i) Ty cycle = a delay cycle for which the delay is T (no class-a or class-k
customers are waiting in line initially), and the customers served there-
after are from classes 1 to k (i.e., types a and k) only. The cycle terminates
as soon as no more customers of type a or k are present. Clearly, E[T,
cycle] = ET/(1 = (po + p0))-

(ii) T,cycle = a delay cycle starting with a delay T and the customers being
served thereafter are from type a only (i.e., classes 1,2, ... ,k — 1).
T, is the length of time from the beginning of the delay T (where no
type-a customers are waiting in queue) until the first moment thereafter
that a class-k customer may enter service. Similarly to (1) and (2) we
have

Ta(s) = T(S + N — )‘aéa(s))’ E[Ta] = ET/(1 - pa)' (3)

In our models, each of the variables U, V,, V,, or V, may serve as a delay T,
generating a T, delay cycle, which itself constitutes the initial phase in a Ty
delay cycle.

It is important to see that whenever the server is not idle the system is within
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some T, delay cycle. We just have to distinguish between the various cycles: U
cycle, V, cycle, V, cycle and V, cycle. A Ucycle is a T, delay cycle with a delay
U. Such a cycle starts with a regular server vacation U, continues for a period
of time where only type-a customers are being served (this is the duration of
the corresponding T, cycle), and ends with a period of time where customers
of both types k and a are being served. (Clearly, the duration between two
consecutive services of class-k customers is V) Similarly, V, cycle, V, cycle,
or V, cycle is a T, delay cycle with delay V,, Vi, or V,, respectively.

We are now in a position to present the main idea of our analysis. Consider
an arbitrary class-k customer C, who arrives during some T, cycle. As pointed
out above, the initial phase of this T, cycle is a T, delay cycle, and the time
intervals between two consecutive services of class-k customers are V.. Hence,
as far as waiting times are considered, C, may view the process as a nonpriority
M/G/1 queue with multiple server vacations, where the arrival rate is A\, Service
times are V,, (yielding traffic intensity p,, = A\,EV,,), and the “vacation period”
opening the T, cycle is T,.

This key observation enables us to bring into the analysis the following known
results concerning the multiple-vacation, nonpriority M/G/1 queue. It has been
shown by Cooper [2] and by Levy and Yechiali [15] that for the multiple-vacation
nonpriority M/G/1 queue with arrival rate Ao, service time V,, vacation duration
Us, and traffic intensity p, = NEV,, the LST and first two moments of the
waiting time W of an arbitrary customer are given by

Wis) = L= e = Ts)

DoVo(s) — No + SIEU,’ (4a)
2 2
EW = 2(};0{‘/;0) 212130’ (40)
EW? = lﬁ% EW + 5 (’;"}ivgo) + fgﬁ). (4c)
Using the above key observation together with Egs. (4) yields
E[e~"{T, cycle] = [K(:V;( :)ak)_(l)\; +Tas(]s ;)Ta’ (5a)
E[W{Ty cycle] = 5 ();k’fvjzk) + ZEEZ'%“, (5b)

E[W} T, cycle] =

MEVZ, MEVE, ET?
— E[W, + .
= PWTw el + 5405 * 357 69

From the LST of T, in (3) one can readily obtain
ET? NEVIET

ET; = )
(1 = p)? (1 - p)? 6)
g - _ET | NET?-BV: \JET:-EV}  30\,EVIET
T - (1 - pa)?* (I = p)* (1 - p)’

Furthermore, EV}, and EV3, can be obtained by substituting V), in place of
T in (6) (since then V,, = T,).
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Making this substitution and inserting in (5) the expression for T,(s) from (3),
and the expression for V,(s) from (2), one gets (after some calculations)

(1 ~ Pa — pk)[l - T(S + A - )\aéa(s))]

=sWy = = =
Ele~"|T, cycle] V(s + Mo — NBL(5)) — Ny + s]ET ° (7a)
MEVE + \EV? ET?
E[W(T, cycle] = + , 7b
(WiTw cyelel = 30 3T = o= o0 * 20 = ppET

E[W}|Ty cycle] = [(1 “o)d —p=p0) A=)

X E[W,|Ty cycle]
MEVE + N EV? 3
(EV EV3 N ET __ 9
31 = p)"(1 — pa — p)  3(1 — p)ET

It should be emphasized that results (5) and (7) hold for both the non-preemp-
tive and preemptive-resume regimes as the variables V., T, cycle, and T, are
the same for both queue disciples.

From the point of view of a class-k customer any point in time is either within
some T, cycle (where T = U, V,, V,, or V,), or within a nondelay time X, in
which an arriving class-k customer enters service immediately upon arrival.
Hence, for T = U, V,, Vi, V,,

Wi(s) = D P[Ty cycle] - E[e~*"{T, cycle] + P[X,],
T

MEVE + \EV? \EV? ]

EW, = > P[T, cycle] - E[W|| Ty cycle], 8)
T

EW} = Y P[T, cycle] - E[W3}| T, cycle],
T

where P[T, cycle] is the probability that the system is within a specific T, cycle
and P[X,] is the probability that the server is within a nondelay period.

Thus, in order to complete the calculation of W,(s), EW,, and EW?2, all that
remains to do is to evaluate in each model the steady-state probabilities P[T,;
cycle] for T = U, V,, V,, V,, and the probability P[X]. It is convenient to use
the following notation:

I1, = P[V, cycle], I, = P[V,cycle], II, = P[V, cycle],
I, = P[Ucycle], I, = P[X,).

Note that some of the probabilities mayvanish in certain cases, as some of the
cycles may become irrelevant.

3. CALCULATION OF THE STEADY-STATE PROBABILITIES

There are certain relations between the above probabilities that are general
to all cases. It is clear that II, = O for the two preemptive-resume models, since
in these cases an arriving customer from clases 1, . . . ,k preempts any class-b
customer at service. Thus V), cycle is irrelevant.
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In the non-preemptive cases, we have I1, = p,/(1 — p, — P = pp(1 = o)),
where o, = p, + p,. This follows since each arriving class-b customer generates
a V, cycle whose mean duration is E[V, cycle] = EV,/ (1 ~ p, — pu), and the
mean number of V), cycles in a unit of time is \,. Define P, = the probability
that the server is on vacation, and P, = the probability that the server is idle,
but not on vacation.

From Levy and Yechiali [15], in all cases P, + P, = 1 — p. Since E[U cycle]
= EU/(1 = p, = py), itis clear that [T, = P,/(1 — p, — p,) = 1-p— P/
(1 = oy).

It is obvious that for the multiple-vacations cases P, = 0, while in the single-
vacation cases it has been shown by Levy and Yechiali that

_ (1 -0

Po = U(\) + NEU’

Furthermore, it is easy to see that in both non-preemptive cases [T, = P, where
in the preemptive-resume cases Il, = P, + Po-
It follows that in the non-preemptive cases

Hb+Hu+Hg=pb/(1“O'k)+(1—p—P0)/(1“0k)+P0
=1- Poo'k/(l - O'k),

and in the preemptive-resume cases

— P Py +
Hb + Hu + HO =0 + 1_.__')_& -+ PO + Py = 1 — ( 0 pb)(rk.
1 - Ok 1 - [0 %

Therefore, in all four models

na+nk=1—(nb+nu+n0)=Lm

— Uk.

Now, forj = a,k, let A; = [N/(\, + MIEV/(1 = p, = pi)]. As the expected
length of a V; cycle is EV;/(1 — p, — p,), it follows that the probability of the
system being within a V; cycle given that it is within a V, cycle or a V, cycle is
Ajl(A, + Ay = pi/(p. + pi). Thus, unconditioning, we finally have II; = {o/
(pa + P, + L) = pIly/(1 — 0),j = a,k. We summarize the above results
in Table 1.

4. FORMULAS FOR W,(s), EW,, AND EW?

Using Egs. (7) and (8), together with the steady-state probabilities appearing
in Table 1, we obtain explicit formulas for each of the four models studied in
the preceding sections. The results concerning the NPMV and NPSV models
(Section 4.1 and 4.2 below) have been obtained by Shanthikumar [17] using
level-crossing arguments. The results concerning the preemptive-resume cases
(Sections 4.3 and 4.4 below) are new.
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4.1 NPMV
L0y s + he = AU + MlL = Vils + Ao — MBS

Wis) = EU - .
k MNVils + A — AB(S)) — N + 8 ’

S NEVE + (1~ p)(EUYEU)

W, = i=1
E k 2(1 - O'k)(l - Uk—l)

k k-1
S NEVE D NEVE
EW? = || = + & EW,

1"0'/( l—ok_1

n

b

S NEVE + (1 - p)(EUWEU)] )
+ i=1

3(1 - ("k)(l - Gk—-l) 1 - O'k_1‘

4.2 NPSV

[(@ = p)/(DO) + NED)INL — U(s + A, — AoBu(5)))
W) = —- TN = 84 + 9]
g MVi(s + N — NB(8)) — N + 8

)\b[l - Vb(s + A, — )\aéa(s))]
MVi(s + Aa — NB(S) — N + 8

ﬁj NEV? + (1 — p)NEU/(U(\) + NEU)(EU* EU)

EW, = = ,
, 2(1 - 0k)(1 - 0’k—1)
k k-1
> MEVE Y NEVE
EW? = || &= + & - |EW,
1 - Oy 1 - Tr-1

é NEVE + (1 — p)[NEU/(O(N) + xEU)](EU3/EU):|

" 31 = o) — o%)
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4.3 PRMV
W( ) _ ((1 - p)/EU)[l — U(S + A = )\aéa(s))] + pb[)\a(l _ éa(s)) + S]
ds) = NV + Mo — NB(S)) — Ay + 5 ’
§kj MNEVE + (1 — p)(EU?/EU)
EW, = =

2(1 = o)1 — 0-1) ’

k k-1
> NEVE D NEVE
EW: = |\ + 1 EW,

1“0’k 1_0k—}

}kj NEV? + (1 — p)(EUWEU)} .
B TG ey T p

1 -0y

44 PRSV

A1 = /(D) + AEU)N[1 = U(s + N, — NBo(s))]
i + [ = pUM/(ON) + MEU) + pplMa(l — 8.(5)) + 5]

Wk(S) - kak(S + )\a - Xaéa(s)) - )\.k + 5
k
> NEVE 4+ (1 — p)INEU/(U(N) + NEU)Y(EU* EU)
EW, = = ,
k 2(1 - Uk)(l - Uk—x)
k k-1
NEVE D NEVE
EW: = || =L + &L EW,
1~ Oy 1 - Op-1
k
NEVE + (1 — p)[NEU/(O(N) + }\EU)](EU3/EU)}
+ i=1
31 = o)1 = oy-1)
1
X ——
1 - o4y

Note that by setting A, = N, A, = Ny, = 0, Vi, = Vi, and U = U in the
expressions for W(s), EW,, and EW} developed in this section for the NPMV
case, one readily obtains the corresponding results for the single-class multiple
vacation model [i.e., Egs. (4a)—(4c) above]. Making the same substitutions in
the expressions derived for the NPSV case yields the corresponding results
obtained by Levy and Yechiali [15] for the single-class single-vacation variant.

5. PROBABILISTIC REPRESENTATION OF THE RESULTS

The results obtained in Section 4 for the first two moments of W, may be
given a unifying probabilistic representation, using the notion of residual lifetime.
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Define R, as the remaining net service time of the customer being served upon
arrival of a class-k customer (provided that the former is not preempted by the
latter), or as the residual time of a vacation. Then, in all four models above,
the first two moments of W, may be written as follows:

ER,
EW, = (1 - o)l — 0%-1) ©)
k k-1
S NEVE D NEVE
2 i=1 i=1
EW? R w—— EW,
2
ER} 1t (10)

.+.
1 - o) - Uk-l)_]]- - Ok-1
This follows since, in the non-preemptive models,

S EV? EU?

ER, = 2 pipy + Popp (1)
" EV} EU?

ER} = D pips + Pz (12)
* 21 3EV, 3EU

while in the preemptive-resume models the summations in (11) and (12) are
only up to k, as class-b customers are preempted by customers of classes k and a.

The above expressions for ER, and ER} are self explanatory as p; (i =
1,2, ... ,n) or P, is the probability that at a moment of arrival of a class-k cus-
tomer the server is serving a type-i customer or it is on vacation, respectively.
EV?/(2EV)) and EV}/(3EV)) are the mean residual service time of a class-i
customer and its second moment, respectively. Similarly, EU%/(2EU) and EU?/
(3EU) are the first and second moments of the residual time of a vacation.

As pointed out by Heyman [10], Levy and Yechiali [15], Doshi [S], and others,
vacation durations may be interpreted as service times of lowest-priority cus-
tomers who are always available for service. Under this interpretation—and
considering the non-preemptive cases—Eq. (9) is equivalent to Eq. (3.31) in
Kleinrock ([13], p. 121), where ER, replaces W,, the average delay to a newly
arriving type-k customer due to the customer found in service. It is also easy
to check that the conservation law regarding mean waiting times, i.e., Z}.,
pEW, = pER//(1 — p), holds naturally in these cases (see Eq. (3.16) in
Kleinrock [13]).
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